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Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas

parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).

Abstract

We introduce a method for learning to generate the sur-

face of 3D shapes. Our approach represents a 3D shape as

a collection of parametric surface elements and, in contrast

to methods generating voxel grids or point clouds, naturally

infers a surface representation of the shape. Beyond its nov-

elty, our new shape generation framework, AtlasNet, comes

with significant advantages, such as improved precision and

generalization capabilities, and the possibility to generate

a shape of arbitrary resolution without memory issues. We

demonstrate these benefits and compare to strong baselines

on the ShapeNet benchmark for two applications: (i) auto-

encoding shapes, and (ii) single-view reconstruction from

a still image. We also provide results showing its potential

for other applications, such as morphing, parametrization,

super-resolution, matching, and co-segmentation.

1. Introduction

Significant progress has been made on learning good rep-

resentations for images, allowing impressive applications

in image generation [16, 34]. However, learning a repre-

sentation for generating high-resolution 3D shapes remains

an open challenge. Representing a shape as a volumetric

function [6, 12, 30] only provides voxel-scale sampling of

the underlying smooth and continuous surface. In contrast, a

point cloud [24, 25] provides a representation for generating

on-surface details [8], efficiently leveraging sparsity of the

data. However, points do not directly represent neighborhood

∗Work done at Adobe Research during TG’s summer internship

information, making it difficult to approximate the smooth

low-dimensional manifold structure with high fidelity.

To remedy shortcomings of these representations, sur-

faces are a popular choice in geometric modeling. A surface

is commonly modeled by a polygonal mesh: a set of ver-

tices, and a list of triangular or quad primitives composed

of these vertices, providing piecewise planar approximation

to the smooth manifold. Each mesh vertex contains a 3D

(XYZ) coordinate, and, frequently, a 2D (UV) embedding

to a plane. The UV parameterization of the surface provides

an effective way to store and sample functions on surfaces,

such as normals, additional geometric details, textures, and

other reflective properties such as BRDF and ambient occlu-

sion. One can imagine converting point clouds or volumetric

functions produced with existing learned generative models

as a simple post-process. However, this requires solving

two fundamental, difficult, and long-standing challenges in

geometry processing: global surface parameterization and

meshing.

In this paper we explore learning the surface representa-

tion directly. Inspired by the formal definition of a surface

as a topological space that locally resembles the Euclidean

plane, we seek to approximate the target surface locally by

mapping a set of squares to the surface of the 3D shape. The

use of multiple such squares allows us to model complex

surfaces with non-disk topology. Our representation of a

shape is thus extremely similar to an atlas, as we will discuss

in Section 3. The key strength of our method is that it jointly

learns a parameterization and an embedding of a shape. This
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Figure 2. Shape generation approaches. All methods take as input a latent shape representation (that can be learned jointly with

a reconstruction objective) and generate as output a set of points. (a) A baseline deep architecture would simply decode this latent

representation into a set of points of a given size. (b) Our approach takes as additional input a 2D point sampled uniformly in the unit square

and uses it to generate a single point on the surface. Our output is thus the continuous image of a planar surface. In particular, we can easily

infer a mesh of arbitrary resolution on the generated surface elements. (c) This strategy can be repeated multiple times to represent a 3D

shape as the union of several surface elements.

helps in two directions. First, by ensuring that our 3D points

come from 2D squares we favor learning a continuous and

smooth 2-manifold structure. Second, by generating a UV

parameterization for each 3D point, we generate a global

surface parameterization, which is key to many applications

such as texture mapping and surface meshing. Indeed, to

generate the mesh, we simply transfer a regular mesh from

our 2D squares to the 3D surface, and to generate a regular

texture atlas, we simply optimize the metric of the square

to become as-isometric-as-possible to the corresponding 3D

shape (Fig. 1).

