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Abstract

Shadow detection is a fundamental and challenging task,

since it requires an understanding of global image seman-

tics and there are various backgrounds around shadows.

This paper presents a novel network for shadow detection

by analyzing image context in a direction-aware manner.

To achieve this, we first formulate the direction-aware at-

tention mechanism in a spatial recurrent neural network

(RNN) by introducing attention weights when aggregat-

ing spatial context features in the RNN. By learning these

weights through training, we can recover direction-aware

spatial context (DSC) for detecting shadows. This design is

developed into the DSC module and embedded in a CNN to

learn DSC features at different levels. Moreover, a weighted

cross entropy loss is designed to make the training more ef-

fective. We employ two common shadow detection bench-

mark datasets and perform various experiments to evaluate

our network. Experimental results show that our network

outperforms state-of-the-art methods and achieves 97% ac-

curacy and 38% reduction on balance error rate.

1. Introduction

Shadow is a monocular cue in human vision for depth

and geometry perception. Knowing where the shadow is, on

the one hand, allows us to acquire the lighting direction [14]

and scene geometry [19, 10], as well as the camera location

and parameters [9]. However, the presence of shadow, on

the other hand, could deteriorate the performance of many

fundamental computer vision tasks, such as object detection

and tracking [2, 17]. Hence, shadow detection has long been

a fundamental problem in computer vision.

Existing methods detect shadows by developing physical

models of color and illumination [4, 3], or by using data-

driven approaches based on hand-crafted features [7, 15, 30]

or learned features [11, 24, 18]. While state-of-the-art meth-
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Figure 1: In this example image, region B would give a

stronger indication that A is a shadow compared to region

C. This motivates us to analyze the global image context in

a direction-aware manner for shadow detection.

ods have already achieved accuracy of 87% to 90% on two

benchmark datasets [24, 30], they may misrecognize black

objects as shadows and miss unobvious shadows. These sit-

uations are revealed by the balance error rate (BER), which

equally considers shadow and non-shadow regions; see Sec-

tion 4 for quantitative comparison results.

Shadow detection requires an understanding of global

image semantics, as shown very recently in [18]. To im-

prove the understanding, we propose to analyze the image

(or spatial) context in a direction-aware manner. Taking re-

gion A in Figure 1 as an example, comparing it with regions

B and C, region B would give a stronger indication that A

is a shadow as compared to region C. Hence, spatial con-

texts along different directions would give different amount

of contributions in suggesting the presence of shadows.

To take directional variance into account when reason-

ing the spatial contexts, we first design a network module

called the direction-aware spatial context (DSC) module,

or DSC module for short, by adopting a spatial recurrent

neural network (RNN) to aggregate spatial contexts in four

principal directions, and formulating the direction-aware at-

tention mechanism in the RNN to learn attention weights for
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each direction. Then, we embed multiple copies of this DSC

module in a convolutional neural network to learn DSC fea-

tures in different layers (scales). After that, we combine the

DSC features with convolutional features to predict a score

map for each layer, and fuse the score maps into the final

shadow detection map. The whole network is trained in an

end-to-end manner with a weighted cross entropy loss. We

summarize the major contributions of this work below:

• First, we design a novel attention mechanism in a spa-

tial RNN and construct the DSC module to learn spa-

tial contexts in a direction-aware manner.

• Second, we present a new shadow detection network

that adopts multiple DSC modules to learn direction-

aware spatial contexts in different layers. A weighted

cross entropy loss is designed to balance the detection

accuracy in shadow and non-shadow regions. This net-

work has potential for use in other applications such as

saliency detection and semantic segmentation.

• Third, we evaluate our network on two benchmark sets

and compare it with several state-of-the-art methods on

shadow detection, saliency detection, and semantic im-

age segmentation. Results show that our network out-

performs previous methods with over 97% accuracy

and 38% reduction on the balance error rate.

2. Related Work

In this section, we focus on discussing works on single-

image shadow detection rather than trying to be exhaustive.

Traditionally, single-image shadow detection is done by

exploiting physical models of illumination and color [4, 3,

23]. This approach, however, tends to produce satisfac-

tory results only for wide dynamic range images [15, 18].

