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Abstract

This paper introduces a novel method by reshuffling deep

features (i.e., permuting the spacial locations of a feature

map) of the style image for arbitrary style transfer. We the-

oretically prove that our new style loss based on reshuffle

connects both global and local style losses respectively used

by most parametric and non-parametric neural style trans-

fer methods. This simple idea can effectively address the

challenging issues in existing style transfer methods. On

one hand, it can avoid distortions in local style patterns,

and allow semantic-level transfer, compared with neural

parametric methods. On the other hand, it can preserve

globally similar appearance to the style image, and avoid

wash-out artifacts, compared with neural non-parametric

methods. Based on the proposed loss, we also present a pro-

gressive feature-domain optimization approach. The exper-

iments show that our method is widely applicable to various

styles, and produces better quality than existing methods.

1. Introduction

This process of rendering a content image in the style of

another image is referred to as Style Transfer. The prob-

lem of style transfer has its origin from non-photo-realistic

rendering [24], and is closely related to texture synthesis

and transfer [9, 10, 11]. These methods typically rely on

low-level statistics and often fail to capture semantic struc-

tures. Recently, the work of Gatys et al. [14] opened up a

new field called Neural Style Transfer, which uses Convo-

lutional Neural Network (CNN) [23] to change the style of

an image while preserving its content. It is flexible enough

to combine content and style of arbitrary images.

Style transfer is receiving increasing attention from com-

puter vision researchers because it involves two interest-

ing topics: image representation and image synthesis.

∗Equal contribution. This work is done when Shuyang Gu and Con-

gliang Chen are interns at Microsoft Research Asia.

Some early representations, like multi-resolution [7], pyra-

mid [16], wavelet [33], used in traditional texture synthesis

and transfer, are mainly for statistics matching. The recent

work [14] showed that the representations of image content

and style were separable by variant CNN convolutional lay-

ers. Moreover, the representation provides the possibility

for image decoupling and recombining.

Image synthesis methods, whether traditional or neu-

ral, can be broadly categorized as parametric and non-

parametric. Specifically, for neural methods, the paramet-

ric methods match the global statistics of deep features,

like Gram matrix [14, 21] and its approximates [28, 31],

mean and variance [18, 8], histogram [39]; while the non-

parametric methods [26, 27, 6, 30] directly find neural

patches similar to the given example. However, to the best

of our knowledge, there are no work connecting these neu-

ral methods to form a complementary solution.

The neural parametric models (e.g., [14]) yields results,

preserving the content of image and the overall looking of

the artwork. However, the models will distort local style

patterns (shown in the first row of Fig. 1) or cannot ob-

tain locally semantic-level transfer (e.g., eye-to-eye in the

second row of Fig. 1). The neural non-parametric models

(e.g., [26]) can address these issues well, but their example

matching uses a greedy optimization, causing the decreas-

ing in the richness of the style patterns (shown in the first

row of Fig. 2), and introducing wash-out artifacts [19] (see

the second row of Fig. 2). It suggests that such neural non-

parametric models should consider global constraint, bor-

rowing from neural parametric models.

In this paper, we propose a novel neural style transfer

algorithm which owns the advantages of both neural para-

metric and non-parametric methods. This is achieved by

deep feature reshuffle, which refers to spatially rearranging

the position of neural activations. We reshuffle the features

of the style image according to the content image for style

transfer. On one hand, the feature reshuffle enforces the

distribution of style patterns, between the transferring re-

sult and the style image, to be globally consistent. It can be
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theoretically proved that reshuffling features of style image

equals to the optimization of Gram matrices, a commonly

used statistics in neural parametric models. On the other

hand, a certain type of reshuffling features can help achieve

locally semantic matching between images, as well as neu-

ral non-parametric models.

We reformulate the objective function of neural style

transfer in the fashion of reshuffle, and then connects both

kinds of methods. To avoid exhaustively optimizing the en-

ergy function in image domain as similar as [14], we pro-

pose a novel optimization method in feature domain. We

can progressively recover features from high-level layers to

low-level ones, and train a decoder to convert recovered fea-

tures back to the image. This way is more efficient.

Our experiments show that this method can effectively

accomplish the transfer for arbitrary styles, yield results

with global similarity to the style and local plausibility. We

summarize main contributions as follows:

• We provide a new understanding of neural parametric

models and neural non-parametric models. Both can

be integrated by the idea of deep feature reshuffle.

