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Abstract

We propose a novel hierarchical approach for text-to-

image synthesis by inferring semantic layout. Instead of

learning a direct mapping from text to image, our algorithm

decomposes the generation process into multiple steps, in

which it first constructs a semantic layout from the text by

the layout generator and converts the layout to an image by

the image generator. The proposed layout generator pro-

gressively constructs a semantic layout in a coarse-to-fine

manner by generating object bounding boxes and refining

each box by estimating object shapes inside the box. The

image generator synthesizes an image conditioned on the

inferred semantic layout, which provides a useful seman-

tic structure of an image matching with the text description.

Our model not only generates semantically more meaning-

ful images, but also allows automatic annotation of gen-

erated images and user-controlled generation process by

modifying the generated scene layout. We demonstrate the

capability of the proposed model on challenging MS-COCO

dataset and show that the model can substantially improve

the image quality, interpretability of output and semantic

alignment to input text over existing approaches.

1. Introduction

Generating images from text description has been an ac-

tive research topic in computer vision. By allowing users to

describe visual concepts in natural language, it provides a

natural and flexible interface for conditioning image genera-

tion. Recently, approaches based on conditional Generative

Adversarial Network (GAN) have shown promising results

on text-to-image synthesis task [21, 34, 23]. Conditioning

both generator and discriminator on text, these approaches

are able to generate realistic images that are both diverse

and relevant to input text. Based on conditional GAN

framework, recent approaches further improve the predic-

tion quality by generating high-resolution images [34] or

augmenting text information [6, 4].

However, the success of existing approaches has been

mainly limited to simple datasets such as birds [33] and

flowers [17], while generation of complicated, real-world

box generation mask generation pixel generation

real imageStackGAN [32] resultReed et al. [19] result

Input Text : People riding on elephants that are walking through a river.

Figure 1. Overall framework of the proposed algorithm. Given a

text description, our algorithm sequentially constructs a semantic

structure of a scene and generates an image conditioned on the

inferred layout and text. Best viewed in color.

images such as MS-COCO [13] remains an open challenge.

As illustrated in Figure 1, generating image from a gen-

eral sentence “people riding on elephants that are walk-

ing through a river” requires multiple reasonings on var-

ious visual concepts, such as object category (people and

elephants), spatial configurations of objects (riding), scene

context (walking through a river), etc., which is much more

complicated than generating a single, large object as in sim-

pler datasets [33, 17]. Existing approaches have not been

successful in generating reasonable images for such com-

plex text descriptions, because of the complexity of learning

a direct text-to-pixel mapping from general images.

Instead of learning a direct mapping from text to image,

we propose an alternative approach that constructs semantic

layout as an intermediate representation between text and

image. Semantic layout defines a structure of scene based

on object instances and provides fine-grained information of

the scene, such as the number of objects, object category, lo-

cation, size, shape, etc. (Figure 1). By introducing a mech-

anism that explicitly aligns the semantic structure of an im-

age to text, the proposed method can generate complicated

images that match complex text descriptions. In addition,

conditioning the image generation on semantic structure al-
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lows our model to generate semantically more meaningful

images that are easy to recognize and interpret.

Our model for hierarchical text-to-image synthesis con-

sists of two parts: the layout generator that constructs a

semantic label map from a text description, and the image

generator that converts the estimated layout to an image by

taking the text into account. Since learning a direct map-

ping from text to fine-grained semantic layout is still chal-

lenging, we further decompose the task into two manage-

able subtasks: we first estimate the bounding box layout of

an image using the box generator, and then refine the shape

of each object inside the box by the shape generator. The

generated layout is then used to guide the image generator

for pixel-level synthesis. The box generator, shape gener-

ator and image generator are implemented by independent

neural networks, and trained in parallel with corresponding

supervisions.

Generating semantic layout not only improves quality of

text-to-image synthesis, but also provides a number of po-

tential benefits. First, the semantic layout provides instance-

wise annotations on generated images, which can be di-

rectly exploited for automated scene parsing and object re-

trieval. Second, it offers an interactive interface for control-

ling image generation process; users can modify the seman-

tic layout to generate a desired image by removing/adding

objects, changing size and location of objects, etc.