Since our work deforms primitive surface elements into

a 3D shape, it can be seen as bridging the gap between the

recent works that learn to represent 3D shapes as a set of

simple primitives, with a fixed, low number of parameters

[31] and those that represent 3D shapes as an unstructured

set of points [8]. It can also be interpreted as learning a

factored representation of a surface, where a point on the

shape is represented jointly by a vector encoding the shape

structure and a vector encoding its position. Finally, it can be

seen as an attempt to bring to 3D the power of convolutional

approaches for generating 2D images [16, 34] by sharing the

network parameters for parts of the surface.

Our contributions. In this paper:

• We propose a novel approach to 3D surface generation,

dubbed AtlasNet, which is composed of a union of learn-

able parametrizations. These learnable parametriza-

tions transform a set of 2D squares to the surface, cov-

ering it in a way similar to placing strips of paper on a

shape to form a papier-mâché. The parameters of the

transformations come both from the learned weights

of a neural network and a learned representation of the

shape.

• We show that the learned parametric transformation

maps locally everywhere to a surface, naturally adapts

to its underlying complexity, can be sampled at any

desired resolution, and allows for the transfer of a tes-

sellation or texture map to the generated surface.

• We demonstrate the advantages of our approach both

qualitatively and quantitatively on high resolution sur-

face generation from (potentially low resolution) point

clouds and 2D images

• We demonstrate the potential of our method for several

applications, including shape interpolation, parameteri-

zation, and shape collections alignment.

All the code is available at the project webpage1.

2. Related work

3D shape analysis and generation has a long history

in computer vision. In this section, we only discuss the

most directly related works for representation learning for 2-

manifolds and 3D shape generation using deep networks.

Learning representations for 2-manifolds. A polygon

mesh is a widely-used representation for the 2-manifold

surface of 3D shapes. Establishing a connection between the

surface of the 3D shape and a 2D domain, or surface param-

eterization, is a long-standing problem in geometry process-

ing, with applications in texture mapping, re-meshing, and

shape correspondence [14]. Various related representations

have been used for applying neural networks on surfaces.

The geometry image representation [10, 27] views 3D shapes

as functions (e.g., vertex positions) embedded in a 2D do-

main, providing a natural input for 2D neural networks [28].

Various other parameterization techniques, such as local po-

lar coordinates [22, 4] and global seamless maps [21] have

been used for deep learning on 2-manifolds. Unlike these

methods, we do not need our input data to be parameterized.

Instead, we learn the parameterization directly from point

clouds. Moreover, these methods assume that the training

and testing data are 2-manifold meshes, and thus cannot

easily be used for surface reconstructions from point clouds

or images.

Deep 3D shape generation. Non-parametric approaches

retrieve shapes from a large corpus [2, 20, 23], but require

having an exact instance in the corpus. One of the most

popular shape representation for generation is the voxel rep-

resentation. Methods for generating a voxel grid have been

1https://github.com/ThibaultGROUEIX/AtlasNet.
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demonstrated with various inputs, namely one or several im-

ages [6, 9], full 3D objects in the form of voxel grids [9, 33],

and 3D objects with missing shape parts [33, 11]. Such di-

rect volumetric representation is costly in term of memory

and is typically limited to coarser resolutions. To overcome

this, recent work has looked at a voxel representation of

the surface of a shape via oct-trees [12, 26, 30]. Recently,

Li et al. also attempted to address this issue via learning

to reason over hierarchical procedural shape structures and

only generating voxel representations at the part level [19].

As an alternative to volumetric representations, another line

of work has learned to encode [24, 25] and decode [8] a 3D

point representation of the surface of a shape. A limitation

of the learned 3D point representation is there is no surface

connectivity (e.g., triangular surface tessellation) embedded

into the representation.

Recently, Sinha et al. [29] proposed to use a spherical

parameterization of a single deformable mesh (if available)

or of a few base shapes (composed with authalic projection

of a sphere to a plane) to represent training shapes as pa-

rameterized meshes. They map vertex coordinates to the

resulting UV space and use 2D neural networks for surface

generation. This approach relies on consistent mapping to

the UV space, and thus requires automatically estimating

correspondences from training shapes to the base meshes

(which gets increasingly hard for heterogeneous datasets).

