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Abstract

This paper addresses the problem of estimating and track-

ing human body keypoints in complex, multi-person video.

We propose an extremely lightweight yet highly effective ap-

proach that builds upon the latest advancements in human

detection [17] and video understanding [5]. Our method op-

erates in two-stages: keypoint estimation in frames or short

clips, followed by lightweight tracking to generate keypoint

predictions linked over the entire video. For frame-level

pose estimation we experiment with Mask R-CNN, as well as

our own proposed 3D extension of this model, which lever-

ages temporal information over small clips to generate more

robust frame predictions. We conduct extensive ablative ex-

periments on the newly released multi-person video pose

estimation benchmark, PoseTrack, to validate various design

choices of our model. Our approach achieves an accuracy

of 55.2% on the validation and 51.8% on the test set using

the Multi-Object Tracking Accuracy (MOTA) metric, and

achieves state of the art performance on the ICCV 2017

PoseTrack keypoint tracking challenge [1].

1. Introduction

In recent years, visual understanding, such as object and

scene recognition [17,40,44,55], has witnessed a significant

bloom thanks to deep visual representations [18, 31, 47, 50].

Modeling and understanding human behaviour in images has

been in the epicenter of a variety of visual tasks due to its im-

portance for numerous downstream practical applications. In

particular, person detection and pose estimation from a sin-

gle image have emerged as prominent and challenging visual

recognition problems [36]. While single-image understand-

ing has advanced steadily through the introduction of tasks

of increasing complexity, video understanding has made

slower progress compared to the image domain. Here, the

preeminent task involves labeling whole videos with a single

activity type [5,7,10,14,29,30,32,46,49,51,52]. While still

relevant and challenging, this task shifts the focus away from
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Figure 1. We propose a two-stage approach to keypoint estimation

and tracking in videos. For the first stage, we propose a novel

video pose estimation formulation, 3D Mask R-CNN, that takes

a short video clip as input and produces a tubelet per person and

keypoints within those. In the second stage, we perform light-

weight optimization to link the detections over time.

one of the more interesting aspects of video understanding,

namely modeling the changes in appearance and semantics

of scenes, objects and humans over time [6, 13, 15, 37].

In this work, we focus on the problem of human pose

tracking in complex videos, which entails tracking and es-

timating the pose of each human instance over time. The

challenges here are plenty, including pose changes, occlu-

sions and the presence of multiple overlapping instances.

The ideal tracker needs to accurately predict the pose of all

human instances at each time step by reasoning about the

appearance and pose transitions over time. Hence, the effort

to materialize a pose tracker should closely follow the state

of the art in pose prediction but also enhance it with the tools

necessary to successfully integrate time information at an

instance-specific level.

Most recent video pose estimation methods use hand-

designed graphical models or integer program optimizations

on top of frame-based keypoint predictions to compute the fi-

nal predictions over time [21,26,48]. While such approaches

have shown good performance, they require hand-coding of

optimization constraints and may not be scalable beyond

short video clips due to their computational complexity.

Most importantly, the tracking optimization is only responsi-

ble for linking frame-level predictions, and the system has

no mechanism to improve the estimation of keypoints by
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leveraging temporal information (except [48], though it is

limited to the case of single person video). This implies that

if a keypoint is poorly localized in a given frame, e.g., due

to partial occlusion or motion blur, the prediction cannot

be improved despite correlated, possibly less ambiguous,

information being at hand in adjacent frames. To address

this limitation, we propose a simple and effective approach

which leverages the current state of the art method in pose

prediction [17] and extends it by integrating temporal in-

formation from adjacent video frames by means of a novel

3D CNN architecture. It is worth noting that this architec-

ture maintains the simplicity of our two-stage procedure:

keypoint estimation is still performed at a frame-level by

deploying space-time operations on short clips in a sliding-

window manner. This allows our 3D model to propagate

useful information from the preceding and the subsequent

frames in order to make the prediction in each frame more

robust, while using a lightweight module for long-term track-

ing, making our method applicable to arbitrarily long videos.

Fig. 1 illustrates our approach.

