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Abstract

Textual-visual cross-modal retrieval has been a hot re-

search topic in both computer vision and natural language

processing communities. Learning appropriate representa-

tions for multi-modal data is crucial for the cross-modal

retrieval performance. Unlike existing image-text retrieval

approaches that embed image-text pairs as single feature

vectors in a common representational space, we propose to

incorporate generative processes into the cross-modal fea-

ture embedding, through which we are able to learn not only

the global abstract features but also the local grounded fea-

tures. Extensive experiments show that our framework can

well match images and sentences with complex content, and

achieve the state-of-the-art cross-modal retrieval results on

MSCOCO dataset.

1. Introduction

As we are entering the era of big data, data from differ-

ent modalities such as text, image, and video are growing at

an unprecedented rate. Such multi-modal data exhibit het-

erogeneous properties, making it difficult for users to search

information of interest effectively and efficiently. This pa-

per focuses on the problem in multi-modal information re-

trieval, which is to retrieve the images (resp. texts) that are

relevant to a given textual (resp. image) query. The funda-

mental challenge in cross-modal retrieval lies in the hetero-

geneity of different modalities of data. Thus, the learning

of a common representation shared by data with different

modalities plays the key role in cross-modal retrieval.

In recent years, a great deal of research has been devoted

to bridge the heterogeneity gap between different modali-

ties [14, 11, 15, 7, 36, 6, 5]. For textural-visual cross-modal

embedding, the common way is to first encode individual

modalities into their respective features, and then map them

into a common semantic space, which is often optimized via

Figure 1: Conceptual illustration of our proposed cross-

modal feature embedding with generative models. The

cross-modal retrievals (Image-to-Text and Text-to-Image)

are shown in different color. The two blue boxes are cross-

modal data, and the generated data are shown in two dashed

yellow clouds.

a ranking loss that encourages the similarity of the mapped

features of ground-truth image-text pairs to be greater than

that of any other negative pair. Once the common repre-

sentation is obtained, the relevance / similarity between the

two modalities can be easily measured by computing the

distance (e.g. l2) between their representations in the com-

mon space.

Although the feature representations in the learned com-

mon representation space have been successfully used to

describe high-level semantic concepts of multi-modal data,

they are not sufficient to retrieve images with detailed local

similarity (e.g., spatial layout) or sentences with word-level

similarity. In contrast, as humans, we can relate a textual

(resp. image) query to relevant images (resp. texts) more

accurately, if we pay more attention to the finer details of

the images (resp. texts). In other words, if we can ground

the representation of one modality to the objects in the other
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modality, we can learn a better mapping.

Inspired by this concept, in this paper we propose to in-

corporate generative models into textual-visual feature em-

bedding for cross-modal retrieval. In particular, in addi-

tion to the conventional cross-modal feature embedding at

the global semantic level, we also introduce an additional

cross-modal feature embedding at the local level, which

is grounded by two generative models: image-to-text and

text-to-image. Figure 1 illustrates the concept of our pro-

posed cross-modal feature embedding with generative mod-

els at high level, which includes three learning steps: look,

imagine, and match. Given a query in image or text, we

first look at the query to extract an abstract representation.

Then, we imagine what the target item (text or image) in

the other modality should look like, and get a more con-

crete grounded representation. We accomplish this by ask-

ing the representation of one modality (to be estimated) to

generate the item in the other modality, and comparing the

generated items with gold standards. After that, we match

the right image-text pairs using the relevance score which is

calculated based on a combination of grounded and abstract

representations.

The contributions of this paper are twofold. First, we

incorporate two generative models into the conventional

textual-visual feature embedding, which is able to learn

concrete grounded representations that capture the detailed

similarity between the two modalities. Second, we con-

duct extensive experimentations on the benchmark dataset,

MSCOCO. Our empirical results demonstrate that the com-

bination of the grounded and the abstract representations

can significantly improve the state-of-the-art performance

on cross-modal image-caption retrieval.

