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Abstract

To understand the visual world, a machine must not only

recognize individual object instances but also how they in-

teract. Humans are often at the center of such interac-

tions and detecting human-object interactions is an impor-

tant practical and scientific problem. In this paper, we ad-

dress the task of detecting 〈human, verb, object〉 triplets

in challenging everyday photos. We propose a novel model

that is driven by a human-centric approach. Our hypothesis

is that the appearance of a person – their pose, clothing,

action – is a powerful cue for localizing the objects they

are interacting with. To exploit this cue, our model learns

to predict an action-specific density over target object loca-

tions based on the appearance of a detected person. Our

model also jointly learns to detect people and objects, and

by fusing these predictions it efficiently infers interaction

triplets in a clean, jointly trained end-to-end system we call

InteractNet. We validate our approach on the recently intro-

duced Verbs in COCO (V-COCO) and HICO-DET datasets,

where we show quantitatively compelling results.

1. Introduction

Visual recognition of individual instances, e.g., detect-

ing objects [10, 9, 27] and estimating human actions/poses

[12, 32, 2], has witnessed significant improvements thanks

to deep learning visual representations [18, 30, 31, 17].

However, recognizing individual objects is just a first step

for machines to comprehend the visual world. To under-

stand what is happening in images, it is necessary to also

recognize relationships between individual instances. In

this work, we focus on human-object interactions.

The task of recognizing human-object interactions [13,

33, 6, 14, 5] can be represented as detecting 〈human, verb,

object〉 triplets and is of particular interest in applica-

tions and in research. From a practical perspective, pho-

tos containing people contribute a considerable portion of

daily uploads to internet and social networking sites, and

thus human-centric understanding has significant demand

in practice. From a research perspective, the person cate-

gory involves a rich set of actions/verbs, most of which are
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Figure 1. Detecting and recognizing human-object interactions.

(a) There can be many possible objects (green boxes) interacting

with a detected person (blue box). (b) Our method estimates an

action-type specific density over target object locations from the

person’s appearance, which is represented by features extracted

from the detected person’s box. (c) A 〈human, verb, object〉
triplet detected by our method, showing the person box, action

(cut), and target object box and category (knife). (d) Another pre-

dicted action (stand), noting that a person can simultaneously take

multiple actions and an action may not involve any objects.

rarely taken by other subjects (e.g., to talk, throw, work).

The fine granularity of human actions and their interactions

with a wide array of object types presents a new challenge

compared to recognition of entry-level object categories.

In this paper, we present a human-centric model for rec-

ognizing human-object interaction. Our central observation

is that a person’s appearance, which reveals their action and

pose, is highly informative for inferring where the target

object of the interaction may be located (Figure 1(b)). The

search space for the target object can thus be narrowed by

conditioning on this estimation. Although there are often

many objects detected (Figure 1(a)), the inferred target lo-

cation can help the model to quickly pick the correct object

associated with a specific action (Figure 1(c)).

We implement this idea as a human-centric recognition
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Figure 2. Human-object interactions detected by our method. Each image shows one detected 〈human, verb, object〉 triplet.

branch in the Faster R-CNN framework [27]. Specifically,

on a region of interest (RoI) associated with a person, this

branch performs action classification and density estimation

for the action’s target object location. The density estimator

predicts a 4-d Gaussian distribution, for each action type,

that models the likely relative position of the target object

to the person. The prediction is based purely on the human

appearance. This human-centric recognition branch, along

with a standard object detection branch [9] and a simple

pairwise interaction branch (described later), form a multi-

task learning system that can be jointly optimized.

We evaluate our method, InteractNet, on the challeng-

ing V-COCO (Verbs in COCO) dataset [14] for detecting

human-object interactions. Our human-centric model im-

proves accuracy by 26% (relative) from 31.8 to 40.0 AP

(evaluated by Average Precision on a triplet, called ‘role

AP’ [14]), with the gain mainly due to inferring the target

object’s relative position from the human appearance. In

addition, we prove the effectiveness of InteractNet by re-

porting a 27% relative improvement on the newly released

HICO-DET dataset [3]. Finally, our method can run at

about 135ms / image for this complex task, showing good

potential for practical usage.