The contributions of this paper are as follows:

• We propose a novel approach for synthesizing images

from complicated text descriptions. Our model explic-

itly constructs semantic layout from the text descrip-

tion, and guides image generation using the inferred

semantic layout.

• By conditioning image generation on explicit layout

prediction, our method is able to generate images that

are semantically meaningful and well-aligned with in-

put descriptions.

• We conduct extensive quantitative and qualitative

evaluations on challenging MS-COCO dataset, and

demonstrate substantial improvement on generation

quality over existing works.

The rest of the paper is organized as follows. We briefly

review related work in Section 2, and provide an overview

of the proposed approach in Section 3. Our model for layout

and image generation is introduced in Section 4 and 5, re-

spectively. We discuss the experimental results on the MS-

COCO dataset in Section 6.

2. Related Work

Generating images from text descriptions has recently

drawn a lot of attention from the research community. For-

mulating the task as a conditional image generation prob-

lem, various approaches have been proposed based on Vari-

ational Auto-Encoders (VAE) [14], auto-regressive mod-

els [22], optimization techniques [16], etc. Recently, ap-

proaches based on conditional Generative Adversarial Net-

work (GAN) [7] have shown promising results in text-to-

image synthesis [21, 23, 34, 6, 4]. Reed et al. [21] proposed

to learn both generator and discriminator conditioned on

text embedding. Zhang et al. [34] improved the image qual-

ity by increasing image resolution with a two-stage GAN.

Other approaches include improving conditional genera-

tion by augmenting text data with synthesized captions [6],

or adding conditions on class labels [4]. Although these

approaches have demonstrated impressive generation re-

sults on datasets of specific categories (e.g., birds [33] and

flowers [17]), the perceptual quality of generation tends to

substantially degrade on datasets with complicated images

(e.g., MS-COCO [13]). We investigate a way to improve

text-to-image synthesis on general images, by conditioning

generation on the inferred semantic layout.

The problem of generating images from pixel-wise se-

mantic labels has been explored recently [3, 10, 12, 22].

In these approaches, the task of image generation is for-

mulated as translating semantic labels to pixels. Isola et

al. [10] proposed a pixel-to-pixel translation network that

converts dense pixel-wise labels to an image, and Chen et

al. [3] proposed a cascaded refinement network that gen-

erates high-resolution output from dense semantic labels.

Karacan et al. [12] employed both dense layout and attribute

vectors for image generation using conditional GAN. No-

tably, Reed et al. [22] utilized sparse label maps like our

method. Unlike previous approaches that require ground-

truth layouts for generation, our method infers the seman-

tic layout, and thus is more generally applicable to various

generation tasks. Note that our main contribution is com-

plementary to these approaches, and we can integrate exist-

ing segmentation-to-pixel generation methods to generate

an image conditioned on a layout inferred by our method.

The idea of inferring scene structure for image gener-

ation is not new, as it has been explored by some recent

works in several domains. For example, Wang et al. [32]

proposed to infer a surface normal map as an intermediate

structure to generate indoor scene images, and Villegas et

al. [29] predicted human joints for future frame prediction.

The most relevant work to our method is Reed et al. [23],

which predicted local key-points of bird or human for text-

to-image synthesis. Contrary to the previous approaches

that predict such specific types of structure for image gen-

eration, our proposed method aims to predict semantic label

maps, which is a general representation of natural images.

3. Overview

The overall pipeline of the proposed framework is illus-

trated in Figure 2. Given a text description, our model pro-

gressively constructs a scene by refining semantic structure
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Figure 2. Overall pipeline of the proposed algorithm. Given a text embedding, our algorithm first generates a coarse layout of the image by

placing a set of object bounding boxes using the box generator (Section 4.1), and further refines the object shape inside each box using the

shape generator (Section 4.2). Combining outputs from the box and the shape generator leads to a semantic label map defining semantic

structure of the scene. Conditioned on the inferred semantic layout and the text, a pixel-wise image is finally generated by the image

generator (Section 5).

of an image using the following sequence of generators:

• Box generator takes a text embedding s as input,

and generates a coarse layout by composing object in-

stances in an image. The output of the box generator is

a set of bounding boxes B1:T = {B1, ..., BT }, where

each bounding box Bt defines the location, size and

category label of the t-th object (Section 4.1).