We train and evaluate our method on the challenging

PoseTrack dataset [24], which contains real-world videos

of people in various everyday scenes, and is annotated with

locations of human joints along with their identity index

across frames. First, and in order to convince of the efficacy

of our method, we build a competitive baseline approach

which links frame-level predictions, obtained from Mask

R-CNN [17], in time with a simple heuristic. Our base-

line approach achieves state of the art performance in the

ICCV’17 PoseTrack Challenge [1], proving that it performs

competitively on this new dataset. We then propose a 3D

extension of Mask R-CNN, which leverages temporal in-

formation in short clips to produce more robust predictions

in individual frames. For the same base architecture and

image resolution, our proposed 3D model outperforms our

very strong 2D baseline by 2% on keypoint mAP and 1% on

the MOTA metric (details about the metrics in Sec. 4.1). In

addition, our top-performing model runs at 2 minutes on a

100-frame video, with the tracking itself running in the order

of seconds, showing strong potential for practical usage. As

we show in Sec. 4.2, this is nearly two orders of magnitude

faster than IP based formulations [26] using state-of-the-art

solvers [16].

2. Related Work

Multi-person pose estimation in images: The application

of deep convolutional neural networks (CNNs) to keypoint

prediction [4, 17, 22, 40] has led to significant improvements

over the last few years. Some of the most recent efforts in

multi-person keypoint estimation from still images can be

classified into bottom-up versus top-down techniques. Top-

down approaches [17, 40] involve first locating instances

by placing a tight box around them, followed by estimation

of the body joint landmarks within that box. On the other

hand, bottom-up methods [4,22] involve detecting individual

keypoints, and in some cases the affinities between those

keypoints, and then grouping those predictions into instances.

Our proposed approach builds upon these ideas by extending

the top-down models to the video domain. We first predict

spatio-temporal tubes over human instances in the video,

followed by joint keypoint prediction within those tubes.

Multi-person pose estimation in video: Among the most

dominant approaches to pose estimation from videos is a

two-stage approach, which first deploys a frame-level key-

point estimator, and then connects these keypoints in space

and time using optimization techniques. In [21, 26], it is

shown that a state of the art pose model followed by an in-

teger programming optimization problem can result in very

competitive performance in complex videos. While these

approaches can handle both space-time smoothing and iden-

tity assignment, they are not applicable to long videos due to

the NP-hardness of the IP optimization. Song et al. [48] pro-

pose a CRF with space-time edges and jointly optimize for

the pose predictions. Although they show an improvement

over frame-level predictions, their method does not consider

body identities and does not address the challenging task of

pose tracking. In addition, their approach is hard to gener-

alize to an unknown number of person instances, a number

that might vary even between consecutive frames due to

occlusions and disocclusions. Our approach also follows a

two-stage pipeline, albeit with a much less computationally

expensive tracking stage, and is able to handle any number

of instances per frame in a video.

Multi-object tracking in video: There has been signifi-

cant effort towards multi-object tracking from video [12, 43].

Prior to deep learning, the proposed solutions to tracking

consisted of systems implementing a pipeline of several

steps, using computationally expensive hand-crafted fea-

tures and separate optimization objectives [54] for each

of the proposed steps. With the advent of deep learning,

end-to-end approaches for tracking have emerged. Exam-

ples include [39, 45] which use recurrent neural networks

(RNNs) on potentially diverse visual cues, such as appear-

ance and motion, in order to track objects. In [11], a tracker

is built upon the state of the art object detection system

by adding correlation features between pair of consecutive

frames in order to predict frame-level candidate boxes as

well as their time deformations. More recent works have

attempted to tackle detection and tracking in end-to-end

fashion [20, 27, 28], and some works have further used such

architectures for down-stream tasks such as action recogni-

tion [20]. Our work is inspired by these recent efforts but

extends the task of object box tracking to address for the

finer task of tracking poses in time.
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3. Technical Approach

In this section, we describe our method in detail. We

propose a two-stage approach that efficiently and accurately

tracks human instances and their poses across time. We

build a 3D human pose predictor by extending Mask R-

CNN [17] with spatiotemporal operations by inflating the

2D convolutions into 3D [5]. Our model takes as input

short clips and predicts the poses of all people in the clips

by integrating temporal information. We show that our 3D

model outperforms its 2D frame-level baseline for the task of

pose estimation. To track the instances in time, we perform

a lightweight optimization that links the predictions. To

address exponential complexities with respect to the number

of frames in the video and the number of detections per

frame, we employ a simple yet effective heuristic. This

yields a model that achieves state of the art accuracy on the

challenging PoseTrack benchmark [24] and runs orders of

magnitude faster than most recent approaches [21, 26].

3.1. Two­Stage Approach for Pose Tracking

Stage 1: Spatiotemporal pose estimation over clips.