2. Related Works

Our work is closely related to the existing works

on supervised cross-modal feature learning/embedding for

cross image-text applications such as image captioning and

image-text cross-modal retrieval. Particularly, the pairwise

ranking is often adopted to utilize similar or dissimilar

cross-modal data pairs to learn a proper similarity or dis-

tance metric between different modalities [34, 2, 23, 9].

Frome et al. [4] proposed a cross-modal feature embed-

ding framework that use CNN and Skip-Gram [20] to ex-

tract cross-modal feature representations, and then associ-

ated them with a structured objective in which the distance

between the matched image-caption pair is smaller than that

between the mismatched pair. A similar framework is pro-

posed by Kiros et al. [14], in which a Gated Recurrent Unit

(GRU) was used as the sentence encoder. They also mapped

the images and sentences to a common space and adopted

the rank loss to penalize the model by averaging the individ-

ual violations across the negatives. Vendrov et al. [36] in-

troduced an improved objective, which can preserve the par-

tial order structure of a visual-semantic hierarchy. Klein et

al. [16] adopted a similar objective and employed Fisher

Vectors (FV) [28] as a pooling strategy of word embeddings

for caption representation. In [17], they sold the visual word

embedding idea and proposed a joint image-caption embed-

ding model for image captioning. However, their model

is based on cartoon-like images, which is difficult to be

applied to real images. Considering the strong ability of

Generative Adversarial Networks (GANs) in learning dis-

criminative representation, Peng et al. [27] explored inter-

modality and intra-modality with a cross-modal GAN. Re-

cently, Faghri et al. [3] improved Kiros’s work by replac-

ing the sum violations across the negative samples with the

hardest negative samples.

Several works have explored the alignment of visual ob-

jects and textual words [12, 29, 10, 24]. Karpathy et al. [12]

used local alignment to embed the fragments of images and

the sentences into a common space. Plummer et al. [29]

went a step further and used all pairwise instances for simi-

larity measurement. Jiang et al. [10] learned a multi-modal

embedding by optimizing pairwise ranking, while enhanc-

ing both local alignment and global alignment. In [9], they

introduced the context-modulated attention mechanism into

the cross-modal embedding. Their attention scheme can se-

lectively attend to pairwise instances of image and sentence,

and then dynamically aggregate the measured similarity to

obtain a global similarity between image and text. Instead

of embedding the sentence with chain-structured RNNs, the

recent work of Niu et al. [24] adopted a tree-structured

LSTM to learn the hierarchical relations between sentences

and images, and between phrases and visual objects. How-

ever, to align visual objects with textual words, a sufficient

amount of annotations need to be acquired as well, which

induces expensive human annotations.

Most of the existing studies on cross-modal textual-

visual retrieval mainly focus on learning a high-level com-

mon space with ranking loss. In contrast, our approach

learns not only the high-level global common space but also

the local common space through generative models.

3. Proposed Generative Cross-modal Learning

Network

3.1. System Overview

Figure 2 shows the overall architecture for the proposed

generative cross-modal feature learning framework, named

GXN. The entire system consists of three training paths:

multi-modal feature embedding (the entire upper part),

image-to-text generative feature learning (the blue path),

and text-to-image generative adversarial feature learning

(the green path). The first path is similar to the existing

cross-modal feature embedding that maps different modal-

ity features into a common space. However, the difference
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Figure 2: The proposed generative cross-modal learning framework (GXN). The entire framework consists of three training

paths: cross-modal feature embedding (the entire upper part), image-to-text generative feature learning (the blue path),

and text-to-image generative adversarial feature learning (the green path). It includes six networks: two sentence encoders

RNNh
Enc (dark green) and RNNl

Enc (light green), one image encoder CNNEnc (blue), one sentence decoder RNNDec, one image

decoder CNNDec and one discriminator Di.

here is that we use two branches of feature embedding, i.e.,

making the embedded visual feature vh (resp. vl) and the

textual feature th (resp. tl) closer. We consider (vh, th) as

high-level abstract features and (vl, tl) as detailed grounded

features. The grounded features will be used and regular-

ized in the other two generative feature learning paths. The

entire first training path mainly includes one image encoder

CNNEnc and two sentence encoders RNNh
Enc and RNNl

Enc.