Surfaces generated with this method are also limited to the

topology and tessellation of the base mesh. Overall, learning

to generate surfaces of arbitrary topology from unstructured

and heterogeneous input still poses a challenge.

3. Locally parameterized surface generation

In this section, we detail the theoretical motivation for

our approach and present some theoretical guarantees.

We seek to learn to generate a surface of a 3D shape. A

subset S of R3 is a 2-manifold if, for every point p ∈ S,

there is an open set U in R
2 and an open set W in R

3

containing p such that S ∩W is homeomorphic to U . The

set homeomorphism from S ∩ W to U is called a chart,

and its inverse a parameterization. A set of charts such that

their images cover the 2-manifold is called an atlas of the

2-manifold. The ability to learn an atlas for a 2-manifold

would allow a number of applications, such as transfer of

a tessellation to the 2-manifold for meshing and texture

mapping (via texture atlases). In this paper, we use the word

surface in a slightly more generic sense than 2-manifold,

allowing for self-intersections and disjoint sets.

We consider a local parameterization of a 2-manifold and

explain how we learn to approximate it. More precisely, let

us consider a 2-manifold S, a point p ∈ S and a param-

eterization ϕ of S in a local neighborhood of p. We can

assume that ϕ is defined on the open unit square ]0, 1[2 by

first restricting ϕ to an open neighborhood of ϕ−1(p) with

disk topology where it is defined (which is possible because

ϕ is continuous) and then mapping this neighborhood to the

unit square.

We pose the problem of learning to generate the local

2-manifold previously defined as one of finding a param-

eterizations ϕθ(x) with parameters θ which map the open

unit 2D square ]0, 1[2 to a good approximation of the desired

2-manifold Sloc. Specifically, calling Sθ = ϕθ(]0, 1[
2), we

seek to find parameters θ minimizing the following objective

function,

min
θ

L (Sθ,Sloc) + λR (θ) , (1)

where L is a loss over 2-manifolds, R is a regularization

function over parameters θ, and λ is a scalar weight. In

practice, instead of optimizing a loss over 2-manifolds L,

we optimize a loss over point sets sampled from these 2-

manifolds such as Chamfer and Earth-Mover distance.

One question is, how do we represent the functions ϕθ? A

good family of functions should (i) generate 2-manifolds and

(ii) be able to produce a good approximation of the desired 2-

manifolds Sloc. We show that multilayer perceptrons (MLPs)

with rectified linear unit (ReLU) nonlinearities almost verify

these properties, and thus are an adequate family of functions.

Since it is difficult to design a family of functions that always

generate a 2-manifold, we relax this constraint and consider

functions that locally generate a 2-manifold.

Proposition 1. Let f be a multilayer perceptron with ReLU

nonlinearities. There exists a finite set of polygons Pi, i ∈
{1, ..., N} such that on each Pi f is an affine function:

∀x ∈ Pi, f(x) = Aix+ b, where Ai are 3× 2 matrices. If

for all i, rank(Ai) = 2, then for any point p in the interior

of one of the Pis there exists a neighborhood N of p such

that f(N ) is a 2-manifold.

Proof. The fact that f is locally affine is a direct conse-

quence of the fact that we use ReLU non-linearities. If

rank(Ai) = 2 the inverse of Aix+ b is well defined on the

surface and continuous, thus the image of the interior of each

Pi is a 2-manifold.

To draw analogy to texture atlases in computer graph-

ics, we call the local functions we learn to approximate a

2-manifold learnable parameterizations and the set of these

functions A a learnable atlas. Note that in general, an MLP

locally defines a rank 2 affine transformation and thus lo-

cally generates a 2-manifold, but may not globally as it may

intersect or overlap with itself. The second reason to choose

MLPs as a family is that they can allow us to approximate

any continuous surface.