• Shape generator takes a set of bounding boxes gen-

erated from box generator, and predicts shapes of the

object inside the boxes. The output of the shape gen-

erator is a set of binary masks M1:T = {M1, ...,MT },

where each mask Mt defines the foreground shape of

the t-th object (Section 4.2).

• Image generator takes the semantic label map M ob-

tained by aggregating instance-wise masks, and the

text embedding as inputs, and generates an image by

translating a semantic layout to pixels matching the

text description (Section 5).

By conditioning the image generation process on the se-

mantic layouts that are explicitly inferred, our method is

able to generate images that preserve detailed object shapes

and therefore are easier to recognize semantic contents. In

our experiments, we show that the images generated by our

method are semantically more meaningful and well-aligned

with the input text, compared to ones generated by previous

approaches [21, 34] (Section 6).

4. Inferring Semantic Layout from Text

4.1. Bounding Box Generation

Given an input text embedding s, we first generate a

coarse layout of the image in the form of object bound-

ing boxes. We associate each bounding box Bt with a

class label to define which class of object to place and

where, which plays a critical role in determining the global

layout of the scene. Specifically, we denote the labeled

bounding box of the t-th object as Bt = (bt, lt), where

bt = [bt,x, bt,y, bt,w, bt,h] ∈ R
4 represents the location and

size of the bounding box, and lt ∈ {0, 1}L+1 is a one-hot

class label over L categories. We reserve the (L + 1)-th
class as a special indicator for the end-of-sequence.

The box generator Gbox defines a stochastic mapping

from the input text s to a set of T object bounding boxes

B1:T = {B1, ..., BT }:

B̂1:T ∼ Gbox(s). (1)

Model. We employ an auto-regressive decoder for the box

generator, by decomposing the conditional joint bounding

box probability as p(B1:T | s) =
∏T

t=1 p(Bt | B1:t−1, s),
where the conditionals are approximated by LSTM [9]. In

the generative process, we first sample a class label lt for the

t-th object and then generate the box coordinates bt condi-

tioned on lt, i.e., p(Bt|·) = p(bt, lt|·) = p(lt|·) p(bt|lt, ·).
The two conditionals are modeled by a Gaussian Mixture

Model (GMM) and a categorical distribution [8], respec-

tively:

p(lt | B1:t−1, s) = Softmax(et), (2)

p(bt | lt, B1:t−1, s) =

K∑

k=1

πt,k N
(
bt;µt,k,Σt,k

)
, (3)

where K is the number of mixture components. The soft-

max logit et in Eq.(2) and the parameters for the Gaussian

mixtures πt,k ∈ R,µt,k ∈ R
4 and Σt,k ∈ R

4×4 in Eq.(3)

are computed by the outputs from each LSTM step.

Training. We train the box generator by minimizing the

negative log-likelihood of ground-truth bounding boxes:

Lbox = −λl

1

T

T∑

t=1

l∗t log p(lt)− λb

1

T

T∑

t=1

log p(b∗

t ), (4)
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where T is the number of objects in an image, and λl, λb

are balancing hyper-parameters. b∗

t and l∗t are ground-truth

bounding box coordinates and label of the t-th object, re-

spectively, which are ordered based on their bounding box

locations from left to right. Note that we drop the condition-

ing in Eq. (4) for notational brevity. The hyper-parameters

are set to λl = 4, λb = 1 and K = 20 in our experiments.

At test time, we generate bounding boxes via ancestral

sampling of box coordinates and class label by Eq. (2) and

(3), respectively. We terminate the sampling when the sam-

pled class label corresponds to the termination indicator

(L + 1), thus the number of objects are determined adap-

tively based on the text.

