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Abstract

Bundle adjustment is a nonlinear refinement method for

camera poses and 3D structure requiring sufficiently good

initialization. In recent years, it was experimentally ob-

served that useful minima can be reached even from arbi-

trary initialization for affine bundle adjustment problems

(and fixed-rank matrix factorization instances in general).

The key success factor lies in the use of the variable projec-

tion (VarPro) method, which is known to have a wide basin

of convergence for such problems. In this paper, we propose

the Pseudo Object Space Error (pOSE), which is an objec-

tive with cameras represented as a hybrid between the affine

and projective models. This formulation allows us to obtain

3D reconstructions that are close to the true projective re-

constructions while retaining a bilinear problem structure

suitable for the VarPro method. Experimental results show

that using pOSE has a high success rate to yield faithful 3D

reconstructions from random initializations, taking one step

towards initialization-free structure from motion.

1. Introduction

Structure-from-motion (SfM, visual SLAM or multi-

view 3D reconstruction) aims to generate 3D models and

camera poses from multiple overlapping images. A com-

plete SfM framework usually consists of several stages,

starting from feature extraction and matching, and ranging

to a final bundle adjustment step aiming to explain all image

observations and correspondences by finding the most prob-

able configuration of 3D structure and camera parameters.

The first stages of a typical SfM pipeline (feature extraction,

robust matching and relative pose verification) are relatively

well understood, and different SfM toolkits and frameworks

vary surprisingly little in their respective implementations

of these initial steps. Likewise, the final bundle adjustment

is generally understood as an instance of a nonlinear least

squares problem and implemented accordingly using e.g.

the Levenberg-Marquardt (LM) algorithm [26, 31].

It is also well understood that bundle adjustment requires

a fairly good initialization for the 3D structure and camera

Figure 1. Reconstruction of Vercingetorix [39] from arbitrary ini-

tial camera and point parameters.

matrices in order to determine a good (local) minimum. The

various proposals in the literature for structure-from-motion

computation (e.g. [46, 10, 34, 54, 51, 44] among many oth-

ers) are very diverse in how this initial estimate is obtained.

Since no gold-standard method for SfM computation has

emerged over several decades of research in this field, we

conjecture that a) SfM is a hard problem and b) the sources

of its difficulty are not well understood. By looking at a

typical bundle adjustment objective

min
{Ri},{ti},{x̃j}

Ri∈SO(3)

∑

(i,j)∈Ω

ρ
(

‖π (Ki[Ri | ti]x̃j)−mi,j‖22
)

(1)

(where ρ is a robust kernel, π([x, y, z]⊤) := [x/z, y/z]⊤ is

the perspective projection, {Ki[Ri | ti] = Pi} are the camera

matrices, {xj}/{x̃j} are the inhomogeneous and homoge-

nous 3D points, mi,j ∈ R
2 is the 2D observation of point j

in image i respectively and Ω represents the set of visible

projections), we conclude that this objective function has

several sources of nonlinearities:

1. Each rotation matrix Ri is constrained to SO(3), which is

a non-convex manifold of orthogonal matrices with pos-

itive determinants. In this work, we avoid this difficulty

by using a stratified approach that first operates in the

projective space.

2. The projection function π is non-convex. In general, the

(convex) object-space error is a good surrogate for the

image-based reprojection error, which we will build on

in this work.

11876



3. The robust cost function ρ may (and in almost all cases

will) introduce a large number of local minima. If one

has to rely strictly on robustified costs (because input data

cannot be made sufficiently clean), there is not much one

can do from an optimization perspective.

4. There is a bilinear interaction Rixj (or more generally

Pix̃j) between camera matrices and 3D points. This

property is at the core of any image formation model

since 3D points in world coordinates have to be projected

to the respective camera space. The present work mainly

aims to evaluate the difficulty induced by this bilinearity.

Thus, one of the answers we try to provide is the follow-

ing: how difficult is (non-robust) SfM as an optimization

problem? In other words: how wide is the basin of conver-

gence of a modified projective bundle adjustment method

started from arbitrary initial values for camera matrices and

3D structure? Since the basin of convergence of any robus-

tified cost function will be inherently narrow, we focus our

attention to the non-robust setting (and leave investigations

into the robust setting for future work).