The second training path (the blue path) is to generate a

sentence from the embedded generative visual feature vl.

It consists of the image encoder CNNEnc and a sentence

detector RNNDec. With a proper loss against ground-truth

sentences, the grounded feature vl will be adjusted via back

propagation. The third training path (the green path) is to

generate an image from the textual feature tl. Here we adopt

the generative adversarial model, which comprises a gener-

ator / decoder CNNDec and a discriminator Di.

Overall, through these two paths of cross-modal genera-

tive feature learning, we hope to learn powerful cross-modal

feature representations. During the testing stage, {vh, vl}
and {th, tl} will be used as the final feature representations

for cross-modal retrieval, although the proposed GXN also

produces other byproducts such as image-to-text generation

and text-to-image generation, which are not the main focus

of this paper. In the following, we describe each of the three

training paths in detail.

3.2. Crossmodal Feature Embedding

We follow the common cross-modal feature embedding

approach to embed the representations of the image and the

caption into a common space, and then use a pairwise rank-

ing loss to learn the model parameters [36]. In particular,

given an image-caption pair (i, c), where i is the image and

c = (w0, · · · , wT−1) is the corresponding description with

wi being the one-hot word encoding, we encode a caption

by embedding each word in c into a distributed representa-

tion using Wewi, where We is a shared word embedding

matrix to be learned. We can be initialized randomly or

using pre-trained embeddings like word2vec [21]. Then we

use two sequential sentence encoders (e.g., GRU) to get the

sentence representations. As for image encoding, we use a

CNN that is pre-trained on ImageNet. More formally, we

formulate the embedding and mapping of each modality as:

vk =P k
v (CNNEnc(i; θi))

tk =P k
t (RNNk

Enc(c; θ
k
c ))

, k ∈ {h, l} (1)

where θi and θkc are the parameters of the image and caption

encoders, P k
v and P k

t are the linear transformation functions

which map the encoded vectors into a common embedding

space, and vk and tk are the resulting mapped vectors for

the image and the caption, respectively.

We first consider the same pairwise ranking loss pro-

posed in [14, 34, 11, 36]. We refer (i, c) as positive pairs and

denote the negative samples by i′ and c′, where i′ goes over

images not described by c and c′ goes over captions that do

not describe i. We want the objective function to encour-

age the similarity of ground truth caption-image pairs to be

greater than that of all other negative pairs. We, therefore,

optimize the ranking loss of LRank = 1

N

∑N

n=1
LR(in, cn),
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where the single sample ranking loss LR is defined as:

LR =
∑

t′

[α− s(t, v) + s(t′, v)]
+
+

∑

v′

[α− s(t, v) + s(t, v′)]
+

(2)

where α is a margin, s(t, v) = −‖max(0, v − t)‖2 is the

order-violation penalty [36] used as a similarity, t′ and v′

denote the representations of the negative samples. Here,

[x]+ represents max(x, 0).
Considering we have two branches of cross-modal fea-

ture embedding, which result in two pairs of cross-modal

features: the abstract features (th, vh) and the grounded fea-

tures (tl, vl), we modify the ranking loss as

LR+ =
∑

t′

[α− s∗(th,l, vh,l) + s∗(t′h,l, vh,l)]++

∑

v′

[α− s∗(th,l, vh,l) + s∗(th,l, v
′

h,l)]+ (3)

where s∗(th,l, vh,j) = λs(th, vh) + (1 − λ)s(tl, vl) is a

combined score with λ being the tradeoff weight.

3.3. Imagetotext Generative Feature Learning

For the image-to-text training path (i2t, blue path in Fig-

ure 2), our goal is to encourage the grounded visual fea-

ture vl to be able to generate sentences that are similar to

the ground-truth captions. In particular, we first encode the

image with CNNEnc, and then decode the grounded visual

feature into a sentence with RNNDec. Like the traditional

RNN-based text generation models, we first train our model

on a cross-entropy (XE) loss defined as:

Lxe = −
T−1∑

t=0

log pθt(wt|w0:t−1, vl; θt) (4)

where wt is the ground-truth word, pθt(wt|w0:t−1, vl) is the

output probability of word wt given by the decoder with

parameter θt.