• We define a new energy function based on deep fea-

ture reshuffle, which is simple, flexible, and better than

either neural parametric or non-parametric methods.

• We train a new level-wise decoder to allow us effi-

ciently optimize our feature-domain energy function in

a pyramid manner.

2. Related Work

The problem of style transfer involves two sub-

problems: representation and synthesis. Inspired by the

success of CNN in style transfer, we also use neural rep-

resentation for image decoupling, and better matching. In

this paper, we focus on synthesis problem, which can be

categorized as parametric and non-parametric.

In fact, parametric and non-parameter synthesis meth-

ods early occur at texture synthesis and transfer. Paramet-

ric methods [7, 16, 33] start from random noise, and then

iteratively update it until the desired global statistics is sat-

isfied. However, it is challenging to find a proper statistical

model for representation and fine matching. By contrast,

non-parametric models [9, 10, 38] use a simple patch rep-

resentation (e.g., color [9, 17, 2], curvilinear features [40],

edge [22] and its orientation [25]), and find the most simi-

lar patches by nearest neighbor search. All above methods

only use the low-level features for synthesis, which limits

to capture semantic structures.

Gatys et al. [14] pioneer the neural texture synthesis and

style transfer by successfully applying CNN (pre-trained

VGG networks [36]) to this problem. The spirit of their

synthesis method is parametric, which statistically matches

Content Style Parametric[14] Non-parametric[26]

Content Style Parametric[14] Non-parametric[30]

Figure 1. Parametric style transfer fails to preserve some local tex-

ture patterns of the style, e.g. circles in the upper row, and it have

weak spatial constraint, like rendering background colors in the

face region (lower row).

Content Style Parametric[14] Non-parametric[26]

Content Style Parametric[14] Non-parametric[30]

Figure 2. Non-parametric style transfer is sometimes globally less

similar to the style (upper row) and repetitively uses the same

patches to cause wash-out artifacts (lower row).

both the content and style features by their Gram matrices.

The solution is general to varies of artistic styles, and be-

gins to considering semantic structures. To improve the

quality, some complimentary information is incorporated

into the statistical model, including spatial correlation [35],

face guidance [34], user controls [4, 15], and segmentation

masks [32]. To accelerate, a feed-forward generative net-

work [21, 37, 8, 5] is directly learnt instead, but they are

still limited to a fixed number of pre-trained styles. More re-

cently, some work [28, 18, 31] further allow arbitrary style

transfer in feedforward networks. The backend idea is to

match the statistics of content features at intermediate lay-

ers to that of the style features, and then train a decoder to

turn features to the image.

Non-parametric neural style transfer method is firstly

proposed by Li et al. [26]. They reformulate the style trans-

fer based on Markov Random Field (MRF): searching lo-

cal neural patches from the style image to satisfy the lo-

cal structure prior of content image. Compared with neural

parametric methods, this method can reproduce local tex-

tures more faithfully. They also train a Generative Adver-

sarial Networks (GAN) to accelerate the optimization [27].

Chen et al. [6] use de-VGG networks and the patch-based

method for fast arbitrary style transfer. Another represen-
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tative work is called Deep Analogy [30], which proposes

accurate semantic-level patch match algorithm by consider-

ing bidirectional constraint and pyramids refinement. Our

method is based on non-parametric model, sharing all the

advantages, like local similarity to style and semantic-level

transfer. Moreover, it allows some global constraints to

avoid washout artifacts, and obtains global consistency, as

similar as parametric methods.

3. Understanding Neural Style Transfer

In this section, we explore the relationship between

neural parametric method (e.g., [14]) and neural non-

parametric method (e.g., [26]). Then, we realize that the

feature reshuffle can theoretically be a complementary so-

lution for both methods.

For the task of style transfer, we want to generate a styl-

ization result Io, given the content image Ic and the style

image Is. For simplicity, we suppose Io, Ic and Is are with

the same size1, and consider the single layer feature of these

image, which are denoted as Fo, Fc and Fs respectively.

F ∈ Ωc×h×w is indeed 3D tensor, where c, h, w denote

channel number, height and width respectively.

Neural Parametric. In [14], the energy function consists

of a content term Lcont and a style term Lsty
2:

Ltotal = αLcont + (1− α)Lsty, (1)

where α is the tradeoff to balance content and style.