It is known that applying bundle adjustment for perspec-

tive (pinhole) camera models directly from arbitrary start-

ing points is futile. At the same time it is known that the

affine camera model is non-problematic for bundle adjust-

ment (provided the right optimization approach is used),

even without a sensible initialization of poses and 3D struc-

ture. This observation is leveraged in [23], where it is pro-

posed to solve SfM by a sequence of bundle adjustment

tasks with increasing difficulty: the first bundle adjustment

round solves SfM for the affine camera model, which is fol-

lowed by a projective bundle adjustment stage.

In this work, we propose to replace the affine bundle

objective by a variant of the object-space error—which we

call the “pseudo object-space error” (pOSE, see §3)—better

suited for perspective camera models. Empirically, pOSE

retains the wide basin of convergence and can therefore be

used to initialize our SfM pipeline (see §4) from random ini-

tial camera matrices. This also implies that the major reason

for SfM being a hard problem is getting the data association

step right in order to remove false positive correspondences

(further discussed in §5). We upgrade the initial projective

reconstruction to the metric frame by employing a simpli-

fied self-calibration step (which assumes that at least ap-

proximate camera intrinsics are given).

Figure 1 shows an illustrative outcome of our method

(i.e. the 3D point cloud and respective camera poses),

which was obtained from random initialization. Figure 2

demonstrates that our pseudo object-space error (which is

parametrized by a blending weight η ∈ [0, 1]) is able to cap-

ture the perspective structure of the pinhole camera model

(η ≈ 0) much better than the affine model (η ≫ 0).

2. Related work

In this section, we first review some work in the literature

that forms the basis of this paper.

Factorization approaches in structure-from-motion It

was Tomasi and Kanade [52] who first introduced the fac-

torization approach in structure-from-motion. Their very

first work showed that, given fully visible and outlier free

image observations under the orthographic camera model,

it is possible to recover both camera poses and 3D structure

using the singular value decomposition (SVD). Their work

was later generalized to other affine camera models such as

the weak perspective and paraperspective models. Sturm

and Triggs [49] proposed projective factorization methods

in which projective depths are added as new variables and

estimated in an alternating fashion, and [38] presents a vari-

ant of the Sturm/Triggs method guaranteed to converge. All

these algorithms require every 3D point to be visible in each

image, but they can be generalized to problems with miss-

ing data by replacing the SVD step in joint estimation of

poses and 3D points with iterative matrix factorization with

a priori rank [6, 14, 36, 20].

Note that projective factorization by itself an ill-posed

problem with degenerate solutions (by collapsing camera

matrices or 3D structure to zero) and therefore requires ad-

dition of extra constraints (usually on the projective depths)

to yield physically meaningful reconstructions. Recently,

Nasihatkon et al. [35] reviewed various options how to

choose these constraints in order to avoid such degener-

ate solutions. It is revealed that some conditions proposed

in the literature only lead to necessary, but not sufficient

conditions for guaranteeing a valid reconstruction, and the

authors propose sufficient and necessary conditions on the

projective depths to ensure non-degenerate solutions. These

conditions are named “generalized projective reconstruc-

tion theorem” or GPRT for short. Unfortunately the seem-

ingly strong theoretical insight is limited to fully visible and

noise-free (ideal) image observations.

Projective factorization methods are generally global

methods working in a non-incremental fashion, simultane-

ously integrating all image observations. Nevertheless, sev-

eral incremental methods for projective reconstruction ex-

ist, which are designed to handle outliers in the image points

as well as missing observations (e.g. [11, 19, 30, 5, 32, 29]).

A fundamental shortcoming of incremental, non-global

SfM methods is the intrinsic vulnerability to successive ac-

cumulation of drift.

Variable projection (VarPro) VarPro dates back to

Golub and Pereyra’s work in 1973 [13]. In summary,

VarPro applies a second order optimizer such as the Gauss-

Newton on a reduced objective, after optimally eliminating

one set of the unknowns. It is especially applicable to fac-

torization problems, since in these problem instances one of
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(a) Ground truth (b) η = 0.5 (c) η = 0.1 (d) η = 0.01

Figure 2. Metric reconstructions of Fountain-P11 obtained by solving pOSE illustrated in §3.

the involved unknown factors can be eliminated in closed

form. It has been shown repeatedly [36, 14, 37, 20, 22]

that VarPro applied on geometric vision problems has much

higher probability of reaching a global optimum (termed

success rate in this paper) than using a second order method

on the full problem (joint optimization, i.e. without elimi-

nating one set of unknowns). In [22], it is argued that joint

optimization encounters numerical problems in temporarily

ill-conditioned solutions and begins to stall. VarPro, which

also turns out to be closely connected to joint optimization,

has generally no trouble improving the current solution.

