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Abstract

We propose an approach to learn image representations

that consist of disentangled factors of variation without ex-

ploiting any manual labeling or data domain knowledge. A

factor of variation corresponds to an image attribute that

can be discerned consistently across a set of images, such

as the pose or color of objects. Our disentangled represen-

tation consists of a concatenation of feature chunks, each

chunk representing a factor of variation. It supports ap-

plications such as transferring attributes from one image

to another, by simply mixing and unmixing feature chunks,

and classification or retrieval based on one or several at-

tributes, by considering a user-specified subset of feature

chunks. We learn our representation without any labeling

or knowledge of the data domain, using an autoencoder ar-

chitecture with two novel training objectives: first, we pro-

pose an invariance objective to encourage that encoding of

each attribute, and decoding of each chunk, are invariant to

changes in other attributes and chunks, respectively; sec-

ond, we include a classification objective, which ensures

that each chunk corresponds to a consistently discernible

attribute in the represented image, hence avoiding degen-

erate feature mappings where some chunks are completely

ignored. We demonstrate the effectiveness of our approach

on the MNIST, Sprites, and CelebA datasets.

1. Introduction

Deep learning techniques have led to highly successful

natural image representations, some focusing on synthesis

of detailed, high resolution images of photographic qual-

ity [5, 14], and others on disentangling image features into

semantically meaningful properties [6, 22, 25].

In this paper, we learn a disentangled image representa-

tion that separates the feature vector into multiple chunks,

each chunk representing intuitively interpretable properties,

or factors of variation, of the image. We propose a com-

pletely unsupervised approach that does not require any la-
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beled data, such as pairs of images where only one fac-

tor of variation changes (different viewpoints, for exam-

ple) [22, 28]. The basic assumption of our technique is that

images can be represented by a set of factors of variation,

each one corresponding to a semantically meaningful im-

age attribute. In addition, each factor of variation can be

encoded using its own feature vector, which we call a fea-

ture chunk. That is, images are simply represented as con-

catenations of feature chunks, in a given order. We obtain

disentanglement of feature chunks by leveraging autoen-

coders, and as a key contribution of this paper, by develop-

ing a novel invariance objective. The goal of the invariance

objective is that each attribute is encoded into a chunk in-

variant to changes in other attributes, and that each chunk

is decoded into an attribute invariant to changes in other

chunks. We implement this objective using a sequence of

two feature mixing and unmixing autoencoders.

The invariance objective using feature mixing on its own,

however, does not guarantee that each feature chunk repre-

sents a meaningful factor of variation. Instead, the autoen-

coder could represent the image with a single chunk, and ig-

nore all the others. This is called the shortcut problem [28].

We address the shortcut problem with a classification con-

straint, which forces each chunk to have a consistent, dis-

cernible effect on the generated image.

We demonstrate successful results of our approach on

several datasets, where we obtain representations consist-

ing of feature chunks that determine semantically meaning-

ful image properties. In summary, we make the following

contributions: 1) A novel architecture to learn image repre-

sentations of disentangled factors of variation without using

any annotation or data domain knowledge, and where the

representation consists of a concatenation of a fixed number

of feature chunks. Our approach can learn several factors of

variation simultaneously; 2) A novel invariance objective

to obtain disentanglement by encouraging invariant encod-

ing and decoding of image attributes and feature chunks, re-

spectively; 3) A novel classification constraint to ensure that

each feature chunk represents a consistent, discernible fac-

tor of variation of the represented image; 4) An evaluation

on the MNIST, Sprites, and CelebA datasets to demonstrate
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the effectiveness of our approach.

2. Related work

Autoencoders. Our architecture is built on autoencoders [4,

12, 1], which are neural networks with two main compo-

nents: an encoder and a decoder. The encoder is designed

to extract a feature representation of the input (image), and

the decoder translates the features back to the input. Dif-

ferent flavors of autoencoders have been trained to perform

image restoration [30, 21, 3] or image transformation [11].

While basic autoencoders do not impose any constraints

on the representation itself, variational autoencoders [16]

add a generative probabilistic formulation, which forces

the representation to follow a Gaussian distribution and al-

lows sampling images by applying the decoder to a Gaus-

sian vector sample. Thanks to their flexibility, autoencoders

have become ubiquitous tools in large systems for domain

adaptation [33, 15], or unsupervised feature learning [23].