The content loss Lcont is defined by the feature differ-

ence between the content image Ic and the (yet unknown)

stylized image Io:

Lcont = ||Fo − Fc||
2
F, (2)

where || · ||2F denotes Frobenius norm.

For the style loss Lsty , Gatys et al. [14] uses Gram ma-

trix G(i, j) to obtain correlations between filter responses.

It was used to measure texture correlation in texture synthe-

sis algorithm [13]. Gram matrix G(i, j) is defined as the

inner product between the i th and j th feature channels:

G(i, j) =
∑

p
F (i, p)F (j, p), (3)

where p denotes the 2D spatial location in feature map and

G ∈ ΩC×C . Then, the style loss Lsty (also called global

style loss later) is defined by the difference between Gram

matrices of Fo and Fs:

Lsty = ||Go −Gs||
2
F

3 (4)

1For different size, the principle still holds true, when these features

and terms are normalized according to feature size.
2We ignore the image regularization term here, because it is common,

and only takes effects to subtle noise. Its effect to our analysis can be

negligible.
3It should be Lsty =

1
Z
||Go−Gs||2F, where Z = 4×c2×h2×w2.

We leave out Z for simplicity, and it won’t effect our analysis.

Neural Non-parametric. In [26], the energy function is

also defined with two terms:

Ltotal = αLcont + (1− α)Lmatch. (5)

The content loss Lcont is identical to Eq. (2); while the

style loss Lmatch measures the neural patch-based similar-

ity. Let Ψ(F ) denote the list of all local patches extracted

from feature map F . Each neural patch centered at the lo-

cation p of feature F is indexed as Ψp(F ). The loss Lmatch

(also called local style loss later) is defined as:

Lmatch =
∑

p
||Ψp(Fo)−ΨNN(p)(Fs)||

2
F, (6)

where NN(p) is the index of the patch in Ψ(Fs) which is

the most similar to Ψp(Fo). The best matching index is

calculated using normalized cross-correlation over all local

patches in the style feature Fs:

NN(p) = argmax
p′=1,2,...,Θ

Ψp(Fo) ·Ψp′(Fs)

||Ψp(Fo)||2F · ||Ψp′(Fs)||2F
, (7)

where the operator · denotes inner product, and Θ = h×w.

Both methods share the same content loss, but have differ-

ent style loss terms. The global style loss (Eq. (4)) mea-

sures global statistics, but ignores the spatial layout of fea-

tures [29]. On the contrast, the local style loss (Eq. (6)) en-

courages to find optimal feature layout for each local patch

individually (Eq. (7)), but without global constraint.

Neural Feature Reshuffle. Can an optimal feature Fo be

achieved to satisfy both global and local style terms simul-

taneously? Yes, we find that feature reshuffle can theoreti-

cally be an ideal condition, which can make both global and

local style terms be zero.

Specifically, feature reshuffle means that we permute the

spatial location of feature map Fs to reconstruct a new fea-

ture map Fo. Let SF(p) be the permuted location of the

feature corresponding to the original location p. By feature

reshuffle, the reconstructed feature map Fo is denoted as:

Fo(p) = Fs(SF(p)), and Fs(p) = Fo(S̃F(p)), (8)

where S̃F(p) is the inverse reshuffle function. In other

words, SF(p) is a bijection: for each location in Fo there

exists exactly one location in Fs corresponding to it.

We can deduce the global style loss (in Eq. (4)) with the

reshuffle solution (see in Eq. (8)) as:

Lsty =
∑

i,j

||
∑

p

Fo(i, p)Fo(j, p)−
∑

p

Fs(i, p)Fs(j, p)||
2

=
∑

i,j

||
∑

p

Fs(i, SF(p))Fs(j, SF(p))−
∑

p

Fs(i, p)Fs(j, p)||
2

= 0,
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which indicates reshuffling features of style does not effect

Gram matrices of style features, leading the global style loss

to be zero.

According to Eq. (8), the feature Fo(p) at each point

p is reconstructed by Fs(SF (p)). When the patch size is

1 × 1, Ψp(Fo) can be denoted as Fo(p). Then, the nearest

neighbor of Fs(SF (p)) to be found in the feature map Fs is

just itself, i.e., Fs(SF (p)) = Fs(NN(p)) = ΨNN(p)(Fs).
Based on these deductions, we can rewrite Eq. (6) as

Lmatch =
∑

i

||
∑

p

(Fo(i, p)− Fs(i, SF(p)))||2 = 0.