Another approach learns shadow properties using hand-

crafted features based on annotated shadow images. It

first describes image regions by feature descriptors and

then classifies the regions into shadow and non-shadow re-

gions. Features like color [15, 5, 25], texture [30, 5, 25],

edge [15, 30, 7] and T-junction [15] are commonly used

for shadow detection followed by classifiers like decision

tree [15, 30] and SVM [5, 7, 25]. However, since hand-

crafted features have limited capability in describing shad-

ows, this approach often fails for complex cases.

Convolutional neural network (CNN) is recently demon-

strated to be a very powerful tool to learn features for de-

tecting shadows, with results clearly outperforming previ-

ous approaches. Khan et al. [11] used multiple CNNs to

learn features in super pixels and along object boundaries,

and fed the output features to a conditional random field

to locate shadows. Shen et al. [20] presented a deep struc-

tured shadow edge detector and employed structured labels

to improve the local consistency of the predicted shadow

map. Vicente et al. [24] trained stacked-CNN using a large

data set with noisy annotations. They minimized the sum of

squared leave-one-out errors for image clusters to recover

the annotations, and trained two CNNs to detect shadows.

Very recently, Hosseinzadeh et al. [6] detected shadows

using a patch-level CNN and a shadow prior map generated

from hand-crafted features, while Nguyen et al. [18] devel-

oped scGAN with a sensitivity parameter to adjust weights

in the loss functions. Although the shadow detection accu-

racy keeps improving on the benchmark datasets [30, 24],

existing methods may still misrecognize black objects as

shadows and miss unobvious shadows in the testing images.

The most recent work by Nguyen et al. [18] emphasized the

importance of reasoning global semantics for shadow de-

tection. Compared to this work, we suggest to consider the

directional variance when analyzing the spatial context. Re-

sults show that our method can further outperform [18] in

terms of both the accuracy and the BER value.

3. Methodology

Figure 2 presents the workflow of the overall shadow

detection network that employs the DSC module (see Fig-

ure 4) to learn direction-aware spatial context features. Our

network takes the whole image as input and outputs the

shadow detection map in an end-to-end manner. First, it

begins by using a convolutional neural network (CNN) to

extract a set of hierarchical feature maps, which encode fine

details and semantic information in different scales over the

CNN layers. Second, for each layer, we employ a DSC

module to harvest spatial contexts in a direction-aware man-

ner and produce DSC features. Third, we concatenate the

DSC features with corresponding convolutional features,

and upsample the concatenated feature map to the size of

the input image. Moreover, we further combine the upsam-

pled feature maps into the multi-level integrated features

(MLIF) with a convolution layer (via a 1 × 1 kernel), and

apply the deep supervision mechanism [27] to impose the

supervision signals to each layer as well as to the MLIF and

predict a score map at each layer. Lastly, we fuse all the

predicted score maps into the final shadow map output.

In the following subsections, we first elaborate how the

DSC module generates DSC features, and then introduce

the training and testing strategies in the shadow detection

network.

3.1. Directionaware Spatial Context

Figure 4 shows our DSC module architecture, which

takes feature maps as input and outputs DSC features. In

this subsection, we first describe the concept of spatial con-

text features and the spatial RNN model (Section 3.1.1), and

then elaborate how we formulate the direction-aware atten-

tion mechanism in a spatial RNN to learn attention weights

and generate DSC features (Section 3.1.2).
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Figure 2: The schematic illustration of the overall shadow detection network: (i) we extract features in different scales

over the CNN layers from the input image; (ii) we embed a DSC module (see Figure 4) to generate direction-aware spatial

context (DSC) features for each layer; (iii) we concatenate the DSC features with convolutional features at each layer and

upsample the concatenated feature maps to the size of the input image; (iv) we combine the upsampled feature maps into the

multi-level integrated features (MLIF), and predict a score map based on the features for each layer by a deep supervision

mechanism [27]; and (v) lastly, we fuse the resulting score maps to produce the final shadow detection result.

1st round in spatial RNN 2nd round in spatial RNN 

(a) input feature map

(after 1*1 conv)

(c) output map(b) intermediate

feature map

Figure 3: The schematic illustration of how spatial context

information propagates in a two-round spatial RNN.

3.1.1 Spatial Context Features

Recurrent neural network (RNN) [16] is an effective model

to process 1D sequential data via an array of input nodes (to

receive data), an array of hidden nodes (to update internal

states based on past and present data), and an array of output

nodes (to output data). There are three kinds of data trans-

lations in an RNN: from input nodes to hidden nodes, from

hidden nodes to output nodes, and between adjacent hidden

nodes. By iteratively performing the data translations, the

data received at input nodes can propagate across the hidden

nodes, and eventually produce results at the output nodes.