2. Related Work

Object Detection. Bounding-box based object detectors

have improved steadily in the past few years. R-CNN, a

particularly successful family of methods [10, 9, 27], is a

two-stage approach in which the first stage proposes candi-

date RoIs and the second stage performs object classifica-

tion. Region-wise features can be rapidly extracted [16, 9]

from shared feature maps by an RoI pooling operation. Fea-

ture sharing speeds up instance-level detection and enables

recognizing higher-order interactions, which would be com-

putationally infeasible otherwise. Our method is based on

the Fast/Faster R-CNN frameworks [9, 27].

Human Action & Pose Recognition. The action and pose

of humans is indicative of their interactions with objects or

other people in the scene. There has been great progress

in understanding human actions [12] and poses [32, 2, 15]

from images. These methods focus on the human instances

and do not predict interactions with other objects. We rely

on action and pose appearance cues in order to predict the

interactions with objects in the scene.

Visual Relationships. Research on visual relationship

modeling [29, 14, 23, 34] has attracted increasing attention.

Recently, Lu et al. [23] proposed to recognize visual rela-

tionships derived from an open-world vocabulary. The set

of relationships include verbs (e.g., wear), spatial (e.g., next

to), actions (e.g., ride) or a preposition phrase (e.g., drive

on). Our focus is related, but different. First, we aim to

understand human-centric interactions, which take place in

particularly diverse and interesting ways. These relation-

ships involve direct interaction with objects (e.g., person

cutting cake), unlike spatial or prepositional phrases (e.g.,

dog next to dog). Second, we aim to build detectors that

recognize interactions in images with high precision, which

is a requirement for practical applications. In contrast, in an

open-world recognition setting, evaluating precision is not

feasible, resulting in recall-based evaluation, as in [23].

Human-Object Interactions. Human-object interactions

[13, 33, 6] are related to visual relationships, but present

different challenges. Human actions are more fine-grained

(e.g., walking, running, surfing, snowboarding) than the ac-

tions of general subjects, and an individual person can si-

multaneously take multiple actions (e.g., drinking tea and

reading a newspaper while sitting in a chair). These issues

require a deeper understanding of human actions and the

objects around them and in much richer ways than just the

presence of the objects in the vicinity of a person in an im-

age. Accurate recognition of human-object interaction can

benefit numerous tasks in computer vision, such as action-

specific image retrieval [26], caption generation [35], and

question answering [35, 24].
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Figure 3. Model Architecture. Our model consists of (a) an object

detection branch, (b) a human-centric branch, and (c) an optional

interaction branch. The person features and their layers are shared

between the human-centric and interaction branches (blue boxes).

3. Method

We now describe our method for detecting human-object

interactions. Our goal is to detect and recognize triplets of

the form 〈human, verb, object〉. To detect an interaction

triplet, we have to accurately localize the box containing a

human and the box for the associated object of interaction

(denoted by bh and bo, respectively), as well as identify the

action a being performed (selected from among A actions).

Our proposed solution decomposes this complex and

multifaceted problem into a simple and manageable form.

We extend the Fast R-CNN [9] object detection framework

with an additional human-centric branch that classifies ac-

tions and estimates a probability density over the target ob-

ject location for each action. The human-centric branch

reuses features extracted by Fast R-CNN for object detec-

tion so its marginal computation is lightweight.

Specifically, given a set of candidate boxes, Fast R-CNN

outputs a set of object boxes and a class label for each box.

Our model extends this by assigning a triplet score Sa
h,o to

pairs of candidate human/object boxes bh, bo and an action

a. To do so, we decompose the triplet score into four terms:

Sa
h,o = sh · so · s

a
h · gah,o (1)

While the model has multiple components, the basic idea

is straightforward. sh and so are the class scores from Fast

R-CNN of bh and bo containing a human and object. Our

human-centric branch outputs two extra terms. First, sah is

the score assigned to action a for the person at bh. Second,

µa
h is the predicted location of the target of interaction for a

given human/action pair, computed based on the appearance

of the human. This, in turn, is used to compute gah,o, the

likelihood that an object with box bo is the actual target of

interaction. We give details shortly and show that this target

localization term is key for obtaining good results.