As summary, the above theoretical derivation demon-

strates feature reshuffled from the style image simultane-

ously minimizes both global style loss and local style loss

(when patch size is 1× 1).

4. Method

Based on the idea of deep feature reshuffle, we propose

a novel neural style transfer algorithm, which integrates

global and local style losses in the whole objective func-

tion. We first present a new style loss called reshuffle loss,

which would be combined with content loss as well. Then,

we show the optimization in a single feature layer. Such an

optimization can be done in image domain, similar to the

manner of [14], by iteratively forward and backward pass-

ing the networks. For acceleration, we propose two efficient

ways: 1) the optimization can be done in feature domain,

and does not need to back propagate to the image at every

time; 2) we progressively optimize the features across mul-

tiple layers, and the exhaustive patch match in the fine layer

can be guided by the matching result in the coarse layer.

4.1. Reshuffle Loss Function

We define a new reshuffle loss for the style loss, which

only slightly modifies the local style loss term (see Eq. (6)):

Lshuf =
∑

p
||Ψp(Fo)−ΨNNC(p)(Fs)||

2
F, (9)

where the original nearest neighbor (NN) search NN(p) is

replaced by a new function NNC(p). It is also the NN

search, but constrained by the times of patch usage. For

strict reshuffle, we require each patch in the source to be

only mapped once, as shown in Fig. 3.

Indeed, sometimes such one-usage constrain is too harsh.

For example, the content image has two faces but the style

image only has one. We relax the constraint in our energy

term to allow more times of patch usage. Although it will

sacrifice the global term to some extent, it greatly improve

the robustness. A hard cutoff of usage is difficult to be found

for every case. Instead, our constrained NN search function

softly encourages the uniform usage of patch, inspired by

Target feature Source feature Reconstructed feature

Figure 3. The comparison between normal NN search (upper row)

and our NN search constrained by reshuffle (lower row). Ours

strictly requires each patch in the source to be only mapped once.

Notice that the bottom only shows a possible solution of reshuffle.

[22, 12], which considered similar constraints in image do-

main, and is defined as:

NNC(p) = argmax
p′=1,2,...,Θ

(
Ψp(Fo) ·Ψp′(Fs)

||Ψp(Fo)||2F · ||Ψp′(Fs)||2F

−λ
Γ(Ψp′(Fs))

R×R
),

(10)

where R is the patch size. Γ(p) keeps track how many times

of each pixel has been used in all patches covering it, and

Γ(Ψp) refers to the total usages of a patch normalized by its

area R×R, namely,

Γ(Ψp) =
∑

p∈Ψp

Γ(p)

R×R
. (11)

This term requires each pixel to be used only once, as pos-

sible as it can. λ controls the relative contribution of uni-

formity enforcement. The NNC(p) can be optimized with

the EM-like algorithm described in [22, 12], which extends

PatchMatch algorithm [3] to keep track of the usage as well.

4.2. Single Layer Optimization

The objective function for single layer is defined as:

Ltotal = αLcont + (1− α)Lshuf . (12)

The most direct solution is to optimize it in image domain.

Similar to [14, 26], we suppose the output image Io to be

either the content image or random noise initially. Then we

pass it to the VGG19 network (pre-trained on ImageNet for

object recognition), and get the feature maps F l
o at relul 1

layer. We optimize NNC with the feature map F l
o and F l

s,

shown in Eq. (10). The gradient of the energy function

Ltotal (in Eq. (12)) is then computed and back propagated

to update Io. Such processing always needs hundreds of

iterations to converge by gradient decent method (e.g., L-

BFGS [41]). Hundreds times of foward-backward passes of

networks and NN search make it prohibitively slow.