4.2. Shape Generation

Given a set of bounding boxes obtained by the box gen-

erator, the shape generator predicts more detailed image

structure in the form of object masks. Specifically, for

each object bounding box Bt obtained by Eq. (1), we gen-

erate a binary mask Mt ∈ R
H×W that defines the shape

of the object inside the box. To this end, we first convert

the discrete bounding box outputs {Bt} to a binary tensor

Bt ∈ {0, 1}H×W×L, whose element is 1 if and only if it

is contained in the corresponding class-labeled box. Using

the notation M1:T = {M1, ...,MT }, we define the shape

generator Gmask as

M̂1:T = Gmask(B1:T , z1:T ), (5)

where zt ∼ N (0, I) is a random noise vector.

Generating an accurate object shape should meet two re-

quirements: (i) First, each instance-wise mask Mt should

match the location and class information of Bt, and be

recognizable as an individual instance (instance-wise con-

straints). (ii) Second, each object shape must be aligned

with its surrounding context (global constraints). To satisfy

both, we design the shape generator as a recurrent neural

network, which is trained with two conditional adversarial

losses as described below.

Model. We build the shape generator Gmask using a con-

volutional recurrent neural network [25], as illustrated in

Figure 2. At each step t, the model takes Bt through en-

coder CNN, and encodes information of all object instances

by bi-directional convolutional LSTM (Bi-convLSTM). On

top of the convLSTM output at t-th step, we add noise zt

by spatial tiling and concatenation, and generate a mask Mt

by forwarding it through a decoder CNN.

Training. Training of the shape generator is based on the

GAN framework [7], in which generator and discriminator

are alternately trained. To enforce both the global and the

instance-wise constraints discussed earlier, we employ two

conditional adversarial losses [15] with the instance-wise

discriminator Dinst and the global discriminator Dglobal.

First, we encourage each object mask to be compati-

ble with class and location information encoded by object

bounding box. We train an instance-wise discriminator Dinst

by optimizing the following instance-wise adversarial loss:

L
(t)
inst = E(Bt,Mt)

[
logDinst

(
Bt,Mt

)]
(6)

+ EBt,zt

[
log

(
1−Dinst

(
Bt, G

(t)
mask(B1:T , z1:T )

))]
,

where G
(t)
mask(B1:T , z1:T ) indicates the t-th output from

mask generator. The instance-wise loss is applied for each

of T instance-wise masks, and aggregated over all instances

as Linst = (1/T )
∑

t L
(t)
inst.

On the other hand, the global loss encourages all the

instance-wise masks form a globally coherent context.

To consider relation between different objects, we ag-

gregate them into a global mask1 Gglobal(B1:T , z1:T ) =∑
t G

(t)
mask(B1:t, z1:t), and compute an global adversarial

loss analogous to Eq. (6) as

Lglobal = E(B1:T ,M1:T )

[
logDglobal

(
Bglobal,Mglobal

)]
(7)

+ EB1:T ,z1:T

[
log

(
1−Dglobal

(
Bglobal, Gglobal(B1:T , z1:T )

))]
,

where Mglobal ∈ R
H×W is an aggregated mask obtained

by taking element-wise addition over M1:T , and Bglobal ∈
R

H×W×L is an aggregated bounding box tensor obtained

by taking element-wise maximum over B1:T .

Finally, we additionally impose a reconstruction loss Lrec

that encourages the predicted instance masks to be similar to

the ground-truths. We implement this idea using perceptual

loss [11, 3, 31, 2], which measures the distance of real and

fake images in the feature space of a pre-trained CNN by

Lrec =
∑

l

∥∥Φl(Gglobal)− Φl(Mglobal)
∥∥, (8)

where Φl is the feature extracted from the l-th layer of

a CNN. We use the VGG-19 network [26] pre-trained on

ImageNet [5] in our experiments. Since our input to the

pre-trained network is a binary mask, we replicate masks

to channel dimension and use the converted mask to com-

pute Eq. (8). We found that using the perceptual loss im-

proves the stability of GAN training and the quality of ob-

ject shapes, as discussed in [3, 31, 2].