However, the XE loss is a word-level cost, and models

trained on this suffer from the exposure bias problem [1]

and the loss-evaluation mismatch problem [5, 30]. Thus we

further employ a loss that takes the entire sequence into ac-

count. Specifically, to directly optimize the sentence-level

metrics, we optimize our model by minimizing the negative

expected reward given by:

Lrl = −Ec̃∼pθt
[r(c̃)] (5)

where c̃ = (w̃0, · · · , w̃T−1) is the word sequence sampled

from the decoder, r(c̃) is the reward calculated by com-

paring the generated sentence with the corresponding ref-

erence sentences using a standard evaluation metric like

BLEU [25] or CIDEr [35]. Following the reinforcement

learning (RL) approach described in [32, 5], the expected

gradients of Equation (5) using Monte-Carlo sample c̃ from

pθt can be approximated as:

∇θtLrl = −Ec̃∼pθt
[r(c̃) · ∇θt log pθt(c̃)]

≈ −r(c̃)∇θt log pθt(c̃)

≈ −(r(c̃)− rb)∇θt log pθt(c̃) (6)

where rb is the baseline estimator used to reduce the vari-

ance without changing the expected gradient. In our model,

we use the inference process reward as the baseline.

During the early stage of training, optimization of Equa-

tion (6) alone does not ensure the readability and fluency

of the generated caption [26]. To deal with this, we use a

mixture of XE and RL losses:

Lxe+rl = (1− γ)Lxe + γLrl (7)

where γ is a tuning parameter used to balance the two

losses. Equation (7) improves results on the metric used

to compute the reward through the reinforcement loss but

also ensures better readability and fluency due to the XE

loss. For annealing and faster convergence, we start with

optimizing XE loss in Equation (4), and then move to opti-

mizing the joint loss in Equation (7).

3.4. Texttoimage Generative Adversarial Feature
Learning

For the text-to-image training path (t2i, green path in

Figure 2), our goal is to encourage the grounded text fea-

ture tl to be able to generate an image that is similar to the

ground-truth one. However, unlike the image-to-text path in

Section 3.3, where the model is trained to predict the word

conditioned on image and history words, the reverse path

suffers from the highly multi-modal distribution of images

conditioned on a text representation.

The natural way to model such a conditional distribution

is to use a conditional GAN [22, 31], which consists of a

discriminator and a generator. The discriminator is trained

to distinguish the real samples 〈real image, true caption〉
from the generated samples of 〈fake image, true caption〉
as well as samples of 〈real image, wrong caption〉. Specif-

ically, the discriminator Di and the generator Gi (CNNDec

in Figure 2) play the min-max game on the following value

function V (Di, Gi):

min
Gi

max
Di

V (Di, Gi) = LDi
+ LGi

. (8)

The discriminator loss LDi
and the generator loss LGi

are
defined as:

LDi
=Ei∼pdata

[logDi(i, tl)] + βfEî∼pG
[log(1−Di(̂i, tl))] +

βwEi∼pdata
[log(1−Di(i, t

′

l))] (9)

LGi
=Eî∼pG

[log(1−Di(̂i, tl))] (10)
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where tl and t′l denote the encoded grounded feature vectors

for a matched and a mismatched captions, respectively, i is

the matched real image from the true data distribution pdata,

βf and βw are the tuning parameters, and î = Gi(z, tl) is

the generated image by the generator Gi conditioned on tl
and a noise sample z. The variable z is sampled from a

fixed distribution (e.g., uniform or Gaussian distribution).