Autoencoders are also used to learn feature disentangling

[25, 22, 28]. In our work we also use them as feature ex-

tractors. Our contribution is a novel unsupervised training

method that ensures the separation of factors of variation

into several feature chunks.

GANs. Generative Adversarial Networks (GANs) [9] are

designed to provide samples from a data distribution speci-

fied as a finite set of real data samples. They use two com-

peting neural networks: a generator translates input noise

vectors into fake data samples, while a discriminator tries to

distinguish fake samples from real ones. In the ideal case,

the trained generator produces convincing data samples of

the real data distribution, and the trained discriminator can-

not tell them apart from real ones. GANs have been success-

ful at image to image translation [13], learning representa-

tion [24], sampling images from a specific domain [33], or

ensuring that image-feature pairs have the same distribution

when computing one from another [8]. As the adversarial

loss constrains the distribution of the generated data but not

the individual data samples, it allows to reduce the need for

data labeling. In particular, Shrivastava et al. [26] use GANs

to transfer known attributes of synthetic, rendered examples

to the domain of real images, thus creating virtually unlim-

ited datasets for supervised training. In our work we use

GANs to enforce that images look realistic when their at-

tributes are transferred.

Disentangling. There are many methods [29, 31] that dis-

entangle factors of variation by using manual annotation.

Kulkarni et al. [17] sample the data during the training, such

that only one factor changes within a minibatch. They as-

sociate a feature chunk to the variation of the images in the

minibatch. One of the most immediate methods for disen-

tangling is to mix the feature encodings of two input images

with common known attributes in an autoencoder [25] and

then train a decoder to map the mixed features to the ground

truth image with mixed attributes. In other methods, GANs

and adversarial training have been leveraged to reduce the

need for complete labeling of all factors of variation. For

example, Mathieu et al. [22] apply adversarial training on

the image domain, while Denton et al. [7] propose adver-

sarial training on the feature domain. Szabó et al. [28] stud-

ied the ambiguities in weakly supervised disentanglement.

They can provably avoid a degenerate solution called the

shortcut problem, where the complete image representation

is condensed in only one feature chunk.

In some approaches, the physics of the image formation

model is integrated into the network training, with factors

like the depth and camera pose [32] or the albedo, surface

normals and shading [27]. Shu et al. [27] do no use any

label from the training data. However, an externally trained

3D morphable model guides the training, which is also a

form of annotation.

By maximizing the mutual information between synthe-

sized images and latent features, InfoGAN [6] makes the

latent features interpretable as semantically meaningful at-

tributes. InfoGAN is completely unsupervised, but it does

not include an encoding stage. In contrast, we build on an

autoencoder, which allows us to recover the disentangled

representation from input images, and swap attributes be-

tween them. In addition, we use a novel classification con-

straint instead of the feature consistency in InfoGAN.

Two recent techniques, β-VAE [10] and DIP-VAE [18],

build on variational autoencoders (VAEs) to disentangle in-

terpretable factors in an unsupervised way, similarly to our

approach. They encourage the latent features to be inde-

pendent by generalizing the KL-divergence term in the VAE

objective, which measures the similarity between the prior

and posterior distribution of the latent factors. Instead, we

build on mixing autoencoders [25] and adversarial train-

ing [9]. We encourage disentanglement using an invariance

objective, rather than trying to match an isotropic Gaussian

prior. Notice that our feature space is only designed for at-

tribute transfer and not for sampling. Finally, we can use

high-dimensional feature chunks, while in [10] and [18] the

chunks are one-dimensional.

3. Unsupervised Disentanglement of Factors of

Variation

A representation of images where the factors of varia-

tions are disentangled can be exploited for various computer

vision tasks. At the image level, it allows to transfer at-

tributes from one image to another. At the feature level,

this representation can be used for image retrieval and clas-

sification. To achieve this representation and to enable the

applications at both the image and feature level, we lever-

age autoencoders. Here, an encoder transforms the input

image x to its feature representation f = Enc(x), where

f = [f1, f2, . . . , fn] consists of multiple chunks f i ∈ Rd.
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The dimension of the full feature is therefore n × d. In ad-

dition, a decoder transforms the feature representation back

to the image via Dec(f) = x.