The first stage in our two-stage approach for human keypoint

tracking is pose estimation using a CNN-based model. Al-

though our approach can build upon any frame-based pose es-

timation system, for this work we use Mask R-CNN [17] due

to its simple formulation and robust performance. Mask R-

CNN is a top-down keypoint estimation model that extends

the Faster R-CNN object detection framework [44]. It con-

sists of a standard base CNN, typically a ResNet [18], used to

extract image features, which are then fed into task-specific

small neural networks trained to propose object candidates

(RPN [44]), classify them or predict their mask/pose through

an accurate feature alignment operation called RoIAlign.

We take inspiration from the recent advancements in ac-

tion recognition achieved by I3D [5], which introduces a

video model obtained by converting a state of the art im-

age recognition model [23] by inflating its 2D convolutional

kernels to 3D. Analogously, starting from the vanilla Mask

R-CNN model, we transform the 2D convolutions to 3D.

Note that the receptive field of these 3D kernels spans over

the space and time dimensions and integrates spatiotem-

poral cues in an end-to-end learnable fashion. Now, the

input to our model is no longer a single frame, but a clip

of length T composed of adjacent frames sourced from a

video. We extend the region proposal network (RPN) [44],

to predict object candidates which track each hypothesis

across the frames of the input clip. These tube proposals

are used to extract instance-specific features via a spatio-

temporal RoIAlign operation. The features are then fed into

the 3D CNN head responsible for pose estimation. This

pose-estimation head outputs heatmap activations for all key-

points across all frames conditioned on the tube hypothesis.

Thus, the output of our 3D Mask R-CNN is a set of tube

hypotheses with keypoint estimates. Fig. 2 illustrates our

proposed 3D Mask R-CNN model, which we describe in

detail next.

Base network: We extend a standard ResNet [18] architec-

ture to a 3D ResNet architecture by replacing all 2D convo-

lutions with 3D convolutions. We set the temporal extent of

our kernels (KT ) to match the spatial width, except for the

first convolutional layer, which uses filters of size 3× 7× 7.

We temporally pad the convolutions as for the spatial dimen-

sions: padding of 1 for KT = 3 and 0 for KT = 1. We

set temporal strides to 1, as we empirically found that larger

stride values lead to lower performance. Inspired by [5, 8],

we initialize the 3D ResNet using a pretrained 2D ResNet.

Apart from their proposed “mean” initialization, which repli-

cates the 2D filter temporally and divides the coefficients by

the number of repetitions, we also experiment with a a “cen-

ter” initialization method, which has earlier been used for

action recognition tasks [9]. In this setup, we initialize the

central 2D slice of the 3D kernel with the 2D filter weights

and set all the other 2D slices (corresponding to temporal

displacements) to zero. We empirically show in Sec. 4.3

that center initialization scheme leads to better performance.

The final feature map output of the base 3D network for a

T×H×W input is T×
H

8
×

W

8
, as we clip the network after

the fourth residual block and perform no temporal striding.

Tube proposal network: We design a tube proposal net-

work inspired by the region proposal network (RPN) in

Faster R-CNN [44]. Given the feature map from the base

network, we slide a small 3D-conv network connected to

two sibling fully connected layers – tube classification (cls)

and regression (reg). The cls and reg labels are defined with

respect to tube anchors. We design the tube anchors to be

similar to the bounding box anchors used in Faster R-CNN,

but here we replicate them in time. We use A (typically 12)

different anchors at every sliding position, differing in scale

and/or aspect ratio. Thus, we have H

8
×

W

8
×A anchors in

total. For each of these anchors, cls predicts a binary value in-

dicating whether a foreground tube originating at that spatial

position has a high overlap with our proposal tube. Similarly,

reg outputs for each anchor a 4T -dimensional vector encod-

ing displacements with respect to the anchor coordinates for

each box in the tube. We use the softmax classification loss

for training the cls layer, and the smoothed L1 loss for the

reg layer. We scale the reg loss by 1

T
, in order to keep its

values comparable to those of the loss for the 2D case. We

define these losses as our tracking loss.

3D Mask R-CNN heads: Given the tube candidates pro-

duced by the tube proposal network, the next step classifies

and regresses them into a tight tube around a person track.