Combining Eq.(6), (7) and (8), the overall training ob-

jective for the shape generator becomes

Lshape = λiLinst + λgLglobal + λrLrec, (9)

where λi, λg and λr are hyper-parameters that balance dif-

ferent losses, which are set to 1, 1 and 10 in the experiment,

respectively.

1Gglobal is computed by summation to model overlaps between objects.
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Figure 3. Architecture of the image generator. Conditioned on the text description and the semantic layout generated by the layout generator,

it generates an image that matches both inputs.

5. Synthesizing Images from Text and Layout

The outputs from the layout generator define location,

size, shape and class information of objects, which provide

semantic structure of a scene relevant to the text. Given

the semantic structure and text, the objective of the image

generator is to generate an image that conforms to both con-

ditions. To this end, we first aggregate binary object masks

M1:T to a semantic label map M ∈ {0, 1}H×W×L, such

that Mijk = 1 if and only if there exists an object of class

k whose mask Mt covers the pixel (i, j). Then, given the

semantic layout M and the text s, the image generator is

defined by

X̂ = Gimg(M, s, z), (10)

where z ∼ N (0, I) is a random noise. In the following, we

describe the network architecture and training procedures

of the image generator.

Model. Figure 3 illustrates the overall architecture of the

image generator. Our generator network is based on a con-

volutional encoder-decoder network [10] with several mod-

ifications. It first encodes the semantic layout M through

several down-sampling layers to construct a layout feature

A ∈ R
h×w×d. We consider that the layout feature en-

codes various context information of the input layout along

the channel dimension. To adaptively select a context rel-

evant to the text, we apply attention to the layout fea-

ture. Specifically, we compute a d-dimensional vector from

the text embedding, and spatially replicate it to construct

S ∈ R
h×w×d. Then we apply gating on the layout feature

by A
g = A ⊙ σ(S), where σ is the sigmoid nonlinear-

ity, and ⊙ denotes element-wise multiplication. To further

encode text information on background, we compute an-

other text embedding with separate fully-connected layers

and spatially replicate it to size h × w. The gated layout

feature A
g , the text embedding and noises are then com-

bined by concatenation along channel dimension, and sub-

sequently fed into several residual blocks and decoder to be

mapped to an image. We employ a cascaded network [3] for

the decoder, which takes the semantic layout M as an ad-

ditional input to every upsampling layer. We found that the

cascaded network enhances conditioning on layout struc-

ture and produces better object boundary.

For the discriminator network Dimg, we first concatenate

the generated image X and the semantic layout M. It is

fed through a series of down-sampling blocks, resulting in

a feature map of size h′ × w′. We concatenate it with a

spatially tiled text embedding, from which we compute a

decision score of the discriminator.

Training. Conditioned on both the semantic layout M

and the text embedding s extracted by [20], the image gen-

erator Gimg is jointly trained with the discriminator Dimg.

We define the objective function by Limg = λaLadv +
λrLrec, where

Ladv = E(M,s,X)

[
logDimg

(
M, s, X

)]
(11)

+ E(M,s),z

[
log

(
1−Dimg

(
M, s, Gimg(M, s, z)

))]
,

Lrec =
∑

l

‖Φl(Gimg(M, s, z))− Φl(X)‖, (12)

where X is a ground-truth image associated with semantic

layout M. As in the mask generator, we apply the same

perceptual loss Lrec, which is found to be effective. We set

the hyper-parameters λa = 1, λr = 10 in our experiment.

6. Experiments

6.1. Experimental Setup

Dataset. We use the MS-COCO dataset [13] to evalu-

ate our model. It contains 164,000 training images over

80 semantic classes, where each image is associated with

instance-wise annotations (i.e., object bounding boxes and

segmentation masks) and 5 text descriptions. The dataset

has complex scenes with many objects in a diverse context,

which makes generation very challenging. We use the of-

ficial train and validation splits from MS-COCO 2014 for

training and evaluating our model, respectively.