To our knowledge, this is the first work aiming for full

3D reconstruction by directly leveraging non-linear refine-

ment without relying on carefully estimated initial struc-

ture and motion. Strelow [48] used nonlinear-VarPro, but

used noisy ground truth (i.e. not arbitrary) camera matri-

ces and points as initialization. Zheng et al. [58] incorpo-

rated metric constraints but their work was limited to weak-

perspective camera models and was tested using only the

inlier-only dinosaur dataset. The work of Hong et al. [23] is

closest to this work: they extended VarPro for affine bundle

adjustment to projective bundle adjustment, but did not pro-

ceed to the metric reconstruction stage. The utilized image

point tracks were guaranteed to be clean and free from out-

liers. Also, their method is relatively slow as it did not in-

corporate the recently identified equivalence between non-

linear VarPro and the Schur complement [22].

3. Pseudo Object Space Error (pOSE)

We now propose the pseudo object-space error (pOSE),

which is a surrogate objective for the bundle adjustment cost

that keeps the bilinear factorization structure in its residual.

In short, pOSE is a convex combination of the object space

error (ℓOSE) and the affine projection error (ℓAffine), where

ℓOSE :=
∑

(i,j)∈Ω

∥

∥Pi,1:2x̃j − (p⊤
i,3x̃j)mi,j

∥

∥

2

2
(2)

ℓAffine :=
∑

(i,j)∈Ω

‖Pi,1:2x̃j −mi,j‖22 (3)

ℓpOSE := (1− η)ℓOSE + ηℓAffine (4)

with η ∈ [0, 1]. We use the notation Pi,1:2 ∈ R
2×4 for

the first two rows of the camera matrix Pi ∈ R
3×4, and

pi,3 ∈ R
4 for the last row of Pi. Note that the last element

of each homogeneous 3D point x̃j ∈ R
4 is fixed to 1 when

minimizing (4).
The main intuition behind ℓpOSE is that ℓOSE, which most

closely resembles the bundle adjustment objective (1) and

has the desired bilinear problem structure, has an inevitable

degenerate global optimum, and therefore the added bilin-

ear ℓAffine term is a natural choice to prevent this degeneracy.

Calling ℓOSE an object space error is a slight misnomer,

since it penalizes squared point-line distances parallel to the

image plane (instead of the shortest point-line distances per-

pendicular to the line). We nevertheless keep the terminol-

ogy of object space error based on the fact, that the error is

induced by distances in 3D object space. Further, the proper

object space error [28] is more suited to model spherical

projections rather than projection onto the image plane.

Note that ℓpOSE can be written as

ℓpOSE =
∑

(i,j)∈Ω

∥

∥

∥

∥

√
1− η

(

Pi,1:2x̃j − (p⊤
i,3x̃j)mi,j

)

√
η (Pi,1:2x̃j −mi,j)

∥

∥

∥

∥

2

2

(5)

which immediately reveals, that ℓpOSE is an instance of bi-

linear factorization problems (see [21] for details). It is also

evident that the non-zero pattern of the Hessian (or Gauss-

Newton approximated Hessian) is the same as for ℓOSE.

3.1. Properties of ℓpOSE

ℓpOSE (likely) avoids degenerate solutions By expanding

and rearranging terms, ℓpOSE can be written as

ℓpOSE =
∑

(i,j)∈Ω

∥

∥Pi,1:2x̃j −
(

(1− η)p⊤
i,3x̃j + η

)

mi,j

∥

∥

2

2

+ η(1− η)
∑

(i,j)∈Ω

‖mi,j‖2
(

p⊤
i,3x̃j − 1

)2
. (6)

The first term is essentially an object space error (measured

parallel to the image plane) between the 3D point (trans-

formed into camera space) and a distorted line-of-sight,
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Figure 3. Contour plots of ℓpOSE, (1− η)(x− uz)2 + η(x− u)2 (a-c), and ℓrOSE, (1− η)(x− uz)2 + η(z − 1)2 (d), for 1D cameras. u

is set to 0.2. For better visibility we actually plot the square root of the function value.

which is the convex combination of pinhole and affine cam-

era rays. The second term favours solutions (as long as

‖mi,j‖ is non-zero) that have visible projective depths close

to one. Consequently, ℓpOSE can be understood as regular-

ized and modified object space error.

Since ℓpOSE intrinsically prefers solutions with positive

projective depths (at least for observed image points), it is

not expected to produce degenerate solutions for general in-

put data (although it is not guaranteed to avoid degeneracies

for all possible inputs, e.g. set mi,j to 0 for all i and j).