For processing image data with 2D spatial context, RNN

has been extended to build the spatial RNN model [1]; see

the schematic illustration in Figure 3. Taking a 2D feature

map from a CNN as input, the spatial RNN model first uses

a 1×1 convolution to perform an input-to-hidden data trans-

lation. Then, it applies four independent data translations to

aggregate local spatial context along each principal direc-

tion (left, right, up, and down), and fuses the results into an

intermediate feature map; see Figure 3(b). Lastly, the whole

process is repeated to further propagate the aggregated spa-

tial context in each principal direction, and then to generate

the overall spatial context; see Figure 3(c).

Comparing with Figure 3(c), each pixel in Figure 3(a)

knows only its local spatial context, while each pixel in Fig-

ure 3(b) further knows the spatial context along the four

principal directions after the first round of data translations.

Hence, by having two rounds of data translations, each pixel

can obtain necessary global spatial context for learning fea-

tures and solving the problem that the network is intended

for.

To perform data translations in a spatial RNN, we follow

the IRNN model [1], since it is fast, easy to train, and has

a good performance for long-range data dependencies [1].

Denote hi,j as the feature at pixel (i, j), we perform one

round of data translations to the right (similarly for the other

directions) by repeating the following operation n times:

hi,j = max( αright hi,j−1 + hi,j , 0 ) , (1)

where n is the width of the feature map and αright is the

weight parameter in the recurrent translation layer for the

right direction. Note that αright, as well as weights for the

other directions, are initialized to be an identity matrix and

are learned by the training process automatically.

7456



3x3 

conv

Features

recurrent translation 

at four directions �௨

3x3 

conv

�r୧୦t�ௗ���௧

element-wise 

multiplication

1x1 

conv

1x1 

conv

concat DSC

1x1 

conv

Context Features

element-wise 

multiplication

1x1 

conv

ReLU

(shared) (shared)

Attention Weights

ReLU ReLU

Attention Weights

Direction-aware Attention Mechanism 

Context Features

�

�௨�r୧୦t�ௗ���௧
concat

recurrent translation 

at four directions

Figure 4: The schematic illustration of the direction-aware spatial context module (DSC module). We compute direction-

aware spatial context by adopting a spatial RNN to aggregate spatial contexts in four principal directions with two rounds

of recurrent translations, and formulate the attention mechanism to generate maps of attention weights to combine context

features for different directions. We use the same set of weights in both rounds of recurrent translations. Best viewed in color.

3.1.2 Direction-aware Spatial Context Features

To learn spatial context in a direction-aware manner, we for-

mulate the direction-aware attention mechanism in a spa-

tial RNN to learn attention weights and generate direction-

aware spatial context (DSC) features.

Direction-aware attention mechanism. The purpose of

the direction-aware attention mechanism is to enable the

spatial RNN to selectively leverage the spatial context ag-

gregated along different directions by means of learning.

See the top-left blocks in the DSC module shown in Fig-

ure 4. First, we employ two successive convolutional layers

(with 3×3 kernels) followed by the ReLU [13] non-linear

operation, and then the third convolutional layer (with 1×1
kernels) to generate W. Then, we split W into four maps

of attention weights denoted as Wleft, Wdown, Wright, and

Wup. Mathematically, if we denote the above operators as

fatt and the input feature maps as X, we have

W = fatt( X ; θ ) , (2)

where θ denotes the parameters to be learned by fatt, and

fatt is also known as the attention estimator network.

See again the DSC module shown in Figure 4. The four

maps of weights are multiplied with the spatial context fea-

tures (from the recurrent data translations) along different

directions in an element-wise manner. Therefore, after we

train the network with the shadow dataset, the network can

learn θ for producing suitable attention weights to selec-

tively leverage the spatial context in the spatial RNN.

Completing the DSC module. Next, we further provide

additional details about the DSC module. As shown in Fig-

ure 4, after we multiply the spatial context features with the

attention weights, we concatenate the results and use a 1×1
convolution to simulate a hidden-to-hidden data translation

and reduce the feature dimensions to a quarter of the di-

mension size. Then, we perform the second round of recur-

rent translations and use the same set of attention weights

to select spatial context. We empricially find that the net-

work delivers higher performance, if we share the attention

weights rather than using two separate sets of weights. Note

that these attention weights are learnt based on the deep fea-

tures extracted from the input images, and they may vary

from images to images. Lastly, we utilize a 1 × 1 convolu-

tion followed by the ReLU [13] non-linear operation on the

concatenated feature maps to simulate the hidden-to-output

translation and produce the output DSC features.