In implementation, we compress tl to a lower dimension

and then combine it with z.
However, directly combining tl with z cannot produce

satisfactory results. This is because of the limited amount
of data and the unsmoothness between tl and z. Thus,
we introduce another variable tc, which is sampled from a
Gaussian distribution ofN (µ(ϕ(tl)), σ(ϕ(tl))) [38], where
µ(ϕ(tl)) and σ(ϕ(tl)) are the mean and the standard de-
viation of tl, ϕ(tl) compresses tl to a lower dimension.
We now generate the image conditioned on z and tc with

î = Gi(z, tc). The discriminator loss LDi
and the genera-

tor loss LGi
are then modified to:

LDi
=Ei∼pdata

[logDi(i, tl)] + βfEî∼pG
[log(1−Di(̂i, tl))] +

βwEi∼pdata
[log(1−Di(i, t

′

l))] (11)

LGi
=Eî∼pG

[log(1−Di(̂i, tl))] +

βsDKL(N (µ(ϕ(tl)), σ(ϕ(tl))) ‖ N (0, 1)) (12)

where βf , βw and βs are the tuning parameters, and the KL-

divergence term is to enforce the smoothness of the latent

data manifold.

Alg. 1 summarizes the entire training procedure.

4. Experiments

4.1. Dataset and Implementation Details

We evaluate our approach on the MSCOCO dataset [18].

For cross-modal retrieval, we use the setting of [11], which

contains 113,287 training images with five captions each,

5,000 images for validation and 5,000 images for testing.

We experiment with two image encoders: VGG19 [33] and

ResNet152 [8]. For VGG19, we extract the features from

the penultimate fully connected layer. For ResNet152, we

obtain the global image feature by taking a mean-pooling

over the last spatial image features. The dimensions of

the image feature vectors is 4096 for VGG19 and 2048 for

ResNet152. As for text preprocessing, we convert all sen-

tences to lower case, resulting in a vocabulary of 27,012

words.

We set the word embedding size to 300 and the dimen-

sionality of the joint embedding space to 1024. For the

sentence encoders, we use a bi-directional GRU-based en-

coder to get the abstract feature representation th and one

GRU-based encoder to get the grounded feature representa-

tion tl. The number of hidden units of both GRUs is set to

1024. For the sentence decoder, we adopt a one-layer GRU-

based decoder which has the same hidden dimensions as the

Algorithm 1 GXN training procedure.

Input: Positive image i, negative image i′, positive text c,

negative text c′, number of training batch steps S

1: for n = 1 : S do

2: /*Look*/

3: Draw image-caption pairs: (i, c), i′ and c′.

4: vh, vl, v
′

h, v
′

l ← i, i′ {Image encoding}
5: th, tl, t

′

h, t
′

l ← c, c′ {Text encoding}
6: Update parameters with Geni2t-GXN

7: Update parameters with Gent2i-GXN

8: end for

Function: Geni2t-GXN

1: /*Imagine*/

2: ĉ = RNNDec(vl, c) {Scheduled sampling}
3: Compute XE loss Lxe using (4).

4: c̃← RNNDec(vl){Sampling}
5: c̄← RNNDec(vl){Greedy decoding}
6: Compute RL loss Lrl using (5).

7: Update model parameters by descending stochastic gra-

dient of (7) with rb = r(c̄) (see (6)).

8: /*Match*/

9: Update model parameters using (3).

Function: Gent2i-GXN

1: /*Imagine*/

2: tc ∼ N (µ(ϕ(tl)), σ(ϕ(tl)))
3: î = Gi(z, tc)
4: Update image discriminator Di using (11).

5: Update image generator Gi using (12).

6: /*Match*/

7: Update model parameters using (3).

two GRU-based encoders. During the RL training, we use

CIDEr score as the sentence-level reward. We set βf = 0.5,

βw = 0.5 and βs = 2.0 in Eq. (11) and (12), margin α

and λ in Eq. (3) to be 0.05 and 0.5 respectively, and γ in

Eq. (7) is increased gradually based on the epoch from 0.05

to 0.95. The output size of the image decoder CNNDec is

64 × 64 × 3, and the real image is resized before inputting

to the discriminator. All the modules are randomly initial-

ized before training except for the CNN encoder and de-

coder. Dropout and batch normalization are used in all our

experiments. We use Adam [13] for optimization with a

mini-batch size of 128 in all our experiments. The initial

learning rate is 0.0002, and the momentum is 0.9.