We discuss each component next, followed by an exten-

sion that replaces the action classification output sah with a

dedicated interaction branch that outputs a score sah,o for an

action a based on both the human and object appearances.

Finally we give details for training and inference. Figure 3

illustrates each component in our full framework.

3.1. Model Components

Object Detection. The object detection branch of our net-

work, shown in Figure 3(a), is identical to that of Faster R-

CNN [27]. First, a Region Proposal Network (RPN) is used

to generate object proposals [27]. Then, for each proposal

box b, we extract features with RoiAlign [15], and perform

object classification and bounding-box regression to obtain

a new set of boxes, each of which has an associated score so
(or sh if the box is assigned to the person category). These

new boxes are only used during inference; during training

all branches are trained with RPN proposal boxes.

Action Classification. The first role of the human-centric

branch is to assign an action classification score sah to each

human box bh and action a. Just like in the object classifica-

tion branch, we extract features from bh with RoiAlign and

predict a score for each action a. Since a human can simul-

taneously perform multiple actions (e.g., sit and drink), our

output layer consists of binary sigmoid classifiers for multi-

label action classification (i.e. the predicted action classes

do not compete). The training objective is to minimize the

binary cross entropy losses between the ground-truth action

labels and the scores sah predicted by the model.

Target Localization. The second role of the human-

centric branch is to predict the target object location based

on a person’s appearance (again represented as features

pooled from bh). However, predicting the precise target ob-

ject location based only on features from bh is challenging.

Instead, our approach is to predict a density over possible

locations, and use this output together with the location of

actual detected objects to precisely localize the target.

We model the density over the target object’s location as

a Gaussian function whose mean is predicted based on the

human appearance and action being performed. Formally,

the human-centric branch predicts µa
h, the target object’s 4-

d mean location given the human box bh and action a. We

then write our target localization term as:

gah,o = exp(‖bo|h − µa
h‖

2/2σ2) (2)

We can use g to test the compatibility of an object box bo
and the predicted target location µa

h. In the above, bo|h is

the encoding of bo in coordinates relative to bh, that is:

bo|h = {
xo − xh

wh

,
yo − yh

hh

, log
wo

wh

, log
ho

hh

} (3)

This is a similar encoding as used in Fast R-CNN [9] for

bounding box regression. However, in our case bh and bo
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Figure 4. Estimating target object density from the person features. We estimate a 4-d Gaussian density whose mean µa

h represents a

4-d offset for the target object of action a (illustrated as yellow boxes); the variance of the density is illustrated in red for the 2-d translation

offsets of (x, y) (the scaling offsets’ variance is not visualized). These target locations will be combined with the object detections bo to

detect human-object interaction triplets. This figure also shows the predicted actions and their scores from the person RoIs. The rightmost

column shows two intriguing examples: even though there are no target objects, our model predicts reasonably densities from the human

pose (these predictions will be rejected by the object detection module, which will not find an object in the high density regions).

are two different objects and moreover bo is not necessar-

ily near or of the same size as bh. The training objective is

to minimize the smooth L1 loss [9] between µa
h and bo|h,

where bo is the location of the ground truth object for the

interaction. We treat σ as a hyperparameter that we empiri-

cally set to σ = 0.3 using the validation set.

Figure 4 visualizes the predicted distribution over the tar-

get object’s location for example human/action pairs. As

we can see, a carrying appearance suggests an object in the

person’s hand, a throwing appearance suggests an object in

front of the person, and a sitting appearance implies an ob-

ject below the person. We note that the yellow dashed boxes

depicting µa
h shown in Figure 4 are inferred from bh and a

and did not have direct access to the objects.

Intuitively, our formulation is predicated on the hypothe-

sis that the features computed from bh contain a strong sig-

nal pointing to the target of an action, even if that target

object is outside of bh. We argue that such ‘outside-the-

box’ regression is possible because the person’s appearance

provides a strong clue for the target location. Moreover, as

this prediction is action-specific and instance-specific, our

formulation is effective even though we model the target

location using a uni-modal distribution. In Section 5 we

discuss a variant of our approach which allows us to handle

conditionally multi-modal distributions and predict multiple

targets for a single action.