3.2. Training and Testing Strategies

Our network is built upon the VGG network [22], where

we apply a DSC module to each layer, except for the first

layer, which involves a large memory footprint.

Loss Function. In natural images, shadows usually oc-

cupy smaller areas than non-shadow regions. Hence, if the

loss function simply aims for overall accuracy, it will in-

cline to match the non-shadow regions, which have far more

pixels. Therefore, we use a weighted cross-entropy loss to

optimize the whole network in the training process.

In detail, assume that the ground truth value of a pixel is
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y (where y=1, if it is in shadow, and y=0, otherwise) and

the prediction label of the pixel is p (where p ∈ [0, 1]). The

weighted cross entropy loss L equals L1 + L2:

L1 = −(
Nn

Np +Nn

)y log(p)−(
Np

Np +Nn

)(1−y) log(1−p) ,

(3)

and

L2 = −(1−
TP

Np

)y log(p)− (1−
TN

Nn

)(1− y) log(1− p) ,

(4)

where TP and TN are the number of true positives and

true negatives, and Np and Nn are the number of shadow

and non-shadow pixels, respectively, so Np+Nn is the total

number of pixels. In practice, L1 helps balance the detec-

tion of shadows and non-shadows; if the area of shadows

is less than that of the non-shadow region, we will penalize

misclassified shadow pixels more than misclassified non-

shadow pixels. On the other hand, L2 helps the network

focus on learning the class (shadow or non-shadow) that is

difficult to be classified [21]. This can be achieved, since the

weight in loss function for shadow (or non-shadow) class is

large when the number of correctly-classified shadow (or

non-shadow) pixels is small, and vice versa.

We use the above loss function for each layer in the

shadow detection network presented in Figure 2. Hence,

the overall loss function Loverall is a summation of the indi-

vidual loss on all the predicted score maps:

Loverall =
∑

i

wiLi + wmLm + wfLf , (5)

where wi and Li denote the weight and loss of the i-th layer

(level) in the overall network, respectively; wm and Lm are

the weight and loss of the MLIF layer; and wf and Lf are

the weight and loss of the fusion layer, which is the last

layer in the overall network to produce the final shadow de-

tection result; see Figure 2. Note that all the weights wi,

wm and wf are empirically set to be 1.

Training parameters. To accelerate the training process

while reducing over-fitting, we initialize parameters in the

feature extraction layers (see the frontal part of the network

in Figure 2) by the well-trained VGG network [22] and the

parameters in other layers by random noise. Stochastic gra-

dient descent is used to optimize the whole network with

a momentum value of 0.9 and a weight decay of 5×10−4.

We set the learning rate as 10−8 and terminate the learn-

ing process after 12k iterations. Moreover, we horizontally

flip images for data argumentation. Note that we build the

model on Caffe [8] with a mini-batch size of 1.

Inference. In the testing process, our network produces

one score map for each layer, including the MLIF layer and

the fusion layer, with a supervision signal added to each

layer. After that, we compute the mean of the score maps

over the MLIF layer and the fusion layer to produce the final

prediction map. Lastly, we apply the fully connected condi-

tional field [12] to improve the detection result by consider-

ing the spatial coherence between neighborhood pixels.

4. Experimental Results

4.1. Datasets and Evaluation Metrics

Benchmark datasets. Two benchmark datasets are em-

ployed in this work. The first one is the SBU Shadow

Dataset [24], which is the largest publicly available anno-

tated shadow dataset with 4089 training images and 638

testing images. It includes a wide variety of scenes, e.g., ur-

ban, beach, mountain, roads, parks, snow, animals, vehicles,

and houses, and covers various types of pictures, e.g., aerial,

landscape, close range, and selfies. The second benchmark

dataset we employed is the UCF Shadow Dataset [30]. It in-

cludes 145 training images and 76 testing images, and cov-

ers outdoor scenes with various backgrounds. We train our

shadow detection network using the SBU training set.