For evaluation, we use the same measures as those

in [36], i.e., R@K, defined as the percentage of queries in

which the ground-truth matchings are contained in the first

K retrieved results. The higher value of R@K means bet-

ter performance. Another metric we use is Med r, which is

the median rank of the first retrieved ground-truth sentence

or image. The lower its value, the better. We also compute

another score, denoted as ‘Sum’, to evaluate the overall per-
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formance for cross-modal retrieval, which is the summation

of all R@1 and R@10 scores defined as follows:

Sum = R@1 + R@10
︸ ︷︷ ︸

Image-to-Text

+R@1 + R@10
︸ ︷︷ ︸

Text-to-Image

(13)

In addition, we evaluate the quality of the generated cap-

tions with the standard evaluation metrics: CIDEr and

BLEU-n. BLEU-n rates the quality of the retrieved cap-

tions by comparing n-grams of the candidate with the n-

grams of the five gold captions and count the number of

matches. CIDEr is a consensus-based metric which is more

correlated with human assessment of caption quality.

4.2. Baseline Approaches for Comparisons

GRU (VGG19) and GRUBi (VGG19): These two base-

lines use the pre-trained VGG19 as the image encoder.

GRU (VGG19) adopts a one layer GRU as the sentence en-

coder, while GRUBi (VGG19) adopts a bi-directional GRU

as the sentence encoder. These two models are trained using

Eq. (2).

GXN (ResNet152) and GXN (fine-tune): These two base-

lines use the same two GRU sentence encoders as our pro-

posed GXN framework, but without the generation compo-

nents. In other words, they only contain the cross-modal

feature embedding training path using Eq. (3). Here, the

pre-trained ResNet152 is adopted as the image encoder.

GXN (ResNet152) and GXN (fine-tune) refer to the models

without or with fine-tuning ResNet152, respectively. The

fine-tuned ResNet152 model is used as the image encoder

for all other GXN models.

GXN (i2t, xe) and GXN (i2t, mix): These two GXN base-

line models contain not only the cross-modal feature em-

bedding training path but also the image-to-text generative

training path. GXN (i2t, xe) and GXN (i2t, mix) are the two

models optimized with Eq. (4) and (7), respectively.

GXN (t2i): This baseline model contains both the cross-

modal feature embedding training path and the text-to-

image generative training path, and is trained with Gent2i-

GXN in Algorithm 1.

GXN (i2t+t2i): This is our proposed full GXN model con-

taining all the three training paths. It is initialized with the

trained parameters from GXN (i2t, mix) and GXN (t2i) and

fine-tuned with Algorithm 1.

4.3. Quantitative Results

In this section, we present our quantitative results and

analysis. To verify the effectiveness of our approach and

to analyze the contribution of each component, we compare

different baselines in Table 1 and 2. The comparison of

our approach with the state-of-the-art methods is shown in

Table 3.

Effect of a Better Text Encoder. The first two rows in

Table 1 compare the effectiveness of the two sentence en-

coders. Compared with GRU (VGG19), GRUBi (VGG19)

Table 1: Cross-modal retrieval results on MSCOCO 1K-

image test set (bold numbers are the best results).

Image-to-Text Text-to-Image

Model R@1 R@10 Med R@1 R@10 Med

GRU(VGG19) 51.4 91.4 1.0 39.1 86.7 2.0

GRUBi(VGG19) 53.6 90.2 1.0 40.0 87.8 2.0

GXN(ResNet152) 59.4 94.7 1.0 47.0 92.6 2.0

GXN(fine-tune) 64.0 97.1 1.0 53.6 94.4 1.0

GXN(i2t,xe) 68.2 98.0 1.0 54.5 94.8 1.0

GXN(i2t,mix) 68.4 98.1 1.0 55.6 94.6 1.0

GXN(t2i) 67.1 98.3 1.0 56.5 94.8 1.0

GXN (i2t+t2i) 68.5 97.9 1.0 56.6 94.5 1.0

can make full use of the context information from both

directions and achieve better performance, i.e., GRUBi

(VGG19) increases the caption retrieval R@1 from 51.4 to

53.6 and image retrieval R@1 from 39.1 to 40.0.