Interaction Recognition. Our human-centric model scores

actions based on the human appearance. While effective,

this does not take into account the appearance of the target

object. To improve the discriminative power of our model,

and to demonstrate the flexibility of our framework, we can

replace sah in (1) with an interaction branch that scores an

action based on the the appearance of both the human and

target object. We use sah,o to denote this alternative term.

The computation of sah,o reuses the computation from sah
and additionally in parallel performs a similar computation

based on features extracted from bo. The outputs from the

two action classification heads, which are A-dimensional

vectors of logits, are summed and passed through a sigmoid

activation to yield A scores. This process is illustrated in

Figure 3(c). As before, the training objective is to minimize

the binary cross entropy losses between the ground-truth ac-

tion labels and the predicted action scores sah,o.

3.2. Multi­task Training

We approach learning human-object interaction as a

multi-task learning problem: all three branches shown in

Figure 3 are trained jointly. Our overall loss is the sum of

all losses in our model including: (1) the classification and

regression loss for the object detection branch, (2) the ac-

tion classification and target localization loss for the human-

centric branch, and (3) the action classification loss of the

interaction branch. This is in contrast to our cascaded infer-

ence described in §3.3, where the output of the object detec-

tion branch is used as input for the human-centric branch.

We adopt image-centric training [9]. All losses are com-

puted over both RPN proposal and ground truth boxes as in

Faster R-CNN [27]. As in [9], we sample at most 64 boxes

from each image for the object detection branch, with a ra-

tio of 1:3 of positive to negative boxes. The human-centric

branch is computed over at most 16 boxes bh that are asso-

ciated with the human category (i.e., their IoU overlap with

a ground-truth person box is ≥ 0.5). The loss for the inter-

action branch is only computed on positive example triplets

(i.e., 〈bh, a, bo〉 must be associated with a ground truth inter-

action triplet). All loss terms have a weight of one, except

the action classification term in the human-centric branch

has a weight of two, which we found performs better.
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3.3. Cascaded Inference

At inference, our goal is to find high-scoring triplets ac-

cording to Sa
h,o in (1). While in principle this has O(n2)

complexity as it requires scoring every pair of candidate

boxes, we present a simple cascaded inference algorithm

whose dominant computation has O(n) complexity.

Object Detection Branch: We first detect all objects (in-

cluding the person class) in the image. We apply non-

maximum suppression (NMS) with an IoU threshold of 0.3

[9] on boxes with scores higher than 0.05 (set conservatively

to retain most objects). This step yields a new smaller set

of n boxes b with scores sh and so. Unlike in training, these

new boxes are used as input to the remaining two branches.

Human-Centric Branch: Next, we apply the human-

centric branch to all detected objects that were classified

as human. For each action a and detected human box bh,

we compute sah, the score assigned to a, as well as µa
h, the

predicted mean offset of the target object location relative

to bh. This step has a complexity of O(n).
Interaction Branch: If using the optional interaction

branch, we must compute sah,o for each action a and pair

of boxes bh and bo. To do so we first compute the logits for

the two action classification heads independently for each

box bh and bo, which is O(n). Then, to get scores sah,o,

these logits are summed and passed through a sigmoid for

each pair. Although this last step is O(n2), in practice its

computational time is negligible.

Once all individual terms have been computed, the com-

putation of (1) is fast. However, rather than scoring every

potential triplet, for each human/action pair we find the ob-

ject box that maximizes Sa
h,o. That is we compute:

bo∗ = argmax
bo

so · s
a
h,o · g

a
h,o (4)

Recall that gah,o is computed according to (2) and mea-

sures the compatibility between bo and the expected target

location µa
h. Intuitively, (4) encourages selecting a high-

confidence object near the predicted target location of a

high-scoring action. With bo selected for each bh and action

a, we have a triplet of 〈human, verb, object〉 = 〈bh, a,

bo〉. These triplets, along with the scores Sa
h,o, are the final

outputs of our model. For actions that that do not interact

with any object (e.g., smile, run), we rely on sah and the in-

teraction output sah,o is not used, even if present. The score

of such a predicted 〈human, verb〉 pair is simply sh · sah.