We compute the region features for this tube by designing a

3D region transform operator. In particular, we extend the

RoIAlign operation [17] to extract a spatiotemporal feature

map from the output of the base network. Since the temporal
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Figure 2. Proposed 3D Mask R-CNN network architecture: Our architecture, as described in Sec. 3.1, has three main parts. The base

network is a standard ResNet, extended to 3D. It generates a 3D feature blob, which is then used to generate proposal tubes using the Tube

Proposal Network (TPN). The tubes are used to extract region features from the 3D feature blob, using a spatiotemporal RoIAlign operation,

and are fed into heads that classify/regress for a tight tube and another to predict keypoint heatmaps.

extent of the feature map and the tube candidates is the same

(of dimension T ), we split the tube into T 2D boxes, and use

RoIAlign to extract a region from each of the T temporal

slices in the feature map. The regions are then concatenated

in time to produce a T × R × R feature map, where R is

the output resolution of RoIAlign operation, which is kept

7 for the cls/reg head, and 14 for the keypoint head. The

classification head consists of a 3D ResNet block, similar to

the design of the 3D ResNet blocks from the base network;

and the keypoint head consists of 8 3D conv layers, followed

by 2 deconvolution layers to generate the keypoint heatmap

output for each time frame input. The classification head is

trained with a softmax loss for the cls output and a smoothed

L1 loss for the reg output, while the keypoint head is trained

with a spatial softmax loss, similar to [17].

Stage 2: Linking keypoint predictions into tracks.

Given these keypoint predictions grouped in space by per-

son identity (i.e., pose estimation), we need to link them

in time to obtain keypoint tracks. Tracking can be seen as

a data association problem over these detections. Previous

approaches, such as [41], have formulated this task as a bi-

partite matching problem, which can be solved using the

Hungarian algorithm [33] or greedy approaches. More re-

cent work has incorporated deep recurrent neural networks

(RNN), such as an LSTM [19], to model the temporal evolu-

tions of features along the tracks [39, 45]. We use a similar

strategy, and represent these detections in a graph, where

each detected bounding box (representing a person) in a

frame becomes a node. We define edges to connect each

box in a frame to every box in the next frame. The cost of

each edge is defined as the negative likelihood of the two

boxes linked on that edge to belong to the same person. We

experimented with both hand-crafted and learned likelihood

metrics, which we describe in the next paragraph. Given

these likelihood values, we compute tracks by simplifying

the problem to bipartite matching between each pair of ad-

jacent frames. We initialize tracks on the first frame and

propagate the labels forward using the matches, one frame

at a time. Any boxes that do not get matched to an existing

track instantiate a new track. As we show in Sec. 4.2, this

simple approach is very effective in getting good tracks, is

highly scalable, is able to deal with a varying number of

person hypotheses, and can run on videos of arbitrary length.

Likelihood metrics: We experiment with a variety of hand-

crafted and learned likelihood metrics for linking the tracks.

In terms of hand-crafted features, we specifically experiment

with: 1) Visual similarity, defined as the cosine distance

between CNN features extracted from the image patch repre-

sented by the detection; 2) Location similarity, defined as the

box intersection over union (IoU) of the two detection boxes;

and 3) Pose similarity, defined as the PCKh [53] distance

between the poses in the two frames. We also experiment

with a learned distance metric based on a LSTM model that

incorporates track history in predicting whether a new de-

tection is part of the track or not. At test time, the predicted

confidence values are used in the matching algorithm, and

the matched detection is used to update the LSTM hidden

state. Similar ideas have also shown good performance for

traditional tracking tasks [45].

In Sec. 4 we present an extensive ablative analysis of

the various design choices in our two-stage architecture

described above. While being extremely lightweight and

simple to implement, our final model obtains state of the art

performance on the benchmark, out-performing all submis-

sions in the ICCV’17 PoseTrack challenge [1].

4. Experiments and Results

We introduce the PoseTrack challenge benchmark and

experimentally evaluate the various design choices of our

model. We first build a strong baseline with our two-stage

keypoint tracking approach that obtains state of the art per-

formance on this challenging dataset. Then, we show how

our 3D Mask R-CNN formulation can further improve upon

that model by incorporating temporal context.
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Threshold mAP mAP mAP mAP mAP mAP mAP mAP MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec Rec

Head Shou Elbo Wri Hip Knee Ankl Total Head Shou Elb Wri Hip Knee Ankl Total Total Total Total

0.0, random tracks 72.8 75.6 65.3 54.3 63.5 60.9 51.8 64.1 -11.6 -6.6 -8.5 -12.9 -11.1 -10.2 -9.7 -10.2 55.8 83.3 70.8

0.0 72.8 75.6 65.3 54.3 63.5 60.9 51.8 64.1 60.3 65.3 55.8 43.5 52.5 50.7 43.9 53.6 55.7 83.3 70.8