Evaluation metrics. We evaluate text-conditional image

generation performance using various metrics: Inception

score, caption generation, and human evaluation.
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Caption generation Inception

[24]Method Box Mask BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Reed et al. [21] - - 0.470 0.253 0.136 0.077 0.122 0.160 7.88 ± 0.07

StackGAN [34] - - 0.492 0.272 0.152 0.089 0.128 0.195 8.45 ± 0.03

Ours Pred. Pred. 0.541 0.332 0.199 0.122 0.154 0.367 11.46 ± 0.09

Ours (control experiment)
GT Pred. 0.556 0.353 0.219 0.139 0.162 0.400 11.94 ± 0.09

GT GT 0.573 0.373 0.239 0.156 0.169 0.440 12.40 ± 0.08

Real images (upper bound) - - 0.678 0.496 0.349 0.243 0.228 0.802 -

Table 1. Quantitative evaluation results. Two evaluation metrics based on caption generation and the Inception score are presented. The

second and third columns indicate types of bounding box or mask layout used in image generation, where “GT” indicates ground-truth and

“Pred.” indicates predicted one by our model. The last row presents the caption generation performance on real images, which corresponds

to upper-bound of caption generation metric. Higher is better in all columns.

Ground

Truth

(GT) A kid in wet-

suit on surfboard

in the ocean.

generated image and caption

StackGAN

256x256

a person flying a

kite on a beach .

Reed et al.

64x64

a man is flying a

kite in the sky

Ours

128x128

a man is surfing in

the ocean with a

surfboard .

(GT) a lady that is

on some skies on

some snow

generated image and caption

a man is walking

on a beach with a

surfboard .

a person is riding

a snowboard on a

snowy slope .

a man is skiing

down a hill with a

snowboard .

(GT) A young

man playing fris-

bee while people

watch.

generated image and caption

a man is standing

next to a cow .

a group of people

standing around a

field with kites .

a man is playing

with a frisbee in a

field .

(GT) A bus that

is sitting in the

street.

generated image and caption

a city street with a

traffic light and a

green light .

a large boat is in

the water near a

city .

a red and white bus

parked on a city

street .

Figure 4. Qualitative examples of generated images conditioned on text descriptions on the MS-COCO validation set, using our method

and baselines (StackGAN [34] and Reed et al. [21]). The input text and ground-truth image are shown in the first row. For each method,

we provide a reconstructed caption conditioned on the generated image.

Method
ratio of

ranking 1st
vs. Ours

StackGAN [34] 18.4 % 29.5 %

Reed et al. [21] 23.3 % 32.3 %

Ours 58.3 % -

Table 2. Human evaluation results.

Inception score — We compute the Inception score [24]

by applying pre-trained classifier on synthesized images

and investigating statistics of their score distributions. It

measures recognizability and diversity of generated images,

and has been known to be correlated with human percep-

tions on visual quality [18]. We use the Inception-v3 [27]

network pre-trained on ImageNet [5] for evaluation, and

measure the score for all validation images.

Caption generation — In addition to the Inception score,

assessing the performance of text-conditional image gener-

ation necessitates measuring the relevance of the generated

images to the input texts. To this end, we generate sentences

from the synthesized image and measure the similarity be-

tween input text and predicted sentence. The underlying

intuition is that if the generated image is relevant to input

text and its contents are recognizable, one should be able to

guess the original text from the synthesized image. We em-

ploy an image caption generator [30] trained on MS-COCO

to generate sentences, where one sentence is generated per

image by greedy decoding. We report three standard lan-

guage similarity metrics: BLEU [19], METEOR [1] and

CIDEr [28].