The above cascaded inference has a dominant complex-

ity of O(n), which involves extracting features for each of

the n boxes and forwarding through a small network. The

pairwise O(n2) operations require negligible computation.

In addition, for the entire system, a portion of computation

is spent on computing the full-image shared convolutional

feature maps. Altogether, our system takes ∼135ms on a

typical image running on a single Nvidia M40 GPU.

4. Datasets and Metrics

There exist a number of datasets for human-object inter-

actions [19, 4, 28, 14, 3]. The most relevant for this work

are V-COCO (Verbs in COCO) [14] and HICO-DET [3]. V-

COCO serves as the primary testbed on which we demon-

strate the effectiveness of InteractNet and analyze its vari-

ous components. The newly released HICO-DET [3] con-

tains ∼48k images and 600 types of interactions and serves

to further demonstrate the efficacy of our approach. The

older TUHOI [19] and HICO [4] datasets only have image-

level labels and thus do not allow for grounding interactions

in a detection setting, while COCO-a [28] is promising but

only a small beta-version is currently available.

V-COCO is a subset of COCO [22] and has ∼5k images

in the trainval set and ∼5k images in the test set.1

The trainval set includes ∼8k person instances and on

average 2.9 actions/person. V-COCO is annotated with 26

common action classes (listed in Table 2). Of note, there are

three actions (cut, hit, eat) that are annotated with two types

of targets: instrument and direct object. For example, cut

+ knife involves the instrument (meaning ‘cut with a knife’),

and cut + cake involves the direct object (meaning ‘cut a

cake’). In [14], accuracy is evaluated separately for the two

types of targets. To address this, for the target estimation,

we train and infer two types of targets for these three actions

(i.e., they are treated like six actions for target estimation).

Following [14], we evaluate two Average Precision (AP)

metrics. We note that this is a detection task, and both AP

metrics measure both recall and precision. This is in con-

trast to metrics of Recall@N that ignore precision.

The AP of central interest in the human-object interac-

tion task is the AP of the triplet 〈human, verb, object〉,

called ‘role AP’ (AProle) in [14]. Formally, a triplet is con-

sidered as a true positive if: (i) the predicted human box bh
has IoU of 0.5 or higher with the ground-truth human box,

(ii) the predicted object box bo has IoU of 0.5 or higher with

the ground-truth target object, and (iii) the predicted and

ground-truth actions match. With this definition of a true

positive, the computation of AP is analogous to standard

object detection (e.g., PASCAL [8]). Note that this metric

does not consider the correctness of the target object cate-

gory (but only the target object box location). Nevertheless,

our method can predict the object categories, as shown in

the visualized results (Figure 2 and Figure 5).

We also evaluate the AP of the pair 〈human, verb〉,

called ‘agent AP’ (APagent) in [14], computed using the

above criteria of (i) and (iii). APagent is applicable when the

action has no object. We note that APagent does note require

localizing the target, and is thus of secondary interest.

1V-COCO’s trainval set is a subset of COCO’s train set, and its

test set is a subset of COCO’s val set. See [14] for more details. In this

work, COCO’s val images are not used during training in any way.
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Figure 5. Our results on some V-COCO test images. Each image shows one detected 〈human, verb, object〉 triplet.

5. Experiments

Implementation Details. Our implementation is based on

Faster R-CNN [27] with a Feature Pyramid Network (FPN)

[21] backbone built on ResNet-50 [17]; we also evaluate

a non-FPN version in ablation experiments. We train the

Region Proposal Network (RPN) [27] of Faster R-CNN

following [21]. For convenient ablation, RPN is frozen

and does not share features with our network (we note

that feature sharing is possible [27]). We extract 7×7 fea-

tures from regions by RoiAlign [15], and each of the three

model branches (see Figure 3) consist of two 1024-d fully-

connected layers (with ReLU [25]) followed by specific out-

put layers for each output type (box, class, action, target).

Given a model pre-trained on ImageNet [7], we first train

the object detection branch on the COCO train set (ex-

cluding the V-COCO val images). This model, which is in

essence Faster R-CNN, has 33.8 object detection AP on the

COCO val set. Our full model is initialized by this object

detection network. We prototype our human-object inter-

action models on the V-COCO train split and perform

hyperparameter selection on the V-COCO val split. After

fixing these parameters, we train on V-COCO trainval

(5k images) and report results on the 5k V-COCO test set.