0.5 72.8 75.6 65.3 54.3 63.5 60.9 51.8 64.1 61.0 66 56.3 44.1 52.9 51.1 44.3 54.2 55.7 83.3 70.8

0.95 67.5 70.2 62 51.7 60.7 58.7 49.8 60.6 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2 61.5 88.1 66.5

Table 1. Effect of the detection cut-off threshold. We threshold the detections computed by Mask R-CNN before matching them to

compute tracks. While keypoint mAP goes down, the tracking MOTA performance increases as there are fewer spurious detections to

confuse the tracker. The first row also shows the random baseline; i.e. the performance of the model that randomly assigns a track ID

between 0 and 1000 (maximum allowed) to each detection.

4.1. Dataset and Evaluation

PoseTrack [24, 25] is a recently released large-scale chal-

lenge dataset for human body keypoint estimation and track-

ing in diverse, in-the-wild videos. It consists of a total of 514

video sequences with 66,374 frames, split into 300, 50 and

208 videos for training, validation and testing, respectively.

The training videos come with the middle 30 frames densely

labeled with human body keypoints. The validation and

test videos are labeled at every fourth frame, apart from the

middle 30 frames. This helps evaluate the long term track-

ing performance of methods without requiring expensive

annotations throughout the entire video. In total, the dataset

contains 23,000 labeled frames and 153,615 poses. The test

set annotations are held-out, and evaluation are performed

by submitting the predictions to an evaluation server.

The annotations consist of human head bounding boxes

and 15 body joint keypoint locations per labeled person.

Since all our proposed approaches are top-down and depend

on the detection of the extent of the person before detect-

ing keypoints, we compute a bounding box by taking the

min and max extents of labeled keypoints, and dilating that

box by 20%. Also, to make the dataset compatible with

COCO [35,36], we permute the keypoint labels to match the

closest equivalent labels in COCO. This allows us to pretrain

our models on COCO, augmenting the PoseTrack dataset

significantly and giving a large improvement in performance.

The dataset is designed to evaluate methods on three

different tasks: 1) Single-frame pose estimation; 2) Pose

estimation in video; 3) Pose tracking in the wild. Task 1)

and 2) are evaluated at a frame level, using the mean average

precision (mAP) metric [42]. Task 3) is evaluated using a

multi-object tracking metric (MOT) [3]. Both evaluations

require first computing the distance of each prediction from

each ground truth labeled pose. This is done using the PCKh

metric [2], which computes the probability of correct key-

points normalized by the head size. The mAP is computed

as in [42], and the MOT is as described in [38]. Their MOT

evaluation penalizes false positives equally regardless of

their confidence. For this, we drop keypoint predictions with

low confidence (1.95 after grid-search on the validation set).

We use the PoseTrack evaluation toolkit for computing all

results presented in this paper, and report final test numbers

as obtained from the evaluation server.

4.2. Baseline

In an effort to build a very competitive baseline, we first

evaluate the various design elements of our two stage track-

ing pipeline with a vanilla Mask R-CNN base model. This

model disregards time-sensitive cues when making pose pre-

dictions. Throughout this section, our models are initialized

from ImageNet and are pretrained on the COCO keypoint

detection task. We then finetune the Mask R-CNN model

on PoseTrack, keeping most hyper-parameters fixed to the

defaults used for COCO [36]. At test time, we run the model

on each frame and store the bounding box and keypoint pre-

dictions, which are linked over time in the tracking stage.

This model is competitive as it achieves state of the art re-

sults on the PoseTrack dataset. In Sec. 4.3, we prove that our

approach can further improve the performance by incorpo-

rating temporal context from each video clip via a 3D Mask

R-CNN model.

Thresholding initial detections: Before linking the detec-

tions in time, we drop the low-confidence and potentially

incorrect detections. This helps prevent the tracks from drift-

ing and reduces false positives. Table 1 shows the effect of

thresholding the detections. As expected, the MOTA track-

ing metric [3] improves with higher thresholds, indicating

better and cleaner tracks. The keypoint mAP performance,

however, decreases by missing out on certain low-confidence

detections, which tend to improve the mAP metric. Since

we primarily focus on the tracking task, we threshold our

detections at 0.95 for our final experiments.