VarPro vs joint optimization In [22] it was argued that

for affine factorization-based SfM problems, the VarPro

method and joint optimization (i.e. using the LM algorithm

jointly w.r.t Pi and x̃j) behave very different: joint opti-

mization suffers from “stalling” behaviour whenever affine

camera rays are close to being parallel (since a small update

of such camera parameters yield large updates for the 3D

points, which is prohibited by Levenberg damping). VarPro

avoids this shortcoming by allowing 3D points to freely fol-

low the updates of camera parameters in all cases.

The situation for ℓpOSE is similar to the affine setting, but

one has stronger conditions for camera rays to be parallel:

in the affine setting, the parallelity of optical axis is suffi-

cient, whereas in the projective scenario the 3 × 3 subma-

trices need to (approximately) satisfy Pi,1:3,1:3 ∝ Pj,1:3,1:3.

Hence, one might expect that joint optimization in the pro-

jective setting leads to the stalling behaviour less often than

in the affine setting, but empirically joint optimization is

still clearly inferior to VarPro for our tested choices of η
(see Figure 4). Since the success rate of VarPro increases

for larger values of η, the selected value for η represents a

tradeoff between success rate and the amount of geometric

distortion. In view of Figures 2 and 4 we chose η = 0.05 as

the “sweet spot” in our experiments.

Alternative regularizations Degenerate solutions for

{Pi} and {x̃j} can be avoided by enforcing Pix̃j ≥ δ
(for all (i, j) ∈ Ω) for some δ > 0. Adding these con-

straint to ℓOSE makes the problem non-smooth and much

more difficult to solve. Adding a barrier function such as

−α
∑

(i,j)∈Ω log (Pix̃j − δ) for an α > 0 would require ei-

ther using joint optimization or nonlinear VarPro. As men-

tioned above, joint optimization frequently leads to stalling

behaviour, and nonlinear VarPro has been demonstrated to

have a significantly smaller convergence basin [23]. As a

result, we rule out adding inequality constraints on the pro-

jective depths and respective penalizers or barrier functions.

Instead of defining the target objective as a convex com-

bination of an object-space error and an affine factorization

error, one can consider directly a regularized object-space

error ℓrOSE by combining ℓOSE with a term penalizing visi-

ble projective depths,

ℓrOSE = (1− η)
∑

(i,j)∈Ω

∥

∥P
⊤
i,1:2x̃j − (p⊤

i,3x̃j)mi,j

∥

∥

2

2

+ η
∑

(i,j)∈Ω

(p⊤
i,3x̃j − 1)2. (7)

Note that ℓrOSE essentially constrains the projective depths

of all observed image points, not just for a subset as required

by the GPRT (recall §2). If there is a perfect solution with

zero object-space error (thus P
⊤
i,1:2x̃j = (p⊤

i,3x̃j)mi,j for

all (i, j) ∈ Ω), then ℓpOSE and ℓrOSE reduce to

ℓpOSE = η
∑

(i,j)∈Ω

‖Pi,1:2x̃j −mi,j‖22

= η
∑

(i,j)∈Ω

‖mi,j‖22
(

p⊤
i,3x̃j − 1

)2
(8)

ℓrOSE = η
∑

(i,j)∈Ω

(p⊤
i,3x̃j − 1)2. (9)

Since observations mi,j are on the image plane (with depth

1), we have for regular, not extremely wide field-of-view

cameras ‖mi,j‖ ≤ 1, and ℓpOSE perturbs the object-space

error ℓOSE less than ℓrOSE in this case. Assessing the pros

and cons of ℓrOSE over ℓpOSE is a subject of future work.

Inspired by one set of sufficient conditions for projective

reconstruction [35], we introduce ℓGPRT which penalizes

projective depths in analogy to ℓrOSE, but only for indices

(i, j) being on a step-like matrix on top of visible elements

(see [21]). This choice essentially fixes the projective frame

of the reconstruction.
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Figure 4. Comparison of VarPro and joint optimization-based al-

gorithms tested on the small Dino sequence in Table 1. For each η,

we report the fraction of runs in which each algorithm yields the

best seen minimum from random initialization. (See [21] for the

results on other datasets.)

Alternative objectives Our choice of using a perturbed

object-space error is largely motivated by the bilinear nature

of the cost function and the availability of efficient (VarPro)

algorithms. As mentioned above, the classical bundle ad-

justment objective has a very narrow basin of convergence

for reaching a good solution [23]. For similar reasons, we

ruled out convex objectives such as ℓ1 and Huber cost func-

tions (e.g. [45, 9, 57]).