We fine-tune our human-object interaction models for

10k iterations on the V-COCO trainval set with a learn-

ing rate of 0.001 and an additional 3k iterations with a rate

of 0.0001. We use a weight decay of 0.0001 and a momen-

tum of 0.9. We use synchronized SGD [20] on 8 GPUs, with

each GPU hosting 2 images (so the effective mini-batch size

per iteration is 16 images). The fine-tuning time is ∼2.5

hours on the V-COCO trainval set on 8 GPUs.

Baselines. To have a fair comparison with Gupta & Ma-

lik [14], which used VGG-16 [30], we reimplement their

best-performing model (‘model C’ in [14]) using the same

ResNet-50-FPN backbone as ours. In addition, [14] only

reported AProle on a subset of 19 actions, but we are inter-

ested in all actions (listed in Table 2). We therefore report

comparisons in both the 19-action and all-action cases.

The baselines from [14] are shown in Table 1. Our reim-

plementation of [14] is solid: it has 37.5 AProle on the 19

action classes tested on the val set, 11 points higher than

the 26.4 reported in [14]. We believe that this is mainly due

to ResNet-50 and FPN. This baseline model, when trained

on the trainval set, has 31.8 AProle on all action classes

tested on the test set. This is a strong baseline (31.8

AProle) to which we will compare our method.

Our method, InteractNet, has an AProle of 40.0 evaluated

on all action classes on the V-COCO test set. This is an

absolute gain of 8.2 points over the strong baseline’s 31.8,

which is a relative improvement of 26%. This result quan-

titatively shows the effectiveness of our approach.

Qualitative Results. We show our human-object interac-

tion detection results in Figure 2 and Figure 5. Each sub-

plot illustrates one detected 〈human, verb, object〉 triplet,

showing the location of the detected person, the action taken

by this person, and the location (and category) of the de-

tected target object for this person/action. Our method can

successfully detect the object outside of the person bound-

ing box and associate it to the person and action.

Figure 7 shows our correctly detected triplets of one per-

son taking multiple actions on multiple objects. We note

that in this task, one person can take multiple actions and

affect multiple objects. This is part of the ground-truth and

evaluation and is unlike traditional object detection tasks [8]

in which one object has only one ground-truth class.

Moreover, InteractNet can detect multiple interaction in-

stances in an image. Figure 6 shows two test images with

all detected triplets shown. Our method detects multiple

persons taking different actions on different target objects.

8364



sitcouchlaycouchhold

fork

sit
couch

hold

bowl

eat

fork

drink

bowl

jump

skateboard

skateboarding

skateboard

hold

skateboard

sit
bench

sit
bench sit

bench

Figure 6. All detected triplets on two V-COCO test images. We show all triplets whose scores (1) are higher than 0.01.

drink

wine glass

hold

wine glass

sit

chair

hold

laptop

sit

chair

work_on_computer

laptop

Figure 7. Results of InteractNet on test images. An individual per-

son can take multiple actions and affect multiple objects.

19 actions all actions
mean AProle evaluated on (on val) (on test)

model B of [14] [VGG-16] 7.9 N/A

model C of [14] [VGG-16] 26.4 N/A

model C of [14] [ResNet-50-FPN] ours 37.5 31.8

InteractNet [ResNet-50-FPN] 41.9 40.0

Table 1. Comparisons with Gupta & Malik [14]. To have an

apples-to-apples comparisons, we reimplement [14]’s ‘model C’

using ResNet-50-FPN. In addition, [14] reported AProle on a sub-

set consisting of 19 actions, and only on the val set. As we eval-

uate on all actions (more details in Table 2), for fair comparison,

we also report the mean AProle on these 19 actions of val, with

models trained on train. Our reimplemented baseline of [14] is

solid, and InteractNet is considerably better than this baseline.

The multi-instance, multi-action, and multi-target results

in Figure 6 and Figure 7 are all detected by one forward pass

in our method, running at about 135ms per image on a GPU.

Ablation Studies. In Table 3–5 we evaluate the contribu-

tions of different factors in our system to the results.