Deeper base networks: As in most vision problems, we

observed an improvement in frame-level pose estimation

by using a deeper base model. The improvements also di-

rectly transferred to the tracking performance. Replacing

ResNet-50 in Mask R-CNN with Resnet-101 gave us about

2% improvement in MOTA. We also observed a gain in per-

formance on using feature pyramid networks (FPN) [34] in

the base network. Ultimately, we got best performance by

using a ResNet-101 model with FPN as the body, a 2-layer

MLP for the classification head, and a stack of eight conv

and deconv layers as the keypoint head.
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Method MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec Rec

Head Shou Elb Wri Hip Knee Ankl Total Total Total Total

Hungarian 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2 61.5 88.1 66.5

Greedy 61.7 65.4 57.3 45.6 54.2 53 45.6 55.1 61.5 88.1 66.5

Table 2. Comparison between Hungarian and Greedy algo-

rithm for matching. Effect of matching algorithm in tracking

performance, computed over the bounding-box overlap cost crite-

rion. The hungarian algorithm obtains slightly higher performance

than the simple greedy matching.

Matching algorithm: We experimented with two bipartite

matching algorithms: the Hungarian algorithm [33] and a

greedy algorithm. While the Hungarian algorithm computes

an optimal matching given an edge cost matrix, the greedy

algorithm takes inspiration from the evaluation algorithms

for object detection and tracking. We start from the high-

est confidence match, select that edge and remove the two

connected nodes out of consideration. This process of con-

necting each predicted box in the current frame with previous

frame is repeatedly applied from the first to the last frame of

the video. Table 2 compares the two algorithms, using the

“bounding box overlap” as cost metric (details in Sec. 4.2).

We observe that the Hungarian method performs slightly

better, thus we use it as our final model.

Tracking cost criterion: We experimented with three hand-

defined cost criteria as well as the learned LSTM metric to

compute the likelihoods for matching. First, we use bound-

ing box overlap over union (IoU) as the similarity metric.

This metric expects the person to move and deform little

from one frame to next, which implies that matching boxes

in adjacent frames should mostly overlap. Second, we used

pose PCKh [53] as the similarity metric, as the pose of the

same person is expected to change little between consecu-

tive frames. Third, we used the cosine similarity between

CNN features as a similarity metric. In particular, we use

the res3 layer of a ResNet-18 pretrained on ImageNet,

extracted from the image cropped using the person bound-

ing box. Finally, as a learned alternative, we use a LSTM

model described in Sec. 3.1 to learn to match detections to

the tracks. Table 3 shows that the performance is relatively

stable across different cost criteria. We also experimented

with different layers of the CNN, as well as combinations of

these cost criteria, all of which performed similarly.

Given the strong performance of bounding box overlap,

we use the box xmin, ymin, xmax, ymax as the input feature

for a detection. Despite extensive experimentation with

different LSTM architectures (details in supplementary), we

found that the learned metric did not perform as well as the

simpler hand-crafted functions, presumably due the small

size of the training set. Hence for simplicity and given robust

performance, we use box overlap for our final model.

Upper bounds: One concern about the linking stage is that

it is relatively simple, and does not handle occlusions or

Method MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec Rec

Head Shou Elb Wri Hip Knee Ankl Total Total Total Total

Bbox IoU 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2 61.5 88.1 66.5

Pose PCK 60.7 64.5 56.5 44.8 53.3 52.0 44.6 54.2 61.5 88.1 66.5

CNN cos-dist 61.9 65.7 57.5 45.8 54.4 53.3 45.8 55.4 61.5 88.1 66.5

All combined 61.9 65.7 57.4 45.7 54.4 53.2 45.7 55.3 61.5 88.1 66.5

LSTM 54.2 58 50.4 39.4 47.4 46.6 39.8 48.4 61.4 88.1 66.5

Table 3. Comparison between different similarity cost criteria.

We compare various different hand-crafted and learned cost crite-

rion for the matching stage to generate tracks. Interestingly, simple

hand-crafted approaches perform very well for the task. We choose

to go with the simple bounding box overlap due to low computa-

tional cost and strong performance.

Ours Perfect association Perfect keypoints Both

(MOTA) 55.2 57.7 78.4 82.9

Table 4. Upper bounds: We compare our performance, with our

potential performance, if we had the following perfect information.

a) Perfect association: We modify the evaluation code to copy over

the track IDs from ground truth (GT) to our predictions (PD), after

assignment is done for evaluation. This shows what our model

would achieve, if we could track perfectly (i.e. incurring 0 ID

switches). b) Perfect keypoints: We replace our PD keypoints with

GT keypoint, where GT and PD are matched using box overlap.