Effect of a Better Image Encoder. We further investigate

the effect of image encoding model on the cross-modal fea-

ture embedding. By replacing the VGG19 model in GRUBi

(VGG19) with ResNet152, we achieve huge performance

gains. The caption retrieval R@1 increases from 53.6 to

64.0, and the image retrieval R@1 increases from 40.0 to

53.6.

Effect of the Generative Models. We first consider the

incorporation of the image-to-caption generation process

into our GXN model. From Table 1, it can be seen that,

compared with GXN (fine-tune), GXN (i2t, xe) achieves

significantly better performance on the image-to-text re-

trieval. This validates our assumption that by combining

the abstract representation with the grounded representa-

tion learned by caption generation (imagining), we can re-

trieve more relevant captions. Then, as we further enrich the

model with the mixed RL+XE loss of Eq. (7), we observe

further improvements (see GXN (i2t, mix)).

We also evaluate the effect of incorporating the text-to-

image generation process into our GXN model. It can be

seen from Table 1 that, compared with GXN (fine-tune),

GXN (t2i) significantly improves the text-to-image retrieval

performance. This is because the grounded text feature tl is

well learned via the text-to-image generation process (imag-

ining). Although the image-to-text retrieval performance of

GXN (t2i) is not as good as GXN (i2t, mix), it is still much

better than GXN (fine-tune), which does not incorporate any

generative process.

The final row in Table 1 shows the performance of our

complete model, i.e., GXN (i2t+t2i), which incorporates

both image and text generations. We can see that GXN

(i2t+t2i) achieves the best performances in general, having

the advantages of both GXN (i2t, mix) and GXN (t2i).

Quality of the retrieved captions. For the image-to-text

retrieval task in Table 1, Table 2 reports the quality of the

retrieved captions using the sentence-level metrics, BLEU
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Table 2: Evaluating the quality of the retrieved captions

on MSCOCO 1K test set using the sentence-level metrics,

where B@n is a short form for BLEU-n, and C is a short

form for CIDEr. All values are reported in percentage. The

2nd column is the rank order of the retrieved caption.

Model No. B@1 B@2 B@3 B@4 C

GXN(fine-tune) 1 54.6 34.5 21.0 12.9 56.3

GXN(i2t,xe) 1 56.5 36.2 22.6 14.1 59.2

GXN(i2t,mix) 1 57.0 36.7 23.0 14.4 60.0

GXN(t2i) 1 56.0 36.0 22.4 14.3 58.8

1 57.1 36.9 23.3 14.9 61.1

2 55.8 35.8 22.4 13.7 58.3

GXN(t2i+t2i) 3 54.2 33.6 20.5 12.7 54.0

4 53.1 32.9 19.9 11.9 51.2

5 53.2 32.8 19.6 11.3 51.1

Figure 3: Visual results of image-to-text retrieval, where

the top-5 retrieved captions and the generated caption are

shown in red color.

and CIDEr. Both BLEU and CIDEr have been shown to

correlate well with human judgments [35]. As shown in Ta-

ble 2, incorporating the generative models into GXN yields

better results than GXN (fine-tune) that does not incorpo-

rate any generation process. Note that those scores are cal-

culated over five reference sentences. This demonstrates

that our proposed GXN model can retrieve captions that are

closer to the ground-truth ones.

4.3.1 Comparisons with the State-of-the-art

Table 3 shows the comparisons of our cross-modal retrieval

results on MSCOCO dataset with state-of-the-art methods.

We can see that our framework achieves the best perfor-

mance in all metrics, which clearly demonstrates the advan-

tages of our model. To make our approach more convinc-

ing and generic, we also conduct experiments on Flickr30K

dataset with results shown in Table 4.

4.4. Qualitative Results

In this section, we present a qualitative analysis of our

GXN (i2t+t2i) framework on cross-modal retrieval.

Results of image-to-text retrieval. Figure 3 depicts some

examples for image-to-text retrieval, where the results of

Figure 4: Visual results of text-to-image retrieval. 2nd row:

retrieved images. 3rd row: image samples generated by our

conditional GAN.