4. Stratified bundle adjustment

We now illustrate our multistage pipeline for

initialization-free bundle adjustment. The key idea is

simple; given a set of point tracks and randomly sampled

camera and point parameters, seek for an initial solution

(camera poses and 3D structure) by solving the pOSE

optimization problem (see §3), refine it in the projective

frame, upgrade the solution to metric followed by a final

metric refinement step. These steps are also summarized

in Algorithm 1.

pOSE optimization As shown in §3, pOSE is designed

to closely resemble a projective factorization cost as well

as keeping the objective bilinear. This is because bilinear

problems have been empirically shown to have wide basin

of convergence for the variable projection (VarPro) family

of algorithms [8, 36, 14, 20, 22].

We use Ruhe and Wedin algorithm 2 (RW2) [25, 43],

which is a variant of the VarPro algorithm that uses an ap-

proximated Jacobian, and is therefore easier to implement

than Ruhe and Wedin algorithm 1 (RW1) [43], which uses

the full Gauss-Newton approximation of the Hessian. This

makes RW2 easier to implement than RW1 and also algo-

rithmically very similar (but not equal) to joint optimization

with the Schur complement trick [22].

Recall that incorporating robustness at this stage would

a) introduce many local minima and b) destroy the bilinear

structure convenient for VarPro. We attempt to mitigate this

issue by generating mostly-inlier tracks using the approach

illustrated in §5.

Algorithm 1 Our initialization-free BA pipeline

Input: a set of geometrically-verified point tracks

1. Solve the L2-norm pOSE problem (see §3) from arbi-

trarily sampled cameras and points using VarPro.

2. Refine the solution using a robustified projective BA

algorithm incorporating nonlinear VarPro, and discard

points with large reprojection errors.

3. Upgrade the above solution to metric and throw away

points which do not satisfy cheirality constraints.

4. Refine the solution in the metric space.

Output: metric camera poses and 3D reconstruction

Projective refinement Once cameras and points are ob-

tained by optimizing ℓpOSE, they are refined by minimizing

the gold standard objective [16]

∑

(i,j)∈Ω

ρ





∥

∥

∥

∥

∥

Pi,1:2x̃j

p⊤
i,3x̃j

−mi,j

∥

∥

∥

∥

∥

2

2



 (10)

where ρ : R → R is an isotropic robust loss function. This

work uses the Cauchy kernel (see [21]). Although (10)

can be solved by jointly minimizing over the cameras

and points, we implement Strelow’s nonlinear VarPro [48],

which is an extension of standard VarPro to nonseparable

problems (i.e. nonlinear in both sets of variables), and it

is demonstrated to have a slightly wider basin of conver-

gence than joint optimization [23]. Furthermore, it has been

shown [22] that the iteration complexity of VarPro is ap-

proximately equal to that of joint optimization with embed-

ded point iterations [24], which simply amounts to perform-

ing additional triangulations after each joint update of cam-

eras and 3D points.

The optimization is carried out in homogeneous coor-

dinates incorporating the Riemannian manifold optimiza-

tion [1, 23] (algorithmically equivalent to local parameter-

ization in [16, 2]). After the refinement, we discard points

having a maximum reprojection error greater than 2 pixels.

Metric upgrade The resulting refined projective camera

matrices need to be upgraded to a metric frame to satisfy the

SE (3) (group of 3D Euclidean isometries preserving orien-

tation) manifold constraints (after taking out the calibration

matrices). This autocalibration step is a well-studied topic

in 3D computer vision [15, 3, 17, 18, 41, 40, 7, 12]. It

is usually carried out by first finding an ambiguity matrix

H ∈ R
4×4 which transforms the stack of camera matrices

to most closely satisfy the SE (3) constraint followed by the

actual manifold projection. Our method is based on [40],

with a slight change in the minimized objective to incorpo-

rate VarPro once more. The aim is to find H that satisfies

PiH = Pi

[

A 0

c⊤ 1

]

≈ Ki

[

Ri ti
]

∀ 1 ≤ i ≤ N (11)
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Algorithm 2 Generating point tracks from images

Input: images and camera intrinsics

1. Obtain pairwise feature matches using SIFT.

2. Verify matches using two view geometric constraints.

3. Verify matches using triplet filtering.

4. Convert pairwise matches to optimal point tracks by

using Olsson and Enqvist’s algorithm [39].