This shows what our model would achieve, if we predict keypoints

perfectly. c) Finally we combine both, and show the performance

with perfect keypoints and tracking, given our detections.

missed detections. However we find that even without ex-

plicit occlusion handling, our model is not significantly af-

fected by it. To prove this, we compute the upper bound

performance given our detections and given perfect data as-

sociation. Perfect data association indicates that tracks are

preserved in time even when detections are missed at the

frame level. As explained in Table 4, we obtain a small

2.5% improvement in MOTA (55.2 → 57.5) compared to

our box-overlap based association, indicating that our simple

heuristic is already close to optimal in terms of combinato-

rial matching. As shown in Table 4, the biggest challenge

is the quality of the pose estimates. Note that a very sub-

stantial boost is observed when perfect pose predictions are

assumed, given our detections (55.2 → 78.4). This shows

that the biggest challenge in PoseTrack is building better

pose predictors. Note that our approach can be modified

to handle jumps or holes in tracks matching over the pre-

vious K frames as opposed to only the last frame, similar

to [41]. This would allow for propagation of tracks even if a

detection is missed in K − 1 frames, at a cost linear in K.

Comparison with state of the art: We now compare our

baseline tracker to previously published work on this dataset.

Since this data was released only recently, there are no pub-

lished baselines on the complete dataset. However, previous

work [26] from the authors of the challenge reports results

on a subset of this data. We compare our performance on
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Method Dataset MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec Rec

Head Shou Elb Wri Hip Knee Ankl Total Total Total Total

Final model (Mini) Test v1.0 55.9 59.0 51.9 43.9 47.2 46.3 40.1 49.6 34.1 81.9 67.4

PoseTrack [26] Test (subset) - - - - - - - 46.1 64.6 74.8 70.5

Table 5. Final performance on test set. We compare our method with the previously reported method on a subset of this dataset [26].

Note that [26] reports performance at PCKh0.34; the comparable PCKh0.5 performance was provided via personal communication. Our

performance was obtained by submitting our predictions to the evaluation server. Our model was a ResNet-101 base trained on train+val

sets, and tracking was performed at 0.95 initial detection threshold, hungarian matching and bbox overlap cost criterion. This model also

out-performed all competing approaches in the ICCV’17 PoseTrack challenge [1].

Figure 3. Sample results. Visualization of predictions from our two-stage model on the PoseTrack validation set. We show five frames

per video, with each frame labeled with the detections and keypoints. The detections are color coded by predicted track id. Note that our

model is able to successfully track people (and hence, their keypoints) in highly cluttered environments. One failure case of our model, as

illustrated by the last video clip above, is loss of track due to occlusion. As the skate-boarder goes behind the pole, the model loses the track

and assigns a new track ID after it recovers the person.

the test set (obtained from the evaluation server) to their per-

formance in Table 5. Note that their reported performance

in [26] was at PCKh0.34, and the PCKh0.5 performance was

provided via personal communication. We note that while

the numbers are not exactly comparable due to differences

in the test set used, it helps put our approach in perspective

to the state of the art IP based approaches. We also sub-

mitted our final model to the ICCV’17 challenge [1]. Our

final MOTA performance on the full test set was 51.8, and

out-performed all competing approaches submitted to the

challenge. Fig. 3 shows some sample results of our approach.

Run-time comparison: Finally, we compare our method

in terms of run-time, and show that our method is nearly

two orders of magnitude faster than previous work. The IP-

based method [26], using provided code takes 20 hours for a

256-frame video, in 3 stages: a) multiscale pose heatmaps:

15.4min, b) dense matching: 16 hours & c) IP optimization:

4 hours. Our method for the same video takes 5.2 minutes,

in 2 stages: a) Box/kpt extract: 5.1 min & b) Hungarian: 2s,

leading to a 237× speedup. More importantly, the run time

for [26] grows non-linearly, making it impractical for longer

videos. Our run time, on the other hand, grows linearly with

number of frames, making it much more scalable to long

videos.
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Init Style mAP mAP mAP mAP mAP mAP mAP mAP MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP Prec Rec

Head Shou Elbo Wri Hip Knee Ankl Total Head Shou Elb Wri Hip Knee Ankl Total Total Total Total

2D ImNet 23.4 20 12.3 7.8 16.9 11.2 8 14.8 17.5 12.9 -2.4 -11.6 8.2 -1.6 -7.6 3.2 0 57.8 22.6

3D ImNet center 27 22 13.3 7.8 19.2 12.8 9.4 16.7 21.5 13.3 -2.1 -11.7 8.4 -2 -6.3 4.3 10.3 56.9 24.6