With vs. without target localization. Target localization,

performed by the human-centric branch, is the key compo-

nent of our system. To evaluate its impact, we implement

a variant without target localization. Specifically, for each

type of action, we perform k-means clustering on the off-

sets between the target RoIs and person RoIs (via cross-

validation we found k = 2 clusters performs best). This

plays a role similar to density estimation, but is not aware of

the person appearance and thus is not instance-dependent.

Aside from this, the variant is the same as our full approach.

baseline [14] InteractNet
InteractNet

our impl. w/o target loc.

APagent AProle APagent AProle APagent AProle

carry 62.2 8.1 63.9 14.4 64.8 33.1

catch 47.0 37.0 53.4 38.5 57.1 42.5

drink 11.9 18.1 37.5 25.4 46.0 33.8

hold 79.4 4.0 77.3 10.6 80.1 26.4

jump 75.5 40.6 75.6 39.3 74.7 45.1

kick 60.9 67.9 68.6 70.6 77.5 69.4

lay 50.1 17.8 51.1 18.6 47.6 21.0

look 68.8 2.8 61.0 2.7 59.4 20.2

read 34.9 23.3 43.2 22.0 41.6 23.9

ride 73.2 55.3 76.2 55.0 74.2 55.2

sit 76.8 15.6 75.6 15.1 76.1 19.9

skateboard 89.9 74.0 90.9 71.7 90.0 75.5

ski 84.0 29.7 83.9 28.2 84.7 36.5

snowboard 81.3 52.8 81.1 50.6 81.1 63.9

surf 94.6 50.2 94.5 50.3 93.5 65.7

talk-on-phone 63.3 23.0 74.7 23.8 82.0 31.8

throw 54.0 36.0 53.9 35.7 58.1 40.4

work-on-computer 70.2 46.1 72.6 46.9 75.7 57.3

cut
(object)

(instrument)
61.2

16.5
69.1

17.7
73.6

23.0

15.1 19.5 36.4

eat
(object)

(instrument)
75.6

26.5
80.4

26.5
79.6

32.4

2.7 2.9 2.0

hit
(object)

(instrument)
82.8

56.7
83.9

55.3
88.0

62.3

42.4 41.3 43.3

point 5.0 – 4.0 – 1.8 –

run 76.9 – 77.8 – 77.2 –

smile 60.6 – 60.3 – 62.5 –

stand 88.5 – 88.3 – 88.0 –

walk 63.9 – 63.5 – 65.4 –

mean AP 65.1 31.8 67.8 32.6 69.2 40.0

Table 2. Detailed results on V-COCO test. We show two main

baselines and InteractNet for each action. There are 26 actions de-

fined in [14], and because 3 actions (cut, eat, hit) involve two types

of target objects (instrument and direct object), there are 26+3 en-

tries (more details in § 4). We bold the leading entries on AProle.

Table 3 (a) vs. (c) shows that our target localization con-

tributes significantly to AProle. Removing it shows a degra-

dation of 5.6 points from 37.5 to 31.9. This result shows the

effectiveness of our target localization (see Figure 4). The

per-category results are in Table 2.

With vs. without the interaction branch. We also evalu-

ate a variant of our method when removing the interaction

branch. We can instead use the action prediction from the

human-centric branch (see Figure 3). Table 3 (b) vs. (c)

shows that removing the interaction branch reduces AProle

just slightly by 0.7 point. This again shows the main effec-

tiveness of our system is from the target localization.
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APagent AProle
〈human, verb〉 〈human, verb, object〉

baseline [14] (our implementation) 62.1 31.0

(a) InteractNet w/o target localization 65.1 31.9

(b) InteractNet w/o interaction branch 65.5 36.8

(c) InteractNet 68.0 37.5

Table 3. Ablation studies on the V-COCO val set, evaluated by

APagent (i.e., AP of the 〈human, verb〉 pairs) and AProle (i.e., AP

of the 〈human, verb, object〉 triplets). All methods are based

on ResNet-50-FPN, including our reimplementation of [14]. Ta-

ble 2 shows the detail numbers of three entries: baseline, Interact-

Net without target density estimation, and our complete method

on the V-COCO test set.