VSE0 and VSE++ are adopted from [3]. We show the top-5

retrieved captions as well as the ground-truth captions. We

can see that the retrieved captions of our model can better

describe the query images.

Results of text-to-image retrieval. Figure 4 depicts some

examples for text-to-image retrieval, where we show the

top-5 retrieved images as well as the generated images.

Compared to the ground-truth image and the retrieved im-

ages, although the generated images are of limited qual-

ity for complex multi-object scenes, they still contain cer-

tain plausible shapes, colors, and backgrounds. This sug-

gests that our model can capture the complex underlying

language-image relations.

Some more samples are shown in Figure 5. We show the

retrieved and generated results for both image-to-text and

text-to-image on the same image-caption pairs.

Results of word embedding. As a byproduct, a word em-

bedding matrix We (mentioned at the beginning of Sec-

tion 3.2) is also learned in our GXN models. We visualize

the learned word embedding by projecting some selected

word vectors into a 2-D space in Figure 6. We can see that

compared with the embeddings learned from GXN (fine-

tune), our GXN (i2t+t2i) can learn word embedding with

more related visual meaning. For example, we find that

words like ‘eats’ and ‘stares’ of GXN (i2t+t2i) are closer

to each other compared to those of GXN (fine-tune). This is

also consistent with the fact that when we ‘eat’ some food;

we also tend to ‘stare’ at it.

5. Conclusion

In this paper, we have proposed a novel cross-modal fea-

ture embedding framework for cross image-text retrieval.

The uniqueness of our framework is that we incorporate

the image-to-text and the text-to-image generative models

into the conventional cross-modal feature embedding. We

learn both the high-level abstract representation and the lo-
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Table 3: Comparisons of the cross-modal retrieval results on MSCOCO dataset with the state-of-the-art methods. We mark

the unpublished work with ∗ symbol. Note that ‘Sum’ is the summation of the two R@1 scores and the two R@10 scores.

Image-to-Text Retrieval Text-to-Image Retrieval

Model R@1 R@10 Med r R@1 R@10 Med r Sum

1K Test Images

m-CNN [19] 42.8 84.1 2.0 32.6 82.8 3.0 242.3

HM-LSTM [24] 43.9 87.8 2.0 36.1 86.7 3.0 254.5

Order-embeddings [36] 46.7 88.9 2.0 38.9 85.9 2.0 260.4

DSPE+Fisher Vector [37] 50.1 89.2 - 39.6 86.9 - 265.8

sm-LSTM [9] 53.2 91.5 1.0 40.7 87.4 2.0 272.8

∗VSE++ (ResNet152, fine-tune) [3] 64.7 95.9 1.0 52.0 92.0 1.0 304.6

GXN (i2t+t2i) 68.5 97.9 1.0 56.6 94.5 1.0 317.5

5K Test Images

Order-embeddings [36] 23.3 65.0 5.0 18.0 57.6 7.0 163.9

∗VSE++ (ResNet152, fine-tune) [3] 41.3 81.2 2.0 30.3 72.4 4.0 225.2

GXN(t2i+t2i) 42.0 84.7 2.0 31.7 74.6 3.0 233.0

Figure 5: More visual results of cross-modal retrieval.

Table 4: Experimental results on Flickr30K 1k image test

set.

Image-to-Text Text-to-Image

Model R@1 R@10 Med r R@1 R@10 Med r

*VSE++ [3] 52.9 87.2 1.0 39.6 79.5 2.0

GXN (i2t+t2i) 56.8 89.6 1.0 41.5 80.1 2.0

(a) GXN (fine-tune) (b) GXN (i2t+t2i)

Figure 6: Visualization of word embedding.

cal grounded representation of multi-modal data in a max-

margin learning-to-rank framework. Our framework sig-

nificantly outperforms state-of-the-art methods for textural-

visual cross-modal retrieval on MSCOCO dataset. Future

research directions include considering pixel-level visual

quality assessment and other strong discriminators to im-

prove the quality of the generated images.
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