Proposition 2. Let S be a 2-manifold that can be param-

eterized on the unit square. For any ǫ > 0 there exists an

integer K such that a multilayer perceptron with ReLU non

linearities and K hidden units can approximate S with a

precision ǫ.
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Proof. This is a consequence of the universal representation

theorem [15]

In the next section, we show how to train such MLPs to

align with a desired surface.

4. AtlasNet

In this section we introduce our model, AtlasNet, which

decodes a 3D surface given an encoding of a 3D shape. This

encoding can come from many different representations such

as a point cloud or an image (see Figure 1 for examples).

4.1. Learning to decode a surface

Our goal is, given a feature representation x for a 3D

shape, to generate the surface of the shape. As shown in

Section 3, an MLP with ReLUs ϕθ with parameters θ can

locally generate a surface by learning to map points in R
2

to surface points in R
3. To generate a given surface, we

need several of these learnable charts to represent a surface.

In practice, we consider N learnable parameterizations φθi

for i ∈ {1, ..., N}. To train the MLP parameters θi, we

need to address two questions: (i) how to define the distance

between the generated and target surface, and (ii) how to

account for the shape feature x in the MLP? To represent the

target surface, we use the fact that, independent of the rep-

resentation that is available to us, we can sample points on

it. Let A be a set of points sampled in the unit square [0, 1]2

and S⋆ a set of points sampled on the target surface. Next,

we incorporate the shape feature x by simply concatenating

them with the sampled point coordinates p ∈ A before pass-

ing them as input to the MLPs. Our model is illustrated in

Figure 2b. Notice that the MLPs are not explicitly prevented

from encoding the same area of space, but their union should

cover the full shape. Our MLPs do depend on the random

initialization, but similar to convolutional filter weights the

network learns to specialize to different regions in the output

without explicit biases. We then minimize the Chamfer loss

between the set of generated 3D points and S⋆,

L(θ) =
∑

p∈A

N∑

i=1

min
q∈S⋆

|φθi (p;x)− q|2

+
∑

q∈S⋆

min
i∈{1, ...,N}

min
p∈A

|φθi (p;x)− q|2 . (2)

4.2. Implementation details

We consider two tasks: (i) to auto-encode a 3D shape

given an input 3D point cloud, and (ii) to reconstruct a 3D

shape given an input RGB image. For the auto-encoder, we

used an encoder based on PointNet [24], which has proven

to be state of the art on point cloud analysis on ShapeNet

and ModelNet40 benchmarks. This encoder transforms an

input point cloud into a latent vector of dimension k = 1024.

We experimented with input point clouds of 250 to 2500

points. For images, we used ResNet-18 [13] as our encoder.

The architecture of our decoder is 4 fully-connected layers

of size 1024, 512, 256, 128 with ReLU non-linearities on

the first three layers and tanh on the final output layer. We

always train with output point clouds of size 2500 evenly

sampled across all of the learned parameterizations – scaling

above this size is time-consuming because our implemen-

tation of Chamfer loss has a compute cost that is quadratic

in the number of input points. We experimented with dif-

ferent basic weight regularization options but did not notice

any generalization improvement. Sampling of the learned

parameterizations as well as the ground truth point-clouds is

repeated at each training step to avoid over-fitting. To train

for single-view reconstruction, we obtained the best results

by training the encoder and using the decoder from the point

cloud autoencoder with fixed parameters. Finally, we no-

ticed that sampling points regularly on a grid on the learned

parameterization yields better performance than sampling

points randomly. All results used this regular sampling.

4.3. Mesh generation

The main advantage of our approach is that during infer-

ence, we can easily generate a mesh of the shape.

Propagate the patch-grid edges to the 3D points. The

simplest way to generate a mesh of the surface is to transfer

a regular mesh on the unit square to 3D, connecting in 3D

the images of the points that are connected in 2D. Note

that our method allows us to generate such meshes at very

high resolution, without facing memory issues, since the

points can be processed in batches. We typically use 22500

points. As shown in the results section, such meshes are

satisfying, but they can have several drawbacks: they will

not be closed, may have small holes between the images

of different learned parameterizations, and different patches

may overlap.