Human evaluation — Evaluation based on caption gen-

eration is beneficial for large-scale evaluation but may in-

troduce unintended bias by the caption generator. To verify

the effectiveness of caption-based evaluation, we conduct

human evaluation using Amazon Mechanical Turk. For

each text randomly selected from MS-COCO validation set,

we presented 5 images generated by different methods, and

asked users to rank the methods based on the relevance of

generated images to text. We collected results for 1000 sen-

tences, each of which is annotated by 5 users. We report

results based on the ratio of each method ranked as the best,

and one-to-one comparison between ours and the baselines.

6.2. Quantitative Analysis

We compare our method with two state-of-the-art ap-

proaches [21, 34] based on conditional GANs. Table 1 and

Table 2 summarizes the quantitative evaluation results.

Comparisons to other methods. We first present sys-

temic evaluation results based on Inception score and cap-
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(a) Predict box&mask (b) Use GT box, predict mask (c) Use GT box&mask

input caption real image boxes mask pixel boxes mask pixel boxes mask pixel

A group of people fly

kites into the air on a

large grassy field.

A tower towering

above a small city

under a blue sky.

a bench in the woods

covered in snow

this is two people ski-

ing down a hill

A rusted pink fire hy-

drant in the grass

A large cow walks over

a fox in the grass.

A laptop computer sit-

ting on a desk next to a

desktop monitor.

Figure 5. Image generation results of our method. Each column corresponds to generation results conditioned on (a) predicted box and

mask layouts, (b) ground-truth box and predicted mask layout and (c) ground-truth box and mask layouts. Classes are color-coded for

illustration purpose. Best viewed in color.

tion generation performance. The results are summarized

in Table 1. The proposed method substantially outperforms

existing approaches based on both evaluation metrics. In

terms of Inception score, our method outperforms the ex-

isting approaches with a substantial margin, presumably

because our method generates more recognizable objects.

Caption generation performance shows that captions gener-

ated from our synthesized images are more strongly corre-

lated with the input text than the baselines. This shows that

images generated by our method are better aligned with de-

scriptions and are easier to recognize semantic contents.

Table 2 summarizes comparison results based on human

evaluation. When users are asked to rank images based on

their relevance to input text, they choose images generated

by our method as the best in about 60% of all presented sen-

tences, which is substantially higher than baselines (about

20%). This is consistent with the caption generation results

in Table 1, in which our method substantially outperforms

the baselines while their performances are comparable.

Figure 4 illustrates qualitative comparisons. Due to ad-

versarial training, images generated by the other methods,

especially StackGAN [34], tend to be clear and exhibits

high-frequency details. However, it is difficult to recognize

contents from the images, since they often fail to predict

Input Text: A man is jumping and throwing a frisbee

Input Text: two skiers on a big snowy hill in the woods

Input Text: A man flying a kite at the beach while several people walk by

Figure 6. Multiple samples generated from a text description.

important semantic structure of object and scene. As a re-

sult, the reconstructed captions from the generated images

are usually not relevant to the input text. Compared to them,

our method generates much more recognizable and seman-

tically meaningful images by conditioning the generation

with the inferred semantic layout, and is able to reconstruct

descriptions that better align with the input sentences.

Ablative Analysis. To understand quality and the im-

pact of the predicted semantic layout, we conduct an ab-
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A zebra stands 

in the snow

A zebra stands 

in a forest

A zebra stands 

on grass 

covered field

A zebra 

stands in the 

desert

A zebra 

stands on 

dried filed

A giraffe

stands on grass 

covered field

A horse stands 

on grass 

covered field

An elephant

stands on grass 

covered field

A person

stands on grass 

covered field

A truck sits on 

grass covered 

field

A large herd of 

sheep grazing 

on grass 

covered field

Three sheep

grazing on 

grass covered 

field

Two sheep 

grazing on 

the grass 

covered field

A person 

riding on a 

horse on grass 

covered field

A person next 

to a horse on 

grass covered 

field

Figure 7. Generation results by manipulating captions. The manip-

ulated parts of texts are highlighted in bold characters, where the

types of manipulation is indicated by different colors. Blue: scene

context, Magenta: spatial location, Red: the number of objects,

Green: object category.

lation study by gradually replacing the bounding box and

mask layouts predicted by layout generator with the ground-

truths. Table 1 summarizes quantitative evaluation results.