3D ImNet mean 26.7 20.1 11.6 6.9 19.2 12.4 9.1 15.9 21.1 12.1 -4 -14.7 8.1 -2.4 -7.1 3.2 10 55.6 24.6

2D COCO 28.7 25.4 17.5 10.8 24.4 17.1 11.3 19.9 24.6 20.8 11.9 4.7 17.9 11.1 2.6 14.1 5.4 73.6 24.6

3D COCO center 32.5 30.4 19.9 12 26.6 18.7 13.5 22.6 27.7 24.5 12.1 4.5 18.7 11.2 3.3 15.4 31.3 70.7 28

3D COCO mean 29.3 26.4 18.2 10.4 24.9 16.8 12.1 20.4 25 21.5 10.8 1.1 18 9.6 2.3 13.4 15 69.7 25.7

Table 6. 3D Mask R-CNN performance. We compare our proposed 3D Mask R-CNN model with the baseline 2D model that achieves

state of the art performance on the PoseTrack challenge. Due to GPU memory limitations, we use a ResNet-18 base architecture for both

models with frames resized to 256 pixels (this leads to a drop in performance compared to ResNet-50, over 800px images). Our 3D model

outperforms the 2D frame-level model for the tracking task in both MOTA and mAP metrics. We observe slightly higher performance with

our proposed “center” initialization (as opposed to the “mean” initialization proposed in [5]).

4.3. Evaluating 3D Mask R­CNN

So far we have shown results with our baseline model, run-

ning frame-by-frame (stage 1), and constructing the tracks

on top of those predictions (stage 2). Now we experiment

with our proposed 3D Mask R-CNN model, which naturally

encodes temporal context by taking a short clip as input

and produces spatiotemporal tubes of humans with keypoint

locations (described in Sec. 3.1). At test time, we run this

model densely in a sliding window fashion on the video, and

perform tracking on the center frame outputs.

One practical limitation with 3D CNN models is the GPU

memory usage. Due to limits of the current hardware, we

choose to experiment with a lightweight setup of our pro-

posed baseline model. We use a ResNet-18 base architecture

with an image resolution of 256 pixels. For simplicity, we

experiment with T = 3 frame clips without temporal strid-

ing, although our model can work with arbitrary length clips.

Our model predicts tubes of T frames, with keypoints cor-

responding to each box in the tube. We experiment with

inflating the weights from both ImageNet and COCO, us-

ing either “mean” or “center” initialization as described in

Sec. 3.1. Table 6 shows a comparison between our 3D Mask

R-CNN and the 2D baseline. We re-train the COCO model

on ResNet-18 (without the 256px resizing) to be able to

initialize our 3D models. We obtain a mAP of 62.7% on

COCO minival, which is comparable to the reported perfor-

mance of ResNet-50 (64.2% mAP, Table 6 [17]). While the

initial performance of the 2D model drops due to small input

resolution and shallower model, we see clear gains by using

our 3D model on the same resolution data with same depth

of the network. This suggests potentially similar gains over

the deeper model as well, once GPU/systems limitations

are resolved to allow us to efficiently train deeper 3D Mask

R-CNN models.

5. Conclusion and Future Work

We have presented a simple, yet efficient approach to hu-

man keypoint tracking in videos. Our approach combines the

state-of-the-art in frame-level pose estimation with a fast and

effective person-level tracking module to connect keypoints

over time. Through extensive ablative experiments, we ex-

plore different design choices for our model, and present

strong results on the PoseTrack challenge benchmark. This

shows that a simple Hungarian matching algorithm on top of

good keypoint predictions is sufficient for getting strong per-

formance for keypoint tracking, and should serve as a strong

baseline for future research on this problem and dataset. For

frame-level pose estimation we experiment with both a Mask

R-CNN as well as our own proposed 3D extension of this

model, which leverages temporal information from small

clips to generate more robust predictions. Given the same

base architecture and input resolution, we found our 3D

Mask R-CNN to yield superior results to the 2D baseline.

However, our 2D baseline requires less GPU memory and

as a result can be applied to high image resolutions (up to

800 pixels) with high-capacity models (ResNet-101), which

elevate the performance of this simple 2D baseline to state

of the art results on the challenging PoseTrack benchmark.

We believe that as GPU capacity increases and systems be-

come capable splitting and training models across multiple

GPUs, there is a strong potential for 3D Mask R-CNN based

approaches, especially when applied to high-resolution input

and high-capacity base models. We plan to explore those

directions as future work.
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