Evaluation metrics. We employ two commonly-used

metrics to quantitatively evaluate the shadow detection per-

formance. The first one is the accuracy metric:

accuracy =
TP + TN

Np +Nn

, (6)

where TP , TN , Np and Nn are true positives, true nega-

tives, number of shadow pixels, and number of non-shadow

pixels, respectively, as defined in Section 3.2.

Since Np is usually much smaller than Nn in natural im-

ages, we employ the second metric called the balance error

rate (BER) to obtain a more balanced evaluation by equally

considering the shadow and non-shadow regions:

BER = (1−
1

2
(
TP

Np

+
TN

Nn

))× 100 . (7)

Note that unlike the accuracy metric, for BER, the lower its

value, the better the detection result is.

4.2. Comparison with the Stateoftheart Shadow
Detection Methods

We compare our method with four recent shadow detec-

tion methods: scGAN [18], stacked-CNN [24], patched-

CNN [6] and Unary-Pairwise [5]. Among them, the first

three are deep-learning-based methods, while the last one

is based on hand-crafted features. For a fair comparison,

the shadow detection results of other methods are obtained

either directly from results provided by the authors, or by

generating them using implementations provided by the au-

thors with recommended parameter setting.
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input image ground truth DSC (ours) scGAN [18] stkd’-CNN [24] patd’-CNN [6] SRM [26] Amulet [28] PSPNet [29]

Figure 5: Visual comparison of shadow maps produced by our method and other methods (4th-9th columns) against ground

truths shown in 2nd column. Note that stkd’-CNN and patd’-CNN stand for stacked-CNN and patched-CNN, respectively.

Table 1: Comparing our method (DSC) with state-of-the-

arts methods for shadow detection (scGAN [18], stacked-

CNN [24], patched-CNN [6] and Unary-Pairwise [5]), for

saliency detection (SRM [26] and Amulet [28]), and for se-

mantic image segmentation (PSPNet [29]).

SBU [24] UCF [30]

method accuracy BER accuracy BER

DSC (ours) 0.97 5.59 0.95 8.10

scGAN [18] 0.90 9.10 0.87 11.50

stacked-CNN [24] 0.88 11.00 0.85 13.00

patched-CNN [6] 0.88 11.56 - -

Unary-Pairwise [5] 0.86 25.03 - -

SRM [26] 0.96 7.25 0.94 9.81

Amulet [28] 0.93 15.13 0.92 15.17

PSPNet [29] 0.95 8.57 0.93 11.75

Table 1 reports the comparison results, where we can see

that our method outperforms the others in terms of both ac-

curacy and BER for both benchmark datasets. Note that our

shadow detection network is trained using the SBU training

set [24], but it still outperforms the others also for the UCF

dataset, thus demonstrating its generalization ability.

We further provide visual comparison results in Fig-

ures 5 and 6, which show various challenging cases, e.g.,

a light shadow next to a dark shadow, shadows around com-

plex backgrounds, and black objects around shadows. With-

out understanding the global image semantics, it is hard

to locate these shadows, and non-shadow regions would

be easily misrecognized as shadows. From the results, we

can see that our method can effectively locate shadows and

avoid false positives as compared to the others; for black

objects misrecognized as shadows by other methods, our

method could still recognize them as non-shadows.

4.3. Comparison with Saliency Detection and Se
mantic Segmentation Methods

In general, deep networks designed for saliency detec-

tion and semantic image segmentation may also be used for

shadow detection by training the networks using datasets of

annotated shadows. Hence, we conduct another experiment

by using two recent deep models for saliency detection, i.e.,

SRM [26] and Amulet [28], and a recent deep model for

semantic image segmentation, i.e., PSPNet [29].

For a fair comparison, we re-train their models on the

SBU training set using implementations provided by the au-

thors, and adjust the training parameters to obtain the best

shadow detection results. The last three rows in Table 1 re-

port the comparison results in terms of the accuracy and

BER metrics. Although these methods achieve good re-
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input image ground truth DSC (ours) scGAN [18] stkd’-CNN [24] patd’-CNN [6] SRM [26] Amulet [28] PSPNet [29]

Figure 6: More visual comparison results (continue from Figure 5).

Table 2: Component analysis. We train three networks us-

ing the SBU training set and test them using the SBU testing

set [24]: “basic” denotes the architecture shown in Figure 4

but without all DSC modules; “basic+context” denotes the

“basic” network with spatial context but not direction-aware

spatial context; and “DSC” is the overall network in Fig-

ure 4.

network BER improvement

basic 6.55 -

basic+context 6.23 4.89%

DSC 5.59 10.27%

input images ground truths basic basic+context DSC

Figure 7: Visual comparison results of component analysis.

sults for both metrics, our method still outperforms them for

both benchmark datasets. Please also refer to the last three

columns in Figures 5 and 6 for visual comparison results.