An alternatively fast solution is to directly optimize F l
o

in feature domain, and then reverse it to the output image
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by training VGG-like image decoder. Here, we first dis-

cuss how to get F l
o by minimizing Eq. (12). Considering

Eq. (10) is not directly differentiable, the objective func-

tion (Eq. (12)) is hard to be optimized by a standard solver

like SGD. To solve this issue, we adopt an iterative EM-

like algorithm, which was used in [22] with good conver-

gency. Specifically, F l
o is initialized to the content fea-

tures, F
l,(0)
o = F l

c . In the E-step of each iteration i, the

constrained NN field NNCl,(i) is computed by matching

F
l,(i−1)
o and F l

s (see Eq. (10)). We then get the feature map

F l
s(NNCl,(i)), by warping F l

s with NNCl,(i) and average-

voting overlapping neighbor patches at each location. In

the M-step, we obtain the blended feature map F
l,(i)
o by a

linear combination: F
l,(i)
o = αF l

c + (1 − α)F l
s(NNCl,(i)),

according to Eq. (12). After several iterations (less than 10

normally), F
l,(i)
o will converge to the optimal feature F l

o.

Once F l
o is achieved, we will get the output image Io

by decoding F l
o to image domain. The decoder can be pre-

trained for efficiency [28, 18, 31]. By contrast, we adopt

an different decoder learning from theirs. The details of

decoder training are discussed in Section 4.4.

4.3. Multilayer Progressive Optimization

We actually adopt a multi-layer progressive optimization

instead of independent single layer optimization described

in the above section. This way provides three advantages.

First, leveraging mutil-layer features can generate richly

textured results. Second, multi-resolution processing can

help avoid getting stuck in worse local minima. Last, with

the NNF guidance from coarse layers, we may accordingly

decrease the search range for more efficient matching.

Fig. 4 shows our algorithm pipeline. The multi-layer op-

timization considers such three layers l = 2, 3, 4. In initial-

ization, we obtain feature maps {F l
c}l=4,3,2 and {F l

s}l=4,3,2

of Ic and Is respectively by feeding them to VGG-19.

Algorithm 1: The deep feature reshuffle algorithm.

Input : One content image Ic and one style image Is.

Initialization:

{F l
c}

4
l=2, {F

l
s}

4
l=2 ← feed Ic, Is to VGG-19.

F̂ 4
o = F 4

c .

for l = 4 to 2 do

F l
c ← βF̂ l

o + (1− β)F l
c .

F
l,(0)
o ← F l

c .

for i = 1 to max iter do

NNCl,(i) ← match F
l,(i−1)
o and F l

s (Eq. (10)).

F l
s(NNCl,(i))← warp F l

s with NNCl,(i).

F
l,(i)
o ← αF l

c + (1− α)F l
s(NNCl,(i)).

end

if l > 2 then

F̂ l−1
o ← decode F

l,(max iter)
o from l to l − 1.

end

end

Io ← decode F
2,(max iter)
o to image.

Output: Style transfer result image Io.

We start from the coarsest layer l = 4, and perform

the single layer optimization (see Section 4.2) at this layer,

which uses EM-like constrained patch match algorithm. Af-

ter it, we get the updated feature F 4
o , which is then de-

coded to the next layer l − 1 by our trained decoder net-

work, denoted as F̂ l−1
o . To leverage the result from the

coarse layer, we update the content feature F l−1
c at layer

l − 1 by linearly combining it with F̂ l−1
o , namely, F l−1

c ←
βF̂ l−1

o + (1 − β)F l−1
c . Next, we use the updated content

feature F l−1
c for single layer optimization in layer l − 1.

The blending can inherit information from the coarser lay-

ers. We iterate the process from the coarsest layer l = 4
to the finest layer l = 2. Finally, we decode the opti-

mal feature F 2
o to obtain the output image Io. The pseudo

code of our implementation is listed in Algorithm 1. Code

has been made available at: https://github.com/

msracver/Style-Feature-Reshuffle

4.4. Decoder Training

Li et al. [28] proposed a universal decoder for fast style

transfer. However, their method is not very economic, since

L various decoders are needed to respectively decode fea-

tures from every different layer. These decoders do not

share weights in training. In this paper, we propose a new

training strategy which provides only a single decoder for

features may from different layers. The comparisons be-

tween the two training strategies are shown in Fig. 5.

The architecture of our decoder uses a symmetrical struc-

ture to that of VGG-19 encoder network. The training

strategy is bottom-up, starting from layer 1 to layer L.

When we train the l th layer of decoder, image I first feeds

to the encoder sub-net E l−1
1 involving encoder layer 1 to
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Figure 5. Comparison of our decoder (right) and Li et al.’s [28]

(left). To train a decoder in layer l, ours fixes and shares the pre-

trained part from layer 1 to l − 1, while theirs retrains all parts.