Generate a highly dense point cloud and use Poisson sur-

face reconstruction (PSR) [17]. To avoid the previously

mentioned drawbacks, we can additionally densely sample

the surface and use a mesh reconstruction algorithm. We

start by generating a surface at a high resolution, as explained

above. We then shoot rays at the model from infinity and

obtain approximately 100000 points, together with their ori-

ented normals, and then can use a standard oriented cloud

reconstruction algorithm such as PSR to produce a triangle

mesh. We found that high quality normals as well as high

density point clouds are critical to the success of PSR, which

are naturally obtained using this method.

Sample points on a closed surface rather than patches.

To obtain a closed mesh directly from our method, without

requiring the PSR step described above, we can sample the

input points from the surface of a 3D sphere instead of a 2D
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square. The quality of this method depends on how well the

underlying surface can be represented by a sphere, which we

will explore in Section 5.1.

5. Results

In this section we show qualitative and quantitative results

on the tasks of auto-encoding 3D shapes and single-view

reconstruction and compare against several baselines. In ad-

dition to these tasks, we also demonstrate several additional

applications of our approach. More results are available in

the supplementary material [1].

Data. We evaluated our approach on the standard ShapeNet

Core dataset (v2) [5]. The dataset consists of 3D models cov-

ering 13 object categories with 1K-10K shapes per category.

We used the training and validation split provided by [6] for

our experiments to be comparable with previous approaches.

We used the rendered views provided by [6] and sampled 3D

points on the shapes using [32].

Evaluation criteria. We evaluated our generated shape out-

puts by comparing to ground truth shapes using two criteria.

First, we compared point sets for the output and ground-truth

shapes using Chamfer distance (“CD”). While this criteria

compares two point sets, it does not take into account the

surface/mesh connectivity. To account for mesh connectivity,

we compared the output and ground-truth meshes using the

“Metro” criteria using the publicly available METRO soft-

ware [7], which is the average Euclidean distance between

the two meshes.

Points baseline. In addition to existing baselines, we com-

pare our approach to the multi-layer perceptron “Points base-

line” network shown in Figure 2a. The Points baseline net-

work consists of four fully connected layers with output

dimensions of size 1024, 512, 256, 7500 with ReLU non-

linearities, batch normalization on the first three layers, and

a hyperbolic-tangent non-linearity after the final fully con-

nected layer. The network outputs 2500 3D points and has

comparable number of parameters to our method with 25

learned parameterizations. The baseline architecture was

designed to be as close as possible to the MLP used in At-

lasNet. As the network outputs points and not a mesh, we

also trained a second network that outputs 3D points and

normals, which are then passed as inputs to Poisson sur-

face reconstruction (PSR) [17] to generate a mesh (“Points

baseline + normals”). The network generates outputs in

R
6 representing both the 3D spatial position and normal.

We optimized Chamfer loss in this six-dimensional space

and normalized the normals to 0.1 length as we found this

trade-off between the spatial coordinates and normals in the

loss worked best. As density is crucial to PSR quality, we

augmented the number of points by sampling 20 points in a

small radius in the tangent plane around each point [17]. We

noticed significant qualitative and quantitative improvements

Method CD Metro

Oracle 2500 pts 0.85 1.56

Oracle 125K pts - 1.26

Points baseline 1.91 -

Points baseline + normals 2.15 1.82 (PSR)

Ours - 1 patch 1.84 1.53

Ours - 1 sphere 1.72 1.52

Ours - 5 patches 1.57 1.48

Ours - 25 patches 1.56 1.47

Ours - 125 patches 1.51 1.41
Table 1. 3D reconstruction. Comparison of our approach against a

point-generation baseline (“CD” - Chamfer distance, multiplied by

10
3; “Metro” values are multiplied by 10). Note that our approach

can be directly evaluated by Metro while the baseline requires

performing PSR [17]. These results can be compared with an

Oracle sampling points directly from the ground truth 3D shape

followed by PSR (top two rows). See text for details.

and the results shown in this paper use this augmentation

scheme.