4.4. Evaluation on the DCS Module

Component analysis. We perform an experiment to eval-

uate the effectiveness of the DSC module design. Here, we

use the SBU dataset and consider two baseline networks.

The first baseline (denoted as “basic”) is a network con-

Table 3: DSC architecture analysis. By varying the param-

eters in the DSC architecture (see 2nd and 3rd columns be-

low), we can have produce a slightly different overall net-

work and explore their performance (see last column).

number of rounds shared W? BER

1 - 5.85

2 Yes 5.59

3 Yes 5.85

2 No 6.02

structed by removing all the DSC modules from the overall

network shown in Figure 2. The second baseline (denoted

as “basic+context”) considers spatial context but ignores the

direction-aware attention weights. Compared with the first

baseline, this network has all the DSC modules, but it re-

moves the direction-aware attention mechanism inside the

DSC modules, i.e., removing the computation of W and di-

rectly concatenating the context features without multiply-

ing them with the attention weights; see Figure 4. This is

equivalent to setting all the attention weights W to be one.

Table 2 reports the comparison results, showing that our

basic network with multi-scale features and the weighed

cross entropy loss function can produce good results. More-

over, by considering spatial context and DSC features can

lead to further obvious improvement. See also Figure 7 for

visual comparison results.

DSC architecture analysis. When we design the network

structure in the DSC module, we encounter two questions:

(i) how many rounds of recurrent translations we should
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(c) (d)

(a) (b)

Figure 8: More results produced from our method.

input images ground truths our results

Figure 9: Failure cases.

employ in the spatial RNN; and (ii) whether to share the

attention weights, or to use separate attention weights in dif-

ferent rounds of recurrent translations in the spatial RNN.

We modify our network for these two parameters and

produce the quantitative comparison results shown in Ta-

ble 3. From the results, we can see that having two rounds

of recurrent translations and sharing the attention weights

in both rounds produce the best detection result. We believe

that when there is only one round of recurrent translations,

the global context information cannot well propagate over

the spatial domain, so there is insufficient information ex-

change for learning the shadows. On the other hand, when

we have three rounds of recurrent translations or separate

copies of attention weights, we will end up having too many

parameters in the network, making it hard to be trained.

4.5. More Shadow Detection Results

Figure 8 shows more shadow detection results: (a) light

and dark shadows locate next to each other; (b) small

and unconnected shadows; (c) no clear boundary between

shadow and non-shadow regions; and (d) shadows of ir-

regular shapes. Our method can still detect these shadows

fairly well, but it fails in some extremely complex scenes:

(a) a scene with many small shadows (see 1st row in Fig-

ure 9), where the features in deep layers lose the detail in-

formation and features in shallow layers lack the seman-

tic information for the shadow context; (b) a scene with a

large black region (see 2nd row in Figure 9), where there

are insufficient surrounding context to indicate whether it

is a shadow or simply a black object; and (c) a scene with

soft shadows (see 3rd row in Figure 9), where the differ-

ence between the soft shadow regions and the non-shadow

regions is small. The code, trained model, and more shadow

detection results on the datasets are publicly available at

https://xw-hu.github.io/.

5. Conclusion

This paper presents a novel network for single-image

shadow detection by harvesting direction-aware spatial con-

text. Our key idea is to analyze multi-level spatial context in

a direction-aware manner by formulating a direction-aware

attention mechanism in a spatial RNN. In our mechanism,

the network can automatically learn the attention weights

for leveraging and composing the spatial context in different

directions in the spatial RNN. In this way, we can produce

direction-aware spatial context (DSC) features and formu-

late the DSC module for the task. Further, we adopt multi-

ple DSC modules in a multi-layer convolutional neural net-

work to predict score maps in different scales, and design a

weighted cross entropy loss function to make effective the

training process. In the end, we test our network on two

benchmark datasets, compare it with various state-of-the-

art methods, and show the superiority of our network over

the others in terms of the accuracy and BER metrics.

In future, we plan to explore the potential of our net-

work for other applications such as saliency detection and

semantic segmentation, and further enhance its capability

for detecting time-varying shadows in videos.
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