Texture Non-parametric[26] Parametric[14] Ours

Figure 6. Texture synthesis results by minimizing different style

losses on layer 4

l − 1, and achieves feature map at layer l − 1, F l−1 =
E l−1
1 (I). It will further feed to the encoder E ll−1 involv-

ing encoder layer l, and get feature F l = E ll−1(F
l−1).

Here, our loss includes two folds. On one hand, fea-

ture F l would directly feed to the decoder for image re-

construction, namely Î = Dl−1
1 (F̂ l−1), where F̂ l−1 =

Dl
l−1(F

l). We use L2-norm based image reconstruction

loss, Limg = ||Î − I||2. On the other hand, we measure

feature loss by Lfeat = ||F̂
l−1 − F l−1||2. In summary, the

decoder sub-net Dl
l−1 only involving decoder layer l, can

be achieved by min(Limg +Lfeat), which can be rewritten

as: min(||I−Dl−1
1 (Dl

l−1(F
l))||2+ ||F l−1−Dl

l−1(F
l)||2),

where theDl−1
1 is fixed whenDl

l−1 is computed in our train-

ing. By contrast, both Dl−1
1 and Dl

1−1 are always retrained

for every decoder layer [28]. We train our decoder on the

ImageNet dataset [23].

5. Ablation Study

5.1. Style Loss Analysis

We study the effect of different style loss terms, includ-

ing global style loss (in Eq. (4)), local style loss (in Eq. (6)),

and reshuffle style loss (in Eq. (9)), by neglecting the com-

mon content loss. Thus, we only evaluate them on texture

synthesis. We collect 60 image pairs from existing papers,

and start from random noise to respectively minimize the

three losses in layer 4. The optimization is conducted by L-

BFGS method, and stopped at 500 iterations, where results

have no visible changes with further iterations.

Some results are shown in Fig. 6. As we can see, the

Figure 7. Global style loss (Eq. (4)) (left) and local style loss

(Eq. (4)) (right) measured on every result with various methods.

∞∞
Figure 8. The global style loss (left) increases while content loss

(right) decreases with the increase of maximum patch usage count.

results by minimizing the global style loss (e.g., [13]) better

reproduce the overall feeling of the style, while the results

by minimizing the local style loss (e.g., [26]) are more faith-

ful to the local shapes of example texture. The results using

our reshuffle loss own both merits: global similarity and

local plausibility. The quantitative comparison also demon-

strate the same point, as shown in Fig. 7. We can see that our

loss function achieves lower global loss (Eq. (4)) than non-

parametric method; while obtains lower local loss (Eq. (6))

than parametric method, in all the cases.

5.2. Count of Patch Usage

We will examine the effect of patch usage count. The re-

laxation of maximum usage count only reduces global style

loss, but the local style loss always remains 0. We still con-

sider the above 60 examples, and use our single layer opti-

mization (in Section 4.2, only layer 4) to compute the con-

tent loss (Eq. (2)) and the global style loss (Eq. (4)). Here,

we try varied maximum counts of patch usage, and shows

their corresponding content losses and global style losses

in Fig. 8. With the increase of maximum usage count, the

global style loss increases while the content loss decreases.

It is not hard to understand that allowing more usage times

will provide more choices to match content. Moreover, we

find the good upper bound for patch usage is 3, with mini-

mum style loss given the best preservation to content, which

helps infer a tradeoff weight λ = 0.05 in Eq. (10). A visual

comparison of different usage constraints is shown in Fig. 9.

5.3. Patch Size Selection

Another hyperparameter in our method is the patch size

R. Increasing patch-size will sacrifice the global style loss

(in Eq. (4)) to some extend. However, in some scenarios,

large patch size is needed to preserve spatial coherence. As
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Content Max usage = 1 Max usage = 2

Style Max usage = 3 Soft (λ = 0.05)

Figure 9. A comparison of results with different usage count con-

straints. Please note the eye in the red rectangles are miss-matched

when max usage = 1, but fixed when max usage increases.

Layer3

Layer2

Layer4

PatchSize=1 PatchSize=3 PatchSize=5

Content

Style

Figure 10. An example of style transfer results with different patch

sizes and at different layers.

shown in Fig. 10, lager patch size we use, better local struc-

ture of style patterns can be preserved. Another factor is that

patches in coarser layers may cover larger reception fields,

making good matching difficult. So we choose empirically

3× 3 patch in layer 4 and 5× 5 patch in layers 2, 3.