5. Mask out track segments that are not consistent with

the estimated epipolar geometries.

Output: point tracks

where N represents the total number of images, Ki ∈ R
3×3

is the upper-triangular calibration matrix of camera i,
[Ri|ti] ∈ SE (3) represents i-th camera’s pose and

[c⊤ 1]⊤ ∈ R
4 represents the plane at infinity. The last

column of H can be set to [0⊤1]⊤ as it only accounts for

global translation and scaling. Since we assume camera in-

trinsics are known a priori, we utilize the normalized quan-

tity P̃i := K
−1
i Pi. By defining H̃ ∈ R

3×4 to comprise the

three left-most columns of H, we obtain

P̃iH̃H̃
⊤
P̃
⊤
i = P̃i

[

I c

c⊤ ‖c‖2
]

P̃
⊤
i ≃ RiR

⊤
i = I. (12)

Various constraints [41, 40] have been proposed to find c

that most closely satisfies (12). Here, we minimize

min
c,{αi}

F
∑

i=1

∥

∥αiP̃iH̃(c)H̃(c)
⊤
P̃i − I

∥

∥

2

F
, (13)

where {αi} is the set of individual camera scales and ‖·‖F
is the Frobenius norm. Since (13) is linear in {αi}, we can

use VarPro [13] to solve this efficiently.

Projecting the upgraded solution to the SE(3) manifold

is carried out by projecting the rotation part of each cam-

era to SO(3) using Arun et al.’s method [4], followed by

flipping all signs of camera translations and 3D points de-

pending on the global cheirality of the reconstructed scene.

Any 3D point behind any observing camera is discarded.

Metric refinement The above metric upgrade procedure

usually increases the total reprojection error as metric cam-

eras have lower degrees of freedom than projective ones.

Hence, an additional step is required to refine camera poses

and 3D structure, which is achieved by minimizing the gold

standard reprojection error (1). Cameras and points are

jointly minimized since there is no visible advantage in em-

ploying nonlinear VarPro. Rotations are formulated using

the axis-angle representation and Rodrigues’ formula [42].

5. Generating point tracks from matches

Our stratified BA pipeline in §4 requires point tracks con-

sisting mostly of inliers. This is due to the limitation that the

Image 1 Image 2 Image 3 Image 4

Figure 5. An illustration of a potential issue arising when generat-

ing point tracks. The solid blue and grey lines represent 2-view

geometrically-verified matches. Naively joining these matches

leads to two features participating in image 2. Hence, a match

(solid grey) is discarded according to some predefined rule or al-

gorithm. Consequently, this induces a new match between image

2 and 3 (orange). We propose that these implicitly arising matches

should be verified to satisfy existing 2-view geometric constraints.

pOSE objective (4) (or any other reasonable objective) can-

not be robustified without sacrificing the convergence basin

of VarPro. Hence, the goal of the method described in this

section is to generate as clean tracks as possible before feed-

ing them into our BA pipeline. Unfortunately, this is a non-

trivial problem on its own for two reasons. First, the es-

timated epipolar geometries may be grossly incorrect due

to perceptual aliasing (e.g. [56]). Second, naively connect-

ing matches across multiple images may form inconsistent

tracks in which more than one feature from the same im-

age could participate (c.f. Figure 5). Solving these issues

is still an active research problem in computer vision (see

e.g. [33, 53] for recent developments). Our approach fo-

cuses on scalability and is summarized in Algorithm 2.

Two view geometric verification The first step is a stan-

dard 2-view geometric verification step to remove the

“easy” outliers, and we additionally refine the essential ma-

trices using the surviving inlier matches. We set this thresh-

old to be 1.5 px for 2MP images and scale this threshold

linearly with the image size.

Triplet filtering Outliers arising from repetitive struc-

tures such as windows may remain and may lead to grossly

incorrect essential matrices. Many of these false posi-

tive relative poses can be detected by checking the self-

consistency of relative rotations for image triplets [56, 34,

51]. We require the chained relative rotations to have at

most a 5◦ residual angle. We refrain from including larger

loops [56, 10] due to their high computation cost.

Our method iteratively discards the currently most vio-

lating image pair (i.e. the one participating in the largest

number of inconsistent triplets), until all triplets are consis-

tent. Thus, our triplet filtering method is more aggressive in

removing image pairs than [34, 51] (which only require an

image pair to participate in at least one consistent triplet).