Our main objective is to learn a disentangled represen-

tation, where each feature chunk corresponds to an im-

age attribute. For example, when the data x are face im-

ages, chunk f1 could represent the hair color, f2 the gen-

der and so on. With a disentangled representation, we

can transfer attributes from one image to another sim-

ply by swapping the feature chunks. An image x3 =
Dec([f1

1 , f
2
2 , f

3
2 , . . . , f

n
2 ]) could take the hair color from im-

age x1 and all the other attributes from x2.

In our approach, we interpret disentanglement as invari-

ance. In a disentangled representation, the encoding of each

image attribute into its feature chunk should be invariant to

transformations of any other image property. Vice versa,

the decoding of each chunk into its corresponding attribute

should be invariant to changes of other chunks. In our ex-

ample, if x1 and x2 have the same gender, we must have

f2
1 = f2

2 irrespective of any other attribute. Hence, a dis-

entangled representation is also useful for image retrieval,

where we can search for nearest neighbors of a specified at-

tribute. Invariance is also beneficial for classification, where

a simple linear classifier is sufficient to classify each at-

tribute based on its corresponding feature chunk. This ob-

servation inspired previous work [18] to quantify disentan-

glement performance using linear classifiers on the full fea-

tures f .

In the following, we describe how we learn a disentan-

gled representation from data without any additional knowl-

edge (e.g., labels, data domain) by using mixing autoen-

coders. One of the main challenges in the design of the

autoencoder and its training is that the encoder and the de-

coder could just make use of a single feature chunk (pro-

vided that this is sufficient to represent the whole input im-

age) and ignore the other chunks. We call this failure mode

a shortcut taken by the autoencoder during training. We

propose a novel invariance objective to obtain disentangle-

ment, and a classification objective to avoid the shortcut

problem.

3.1. Network Architecture

Our network architecture is shown in Figure 1. There

are three main components: We enforce invariance using a

sequence of two mixing autoencoders, and a discriminator;

we avoid the shortcut problem using a classifier. They are

all implemented as neural networks.

Mixing/Unmixing Autoencoders. We leverage a sequence

of two mixing autoencoders to enforce invariance, ensuring

that we encode each attribute into a feature chunk invari-

ant to changes in other attributes, and that we decode each

chunk similarly in an invariant manner into its attribute.

More precisely, the sequence of two mixing autoencoders

Enc

x1

x2 x3 x4

f1

f2 f12 f3 f31

L2

x1

Enc

EncDec Dec

Dsc

Dsc

x1

x3 “fake”

“real”

Cls

x1

x2

x3

m

Figure 1: Overview of our architecture. The core compo-

nent is a sequence of two mixing autoencoders (top). This

implements our invariance objective, which encourages that

the decoding of each feature chunk into an image attribute

is invariant to a perturbation (mixing) in other chunks, and

similarly, the encoding of each attribute into a chunk is in-

variant to a perturbation of other attributes. We include

an adversarial loss to ensure the intermediate images ob-

tained by perturbing some chunks is from our data distribu-

tion (bottom left). Finally, a classification objective avoids

the shortcut problem, where chunks would be ignored com-

pletely. Components with the same name share weights.

performs the following operations (Figure 1):

1. Sample two images x1 and x2 independently, and en-

code them into f1 = Enc(x1) and f2 = Enc(x2).

2. Mix: Define a mask m = [m11,m21, . . . ,mn1],
where mi are uniformly sampled in {0, 1}, and 1 =
[1, 1, . . . , 1] ∈ Rd. Select the i-th feature chunk from

f1 if mi = 1 and from f2 if mi = 0; collect them into a

new feature f1⊕2 = m⊙f1+(1−m)⊙f2, where ⊙ is

the element-wise multiplication and 1 = [1,1, . . . ,1].

3. Decode a new image x3 = Dec(f1⊕2).

4. Encode again, f3 = Enc(x3).

5. Unmix f3 by replacing feature chunks from f2, given

by the mask 1−m, with the corresponding ones from

f1, that is, f3⊕1 = m⊙ f3 + (1 −m)⊙ f1.

6. Decode the final image x4 = Dec(f3⊕1), from the

mixed features of f3 and f1.

Finally, we minimize the squared L2 distance between

x1 and x4, thus the loss function can be written as

LM (θEnc, θDec) = Ex1,x2

[

∑

m
|x4 − x1|

2

]

, (1)

where we sum over all possible mask settings, and θEnc and

θDec are the encoder and decoder parameters respectively.
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(a) Digit class (b) Rotation angle (c) Stroke width

Figure 2: Attribute transfer on the MNIST dataset by

mixing individual chunks between pairs of source images,

shown in the topmost row and leftmost column. To generate

an image in column i and row j, we take one chunk from

the i-th image in the top row, and the other chunks from the

j-th image in the leftmost column. In each subfigure, the

mixed chunk corresponds to the attribute indicated in the

caption of the subfigure.