6. Results

6.1. Implementation Details

All results are produced by multi-layer aggressive op-

timization in feature domain (in Section 4.3). On each

layer, we do 5 EM iterations. The used patch sizes are

{Rl}l=2,3,4 = {5, 5, 3} and the patch usage parameter is

set to be λ = 0.05 respectively according to the experiment

in Section 5. As to the weight for content and style balanc-

ing, we set α = 0.5 and β = 1.0 to make our stylization

level similar to previous works.

6.2. Comparisons

We compare our result with other neural style trans-

fer methods including representative parametric methods

[14, 18, 28] and non-parametric methods [26, 30]. For fair

comparison, all our results are generated with fixed param-

eters as described in Section 6.1. And theirs are obtained by

running author-released code with default settings. We have

tested on more than 100 content and style pairs collected

from previous papers and Ostagram website [1]. Fig. 11

shows some representative results. More results can be

found in our supplemental material.

As shown in Fig. 11, our method shares advantages

from both kinds of methods. First, as a non-parametric

method, our results preserve the local texture patterns better,

more faithful to the style, compared with parametric meth-

ods [14, 18, 28], as shown in row 1&2 of Fig. 11. Un-

fortunately, in their results, the local textures are distorted,

and some new patterns (not belongs to the style) appears.

Second, our method seeks for best matches for each local

patch in the content, so it can better achieve semantic-level

transfer (e.g., eye-to-eye, mouth-to-mouth) than parametric

methods which only mimic the global statistics [14, 18, 28],

as shown in row 3&4 of Fig. 11. Third, our method can own

good global properties, making it different from other non-

parametric methods [26, 30]. On one hand, our result can

better preserve overall feels of the exemplar style, as shown

in the row 5&6 of Fig. 11. Non-balanced neural patch sam-

pling [26, 30] makes their results different from the global

distribution of the style patterns; while ours are globally

more faithful. On the other hand, our method can success-

fully avoid excessively repetitive use of the same sample,

which will cause the washout effect [19]. We can clearly

see these undesired effects in row 2&7 of Liao et al.’s results

[30]. The property benefits from our reshuffle constraint.

We also compare the time cost of all these methods.

Tabel below Fig. 11 gives the average running time of each

method on 512×512 image pairs. All the methods are tested

on a PC with an Intel E5 2.6GHz CPU and an NVIDIA

Tesla K40C GPU. Our method is slower than [18, 28], com-

parable to [30] and faster than [14, 26]. The bottleneck is

the constrained NN field search step.

6.3. Perceptual Study

We conduct a user study similar to [20]. In the study,

we use 150 groups of images shown in the supplemental

material. Each group contains two inputs and six outputs

(involving 5 results from [14, 28, 18, 30, 26], and ours). All

six results in each group are presented side-by-side and in a

random order to participants. Participants are given unlim-

ited time to rank the score from 1 to 6 (1 is the best, 6 is the

worst) according to preference. We show the average rank-

ing scores over 15 participants in Table 1. Overall, subjects

prefer our result more than others.

Table 1. Average stylization rank scores of six algorithms

Method [14] [28] [18] [30] [26] Ours

Average rank 3.08 3.55 3.92 3.42 4.2 2.88
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Method Gatys et al.[14] Li et al.[28] Huang et al.[18] Liao et al.[30] Li et al.[26] Ours

Time(s) 370 8.46 0.556 114 195 114

Figure 11. Comparison with previous neural style transfer methods.

Content Style Liao et al. [30] Ours

Figure 12. A failure case.

7. Discussion and Conclusion

Despite the success of neural style transfer, the relation-

ship between different methods was far from clear. In this

paper, we give a new perspective to connect them. We then

propose a novel and simple idea, called deep feature reshuf-

fle, which is the first to unify both commonly-used global

and local style losses. Based on this idea, we propose a new

and efficient neural style transfer algorithm by progressively

optimizing the new loss in feature domain. The results have

shown that our approach is widely applicable to various in-

puts, and produces better quality than existing methods.

However, the method still suffers from some limits. Con-

straining the usages of neural patch for the sake of style, will

cause less accurate matching and thus damage the content

structure, as shown in Fig. 12. It can be solved by fine-

tuning the usage parameter λ. How to automatically deter-

mine the optimal parameter for each input will become a

vital and practical problem to be explored in future work.
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