5.1. Autoencoding 3D shapes

In this section we evaluate our approach to generate a

shape given an input 3D point cloud and compare against

the Points baseline. We evaluate how well our approach can

generate the shape, how it can generalize to object categories

not seen during training, and its sensitivity to the number of

patches.

Evaluation on surface generation. We report quantitative

results for shape generation from point clouds in Table 1,

where each approach is trained over all ShapeNet categories

and results are averaged over all categories. Notice that

our approach out-performs the Points baseline on both the

Chamfer distance and Metro criteria, even when using a

single learned parameterization (patch). Also, the Points

baseline + normals has worse Chamfer distance than the

Points baseline without normals indicating that predicting the

normals decreases the quality of the point cloud generation.

We also report performance for two “oracle” outputs in-

dicating upper bounds in Table 1. The first oracle (“Oracle

2500 pts”) randomly samples 2500 points+normals from the

ground truth shape and applies PSR. The Chamfer distance

between the random point set and the ground truth gives an

upper bound on performance for point-cloud generation. No-

tice that our method out-performs the surface generated from

the oracle points. The second oracle (“Oracle 125K pts”)

applies PSR on all 125K points+normals from the ground-

truth shape. It is interesting to note that the Metro distance

from this result to the ground truth is not far from the one

obtained with our method.

We show qualitative comparisons in Figure 3. Notice

that the PSR from the baseline point clouds (Figure 3b) look

noisy and lower quality than the meshes produced directly
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(a) Ground truth (b) Pts baseline (c) PSR on ours (d) Ours sphere (e) Ours 1 (f) Ours 5 (g) Ours 25 (h) Ours 125
Figure 3. Auto-encoder. We compare the original meshes (a) to meshes obtained by running PSR on the point clouds generated by the

baseline (b) and on the densely sampled point cloud from our generated mesh (c), and to our method generating a surface from a sphere (d), 1

(e), 5 (f), 25 (g), and 125(h) learnable parameterizations. Notice the fine details in (g) and (h) : e.g. the plane’s engine and the jib of the ship.

(a) Not trained on chairs (b) Trained on all categories
Figure 4. Generalization. (a) Our method (25 patches) can gen-

erate surfaces close to a category never seen during training. It,

however, has more artifacts than if it has seen the category during

training (b), e.g., thin legs and armrests.

by our method and PSR performed on points generated from

our method as described in Section 4.3 (Figure 3c).

Sensitivity to number of patches. We show in Table 1

our approach with varying number of learnable parameter-

izations (patches) in the atlas. Notice how our approach

improves as we increase the number of patches. Moreover,

we also compare with the approach described in Section

4.3 which samples points on the 3D unit sphere instead of

2D patches to obtain a closed mesh. Notice that sampling

from a sphere quantitatively out-performs a single patch, but

multiple patches perform better.

We show qualitative results for varying number of learn-

able parameterizations in Figure 3. As suggested by the

quantitative results, the visual quality improves with the num-

ber of parameterizations. However, more artifacts appear

with more parameterizations, such as close-but-disconnected

patches (e.g., sail of the sailboat) . We thus used 25 patches

for the single-view reconstruction experiments (Section 5.2)

Generalization across object categories. An important de-

sired property of a shape auto-encoder is that it generalizes

well to categories it has not been trained on. To evaluate this,

we trained our method on all categories but one target cate-

Category Points Ours Ours

baseline 1 patch 125 patches

chair
LOO 3.66 3.43 2.69

All 1.88 1.97 1.55

car
LOO 3.38 2.96 2.49

All 1.59 2.28 1.56

watercraft
LOO 2.90 2.61 1.81

All 1.69 1.69 1.23

plane
LOO 6.47 6.15 3.58

All 1.11 1.04 0.86
Table 2. Generalization across object categories. Comparison of

our approach with varying number of patches against the point-

generating baseline to generate a specific category when training

on all other ShapeNet categories. Chamfer distance is reported,

multiplied by 10
3. Notice that our approach with 125 patches

out-performs all baselines when generalizing to the new category.