As it shows, replacing the predicted layouts to ground-

truths leads with gradual performance improvements, which

shows predictions errors in both bounding box and mask

layouts.

6.3. Qualitative Analysis

Figure 5 shows qualitative results of our method. For

each text, we present the generated images alongside the

predicted semantic layouts. As in the previous section, we

also present our results conditioned on ground-truth layouts.

As it shows, our method generates reasonable semantic lay-

out and image matching the input text; it generates bound-

ing boxes corresponding to fine-grained scene structure im-

plied in texts (i.e. object categories, the number of objects),

and object masks capturing class-specific visual attributes

as well as relation to other objects. Given the inferred lay-

outs, our image generator produces correct object appear-

ances and background compatible with text. Replacing the

predicted layouts with ground-truths makes the generated

images to have a similar context to original images.

Diversity of samples. To assess the diversity in the gener-

ation, we sample multiple images while fixing the input text.

Figure 6 illustrates the example images generated by our

method. Our method generates diverse semantic structures

given the same text description, while preserving semantic

details such as the number of objects and object categories.

B
o

x
 L

ay
o

u
t

G
en

er
at

ed
 I

m
ag

e

Input text: a group of people standing in the snow and holding skis

(a) Generation results by adding new objects.
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x
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o
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Input Text: A baseball player holding a bat over his head

(b) Generation results by changing spatial configuration of objects.

Figure 8. Examples of controllable image generation.

Text-conditional generation. To see how our model in-

corporates text description in generation process, we gener-

ate images while modifying parts of the descriptions. Fig-

ure 7 illustrates the example results. When we change the

context of descriptions such as object class, number of ob-

jects, spatial composition of objects and background pat-

terns, our method correctly adapts semantic structure and

images based on the modified part of the text.

Controllable image generation. We demonstrate con-

trollable image generation by modifying bounding box lay-

out. Figure 8 illustrates the example results. Our method

updates object shapes and context based on the modified

semantic layout (e.g. adding new objects, changing spatial

configuration of objects) and generates reasonable images.

7. Conclusion

We proposed an approach for text-to-image synthesis

which explicitly infers and exploits a semantic layout as an

intermediate representation from text to image. Our model

hierarchically constructs a semantic layout in a coarse-to-

fine manner by a series of generators. By conditioning im-

age generation on explicit layout prediction, our method

generates complicated images that preserve semantic details

and highly relevant to the text description. We also showed

that the predicted layout can be used to control generation

process. We believe that end-to-end training of layout and

image generation would be interesting future work.
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D. Belov, and N. Freitas. Parallel multiscale autoregressive

density estimation. In ICML, 2017. 2

[23] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and

H. Lee. Learning what and where to draw. In NIPS, 2016. 1,

2

[24] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved Techniques for Training GANs.

In NIPS, 2016. 6

[25] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-

c. Woo. Convolutional LSTM Network: A Machine Learn-

ing Approach for Precipitation Nowcasting. In NIPS, 2015.

4

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

4

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, 2016. 6

[28] R. Vedantam, C. L. Zitnick, and D. Parikh. CIDEr:

Consensus-based Image Description Evaluation. In CVPR,

2015. 6

[29] R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin, and H. Lee.

Learning to generate long-term future via hierarchical pre-

diction. In ICML, 2017. 2

[30] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In CVPR, 2015. 6

[31] C. Wang, C. Xu, C. Wang, and D. Too. Perceptual adversarial

networks for image-to-image transformation. arXiv preprint

arXiv:1706.09138, 2017. 4

[32] X. Wang and A. Gupta. Generative image modeling using

style and structure adversarial networks. In ECCV, 2016. 2

[33] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010. 1, 2

[34] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and

D. Metaxas. StackGAN: Text to Photo-realistic Image Syn-

thesis with Stacked Generative Adversarial Networks. In

ICCV, 2017. 1, 2, 3, 6, 7

7994