Point tracking algorithm After matches are geometri-

cally verified using two-view and three-view constraints,

we employ Olsson and Enqvist’s algorithm [39] to generate

algebraically-optimal consistent tracks. In summary, when

connecting pairwise matches leads to two or more features
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from the same image being joined (e.g. Figure 5), this algo-

rithm selects one based on a track reliability criterion mea-

sured by the minimum number of feature matches.

Revisiting the geometric constraints As shown in Fig-

ure 5, generated point tracks may induce new matches in-

directly, depending on which matches pass the local verifi-

cation steps. It is possible that the induced feature matches

do not satisfy the respective two-view epipolar and cheiral-

ity constraints. We propose to revisit each of these newly

created matches and verify that they satisfy all desired con-

straints. If they do not, then we treat these matches as miss-

ing data. This is only a partial solution as multiple real point

tracks may still be incorrectly merged into a single point

track. Ultimately, one should incorporate geometric con-

straints in measuring the point track reliability.

6. Experimental results

Our experiments have been designed to

1. empirically observe the size of the convergence basin

of our pOSE-based stratified BA strategy (proposed

in §4) on point tracks with mostly inliers,

2. check whether the GPRT constraints [35] are still suf-

ficient conditions for solving the object space error on

sequences with noise and missing data, and

3. whether our pOSE-based BA pipeline equipped with

the point track generation algorithm from §5 can accu-

rately solve real SfM problems.

To answer these questions, we carried out two experiments

on small to medium-sized real SfM sequences. For conve-

nience, we will use the abbreviation pOSE when referring

to our pOSE-based stratified BA pipeline, and GPRT when

referring to the same pipeline but with the first stage objec-

tive replaced by the object space error (2) with the GPRT

constraints (using a step-like matrix, c.f. §3).

Implementation We conducted experiments on a ma-

chine with Intel Core i7-7800X CPU (6 cores) and

32GB RAM. For feature detection and matching, we

Fill pOSE GPRT
Seq. # img # pts (%) SRI t̄(s) SRI t̄(s)

House 10 672 42.4 100 4.2 35 5.8
Corridor 11 737 49.8 100 1.7 15 9.0
Dino (S) 36 319 23.1 96 3.0 0 10.1
Dino (L) 36 4983 9.2 98 6.9 0 32.3
Wilshire 190 411 39.3 100 38.1 0 272.2
Blue bear 196 2480 19.3 80 70.7 0 337.7

Table 1. A list of small classic inlier point tracks used and corre-

sponding results. t̄ denotes mean runtime. The pOSE-based BA

pipeline has large success rates for these inlier tracks (SRIs) while

the GPRT-based pipeline fails on many of these. Fill defines the

proportion of visible projections over all possible projections.

Seq. Pipeline pOSE GPRT Theia COLMAP

Fountain-P11 2.8 2.8–4.5 2.4 2.8
Entry-P10 7.1 6.4–7.0 6.0 6.3
Herz-Jesu-P8 3.4–3.9 3.8–4.5 3.1 4.1
Herz-Jesu-P25 5.2 5.1 5.1 5.2
Castle-P19 24.5–41.1 N/A 25.3 24.9
Castle-P30 21.7–26.0 N/A 21.7 23.2

Table 2. Accuracy comparison of our BA strategy using pOSE

against other pipelines on Strecha et al.’s benchmark datasets [47].

The castles are more difficult due to repetitive structures. The re-

ported values are the mean errors in camera positions (in mm).

N/A means no successful run. Theia refers to its global SfM

pipeline, and its results are referenced from [50].

used COLMAP [44] to generate 2-view verified pairwise

matches via exhaustive matching. COLMAP was modified

to refine and output corresponding essential matrices. All

other stages were either implemented in MATLAB or using

the Google Ceres Solver [2] library patched to enable the

VarPro method [13] according to the guidelines in [22].

Initialization Since VarPro optimally eliminates the 3D

structure from the pOSE residual (4), we only really need

to sample the camera parameters (i.e. {Pi}). Other previous

work in matrix factorization [6, 8, 36, 20] simply sampled

these from an isotropic Gaussian distribution with mean 0

and variance I in the pixel coordinates. We employ a sim-

ilar sampling method but set the the mean of the sampling

distribution to be at the center of the images. We also set

the norm of each row of the sampled camera matrix to 1 in

order to improve numerical stability (see [21] for details).