For reference, we also show performance when we train over all

categories.

gory (“LOO”) for chair, car, watercraft, and plane categories,

and evaluated on the held-out category. The corresponding

results are reported in Table 2 and Figure 4. We also include

performance when the methods are trained on all of the cate-

gories including the target category (“All”) for comparison.

Notice that we again out-perform the point-generating base-

line on this leave-one-out experiment and that performance

improves with more patches. The car category is especially

interesting since when trained on all categories the baseline

has better results than our method with 1 patch and similar

to our method with 125 patches. If not trained on cars, both

our approaches clearly outperform the baseline, showing

that at least in this case, our approach generalizes better

than the baseline. The visual comparison shown Figure 4

gives an intuitive understanding of the consequences of not
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(a) Input (b) 3D-R2N2 (c) HSP (d) PSG (e) Ours

Figure 5. Single-view reconstruction comparison. From a 2D

RGB image (a), 3D-R2N2 [6] reconstructs a voxel-based 3D model

(b), HSP [12] reconstructs a octree-based 3D model (c), PointSet-

Gen [8] a point cloud based 3D model (d), and our AtlasNet a

triangular mesh (e).

(a) Input (b) HSP (c) Ours

Figure 6. Single-view reconstruction comparison on natural im-

ages. From a 2D RGB image taken from internet (a), HSP [12]

reconstructs a octree-based 3D model (b), and our AtlasNet a trian-

gular mesh (c).

training for a specific category. When not trained on chairs,

our method seems to struggle to define clear thin structures,

like legs or armrests, especially when they are associated

to a change in the topological genus of the surface. This is

expected as these types of structures are not often present in

the categories the network was trained on.

5.2. Singleview reconstruction

We evaluate the potential of our method for single-view

reconstruction. We compare qualitatively our results with

three state-of-the-art methods, PointSetGen [8], 3D-R2N2

[6] and HSP [12] in Figure 5. To perform the comparison

for PointSetGen [8] and 3D-R2N2 [6], we used the trained

models made available online by the authors. For HSP [12],

we asked the authors to run their method on the images in

Fig. 5. Note that since their model was trained on images

generated with a different renderer, this comparison is not

absolutely fair. To remove the bias we also compared our

results with HSP on real images for which none of the meth-

ods was trained (Fig. 6) which also demonstrates the ability

of our network to generalize to real images.

Figure 5 emphasizes the importance of the type of output

(voxels for 3D-N2D2 and HSP, point cloud for PointSetGen,

mesh for us) for the visual appearance of the results. Notice

the small details visible on our meshes that may be hard to

see on the unstructured point cloud or volumetric representa-

tion. Also, it is interesting to see that PointSetGen tends to

generate points inside the volume of the 3D shape while our

result, by construction, generates points on a surface.

To perform a quantitative comparison against PointSet-

Gen [8], we evaluated the Chamfer distance between gen-

erated points and points from the original mesh for both

PointSetGen and our method with 25 learned parameteriza-

tions. However, the PointSetGen network was trained with a

translated, rotated, and scaled version of ShapeNet with pa-

rameters we did not have access to. We thus first had to align

the point clouds resulting from PointSetGen to the ShapeNet

models used by our algorithm. We randomly selected 260

shapes, 20 from each category, and ran the iterative closest

point (ICP) algorithm [3] to optimize a similarity transform

between PointSetGen and the target point cloud. Note that

this optimization improves the Chamfer distance between

the resulting point clouds, but is not globally convergent.

We checked visually that the point clouds from PointSetGen

were correctly aligned, and display all alignments on the

project webpage2. To have a fair comparison we ran the

same ICP alignment on our results. In Table 3 we compared

the resulting Chamfer distance. Our method provides the

best results on 6 categories whereas PointSetGen and the

baseline are best on 4 and 3 categories, respectively. Our

method is better on average and generates point clouds of a

quality similar to the state of the art. We also report the Metro

distance to the original shape, which is the most meaningful

measure for our method.