APagent AProle
〈human, verb〉 〈human, verb, object〉

InteractNet w/ ResNet-50 65.0 35.9

InteractNet w/ ResNet-50-FPN 68.0 37.5

Table 4. Ablation on the V-COCO val for vanilla ResNet-50 vs.

ResNet-50-FPN [21] backbones.

APagent AProle
〈human, verb〉 〈human, verb, object〉

InteractNet w/ pairwise concat + MLP 67.1 37.5

InteractNet 68.0 37.5

Table 5. Ablation on the V-COCO val set about the design of the

pairwise interaction branch. See main text for explanations.

With vs. without FPN. Our model is a generic human-

object detection framework and can support various net-

work backbones. We recommend using the FPN [21] back-

bone, because it performs well for small objects that are

more common in human-object detection.

Table 4 shows a comparison between ResNet-50-FPN

and a vanilla ResNet-50 backbone. The vanilla version fol-

lows the ResNet-based Faster R-CNN presented in [17].

Specifically, the full-image convolutional feature maps are

from the last residual block of the 4-th stage (res4), on

which the RoI features are pooled. On the RoI features,

each of the region-wise branches consists of the residual

blocks of the 5-th stage (res5). Table 4 shows a degradation

of 1.6 points in AProle when not using FPN. We argue that

this is mainly caused by the degradation of the small ob-

jects’ detection AP, as shown in [21]. Moreover, the vanilla

ResNet-50 backbone is much slower, 225ms versus 135ms

for FPN, due to use of res5 in the region-wise branches.

Pairwise Sum vs. MLP. In our interaction branch, the

pairwise outputs from two RoIs are added (Figure 3). Al-

though simple, we have found that more complex variants

do not improve results. We compare with a more complex

transform in Table 5. We concatenate the two 1024-d fea-

tures from the final fully-connected layers of the interaction

branch for the two RoIs and feed it into an 2-layer MLP

(512-d with ReLU for its hidden layer), followed by action

classification. This variant is slightly worse (Table 5), indi-

cating that it is not necessary to perform a complex pairwise

drink

wine glass

eat

sandwich

hit

tennis racket

sit

chair

talk_on_phone
cell phone

ski

skis

Figure 8. False positive detections of our method.

method full rare non-rare

results from [3] 7.81 5.37 8.54

baseline [14] (our impl.) 9.09 7.02 9.71

InteractNet 9.94 7.16 10.77

Table 6. Results on HICO-DET test set. InteractNet outper-

forms the approach in [3] with a 27% relative improvement. We

also include our baseline approach, as described in Table 1.

transform (or there is insufficient data to learn this).

Per-action accuracy. Table 2 shows the AP for each ac-

tion category defined in V-COCO, for the baseline, Inter-

actNet without target localization, and our full system. We

observe leading performance of AProle consistently. The ac-

tions with largest improvement are those with high variance

in the spatial location of the object such as hold, look, carry,

and cut. On the other hand, actions such as ride, kick, and

read show small or no improvement.

Failure Cases. Figure 8 shows some false positive detec-

tions. Our method can be incorrect because of false inter-

action inferences (e.g., top left), target objects of another

person (e.g., top middle), irrelevant target objects (e.g., top

right), or confusing actions (e.g., bottom left, ski vs.surf ).

Some of them are caused by a failure of reasoning, which

is an interesting open problem for future research.

Mixture Density Networks. To improve target localiza-

tion prediction, we tried to substitute the uni-modal regres-

sion network with a Mixture Density Network (MDN) [1].

The MDN predicts the mean and variance of M relative

locations for the objects of interaction conditioned on the

human appearance. Note that MDN with M = 1 is an ex-

tension of our original approach that also learns the variance

in (2). However, we found that the MDN layer does not im-

prove accuracy. More details and discussion regarding the

MDN experiments can be found in [11].

HICO-DET Dataset. We additionally evaluate InteractNet

on HICO-DET [3] which contains 600 types of interactions,

composed of 117 unique verbs and 80 object types (identi-

cal to COCO objects). We train InteractNet on the train

set, as specified by the authors, and evaluate performance

on the test set using released evaluation code. Results are

shown in Table 6 and discussed more in [11].
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