Procedures and results In the first experiment, we com-

pare the performance of pOSE and GPRT on point tracks

known to be free of outliers. Some of these tracks are pub-

licly available classic datasets (e.g. dinosaur), while others

are derived from Olsson’s [39] and Strecha et al.’s [47] dig-

ital camera images piped through a robust incremental SfM

pipeline (COLMAP [44]). We run pOSE and GPRT for a

fixed number of runs, each from arbitrarily-sampled cam-

eras and points, and report the fraction of runs (SRI: success

rate for inlier tracks) each algorithm reaches the best solu-

tion up to predefined tolerance value in terms of camera po-

sition errors (see [21] for details). Table 1 and the SRI part

of Table 3 shows that pOSE has large basin of convergence

across various inlier tracks, and that the GPRT constraints

are not sufficient to maintain a large basin of convergence

for these datasets with missing entries.

In the second experiment, we build our own tracks using

the approach in §5 for each of the image sequences listed

in Table 3. We then compare the peformance of pOSE

and GRPT on these point tracks. This experiment is car-

ried out to take into consideration that creating consistent

inlier tracks is also an essential non-negligible subproblem
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(a) Castle-P30 [47] (b) Alcatraz Courtyard [39] (c) Water Tower [39]

Figure 6. Some successful reconstructions obtained from our stratified BA strategy illustrated in §4.

pOSE GPRT
Sequence # img # pts Fill (%) SRI (%) SRF (%) t̄ (s) SRI (%) SRF (%) t̄ (s)

Fountain-P11 11 9181 50.3 100 100 6.5 15 30 70.3
Entry-P10 10 4270 55.5 100 98 5.2 25 5 27.5
Herz-Jesu-P8 8 3553 60.7 100 100 3.4 30 15 16.1
Herz-Jesu-P25 25 12469 27.3 100 100 12.9 10 5 86.2
Castle-P19 19 5144 27.2 94 88 21.4 0 0 21.3
Castle-P30 30 11531 20.4 94 100 32.1 0 0 73.6

House Martenstorget 12 5934 53.2 100 100 11.3 20 15 47.8
Lund Cathedral (small) 17 9400 30.6 92 96 19.2 10 15 75.6
Gustav II Adolf 57 9562 12.3 100 86 23.7 20 35 82.0
Univ. of West. Ontario 57 6742 14.4 100 98 25.2 5 35 92.6
Vercingetorix 69 5231 10.3 78 92 15.0 10 15 60.0
Lund University Sphinx 70 22770 9.9 96 76 74.7 0 5 150.3
Alcatraz courtyard 133 31558 9.7 94 100 145.5 0 0 1653.8
Water tower 173 25531 8.0 90 76 274.6 40 35 1932.1
Pumpkin 209 25962 4.1 100 100 147.5 0 0 869.7

Table 3. A list of real SfM datasets used and corresponding results. t̄ is mean runtime for executing our BA pipelines. Fill defines the

proportion of actual visible projections over all possible projections.

in SfM. Similar to the first experiment, we report each algo-

rithm’s success rate on each full sequence (SRF) along with

average runtime in Table 3. In addition, since Strecha et al.’s

datasets (the first six in Table 3) provide ground truth cam-

era poses, we also report the camera position errors of our

successful solutions in Table 2 (see [21] for discussions).

The benchmark results show that pOSE with custom tracks

yields accurate reconstructions and produces state-of-the-

art results on the castle datasets, which have repetitive struc-

tures. These results, together with the results in Table 3,

show that the pOSE-based stratified BA pipeline has large

basin of convergence towards accurate reconstructions on

small and medium-scale real SfM datasets, if given mostly

clean point tracks. Figures 1 and 6 show our successful so-

lutions for some datasets, and others are included in [21].

7. Conclusions

In this paper, we proposed the pseudo object-space

error (pOSE) for projective 3D reconstruction, and we

have shown that—by using the variable projection (VarPro)

method—pOSE has a wide convergence basin and can be

efficiently implemented. We also presented a stratified

framework, which starts from randomly initialized camera

matrices, to obtain ultimately a metric 3D model. We also

proposed a combination of algorithms to obtain sufficiently

clean correspondences from initial feature matches.

In this work, we have demonstrated competitive results

for smaller and medium-scale datasets. It is an open ques-

tion whether the wide convergence basin of our bundle ad-

justment formulation is confirmed for large datasets, or if

alternative strategies such as applying our framework on

medium-sized subsets are necessary.

As clean tracks greatly simplify global SfM pipelines,

future work will emphasize on the generation of high qual-

ity tracks, for instance by incorporating trifocal tensor rela-

tions [27].
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