To quantitatively compare against HSP [12], we retrained

our method on their publicly available data since train/test

splits are different from 3D-R2N2 [6] and they made their

own renderings of ShapeNet data. Results are in Table ??.

More details are in the supplementary [1].

5.3. Additional applications

Shape interpolation. Figure 7a shows shape interpolation.

Each row shows interpolated shapes generated by our Atlas-

Net, starting from the shape in the first column to the shape

in the last. Each intermediate shape is generated using a

weighted sum of the latent representations of the two ex-

treme shaped. Notice how the interpolated shapes gradually

add armrests in the first row, and chair legs in the last.

Finding shape correspondences. Figure 7b shows shape

2http://imagine.enpc.fr/ groueixt/atlasnet/PSG.html.
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pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean

Ba CD 2.91 4.39 6.01 4.45 7.24 5.95 7.42 10.4 1.83 6.65 4.83 4.66 4.65 5.50

PSG CD 3.36 4.31 8.51 8.63 6.35 6.47 7.66 15.9 1.58 6.92 3.93 3.76 5.94 6.41

Ours CD 2.54 3.91 5.39 4.18 6.77 6.71 7.24 8.18 1.63 6.76 4.35 3.91 4.91 5.11

Ours Metro 1.31 1.89 1.80 2.04 2.11 1.68 2.81 2.39 1.57 1.78 2.28 1.03 1.84 1.89

Table 3. Single-View Reconstruction (per category). The mean is taken category-wise. The Chamfer Distance reported is computed on

1024 points, after running ICP alignment with the GT point cloud, and multiplied by 10
3. The Metro distance is multiplied by 10.

(a) Shape interpolation.

Reference
object

Inferred
atlas

Shape
correspondences

(b) Shape correspondences. (c) Mesh parameterization.

Figure 7. Applications. Results from three applications of our method. See text for details.

Chamfer Metro

HSP [12] 15.6 2.61

Ours (25 patches) 5.25 2.38

Table 4. Single-view reconstruction. Quantitative comparison

against HSP [12], a state of the art octree-based method. The av-

erage error is reported, on 100 shapes from each category. The

Chamfer Distance reported is computed on 10
4 points, and multi-

plied by 10
3. The Metro distance is multiplied by 10. More details

are in the supplemetary [1].

correspondences. We colored the surface of reference chair

(left) according to its 3D position. We transfer the surface

colors from the reference shape to the inferred atlas (mid-

dle). Finally, we transfer the atlas colors to other shapes

(right) such that points with the same color are parametrized

by the same point in the atlas. Notice that we get semanti-

cally meaningful correspondences, such as the chair back,

seat, and legs without any supervision from the dataset on

semantic information.

Mesh parameterization Most existing rendering pipelines

require an atlas for texturing a shape (Figure 7c). A good

parameterization should minimize amount of area distortion

(Ea) and stretch (Es) of a UV map. We computed aver-

age per-triangle distortions for 20 random shapes from each

category and found that our inferred atlas usually has rel-

atively high texture distortion (Ea = 1.9004, Es = 6.1613,

where undistorted map has Ea=Es=1). Our result, how-

ever, is well-suited for distortion minimization because all

meshes have disk-like topology and inferred map is bijective,

making it easy to further minimize distortion with off-the-

shelf geometric optimization [18], yielding small distortion

(Ea=1.0016, Es=1.025, see bottom row for example).

Limitations and future work are detailed in the supplemen-

tary materials [1].

6. Conclusion

We have introduced an approach to generate parametric

surface elements for 3D shapes. We have shown its benefits

for 3D shape and single-view reconstruction, out-performing

existing baselines. In addition, we have shown its promises

for shape interpolation, finding shape correspondences, and

mesh parameterization. Our approach opens up applications

in generation and synthesis of meshes for 3D shapes, similar

to still image generation [16, 34].
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and gifts from Adobe to École des Ponts. We thank Aaron

Herzmann for fruitful discussions, Christian Häne for his
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