Intuitively, the key idea is that the cycle of decoding and

re-encoding of the mixed feature vector f1⊕2 should pre-

serve the chunks from f1 that were copied in f1⊕2. In other

words, these chunks from f1 should be decoded into corre-

sponding attributes of x3. In addition, re-encoding into f3
the intermediate image x3 consisting of a mix of attributes

from x1 and attributes from x2, should return the same fea-

ture chunks originally from x1.

Discriminator. To ensure that the generated perturbed im-

ages x3 are valid images according to the input data distri-

bution, we impose an additional adversarial term, which is

defined as

LG(θEnc, θDec, θDsc) = (2)

∑

m
Ex1,x2

[

log(Dsc(x1)) + log(1− Dsc(x3))
]

,

where θDsc are the discriminator parameters. In the ideal

case when the GAN objective reaches the global optimum,

the distribution of fake images should match the real im-

age distribution. With the invariance and adversarial loss,

however, is still possible to encode all image attributes into

one feature chunk and keep the rest constant. This solution

optimizes both the invariance loss and the adversarial loss

perfectly. As mentioned before, this is called the shortcut

problem and we address it using an additional loss based on

a classification task.

Classifier. The last component of our network takes three

images as inputs: the input images x1 and x2, and the gen-

erated image x3. It decides for every chunk whether the

composite image was generated using the feature from the

first or the second input image. The formal loss function is

LC(θEnc, θDec, θCls) = (3)

Ex1,x2

[

−
∑

m

∑

im
i log(yi) + (1−mi) log(yi))

]

,

Table 1: Network architectures of encoder (Enc), decoder

(Dec), discriminator (Dsc) and classifier (Cls) on different

datasets. We denote the convolutional layer with “c”, the

deconvolutional layer with “d” and the fully connected layer

with “f”. The numbers denote the number of channels. The

kernel size and stride are denoted with “k” and “s”, and they

are omitted when they are equal to 1. The pooling layers “p”

have kernel size 3 and stride 2. After each convolutional and

deconvolutional layer we added a normalization and a leaky

ReLU layer with a leak coefficient of 0.2. For BEGAN, the

discriminator architecture is the same as that of the autoen-

coder. We used ReLU after the convolutional layers, and

“r” stands for reshape and “u” for upsampling by a factor of

2. We choose γ = 0.5 for training.

CelebA (DCGAN)

Enc c64k3s2-c128k3s2-c256k3s2-c512k3s2-c512k2-f

Dec d512k4-d512k4s2-d256k4s2-d128k4s2-d3k2

Dsc c64k3s2-c128k3s2-c256k3s2-c512-f

Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

CelebA (BEGAN)

Enc c32k3-c32k3-c32k3-c64-p-c64k3-c64k3-c96-p-c96k3-c96k3-

c128-p-c128k3-c128k3-c160-c160-p-c160k3-c160k3-f

Dec f4096-r(8,8,64)-c64k3-c64k3-u-c64k3-c64k3-u-c64k3-

c64k3-u-c64k3-c64k3-u-c64k3-c64k3-c3

Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

MNIST

Enc c64k3s2-c128k3s2-c256k3s2-f

Dec d512k4-d256k4s2-d128k4s2-d3k2

Dsc c64k3s2-c128k3s2-c256k3s2-c512-f

Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

Sprites

Enc c64k3s2-c128k3s2-c256k3s2-c512k2s2-c512k2-f

Dec d512k4-d512k4s2-d256k4s2-d128k4s2-d3k2

Dsc c64k3s2-c128k3s2-c256k3s2-c512-f

Cls c96k8s2-p-c256k5-p-c384k3-c384k3-c256k3-p-f4096-f4096-f

where θCls are the classifier parameters, and its outputs are

Cls(x1,x2,x3) = y = [y1, y2, . . . , yn]. The classifier con-

sists of n binary classifiers, one for each chunk, that decide

whether the composite image x3 was generated using the

corresponding chunk from the first image or the second. We

use the cross entropy loss for classification, so the last layer

of the classifier is a sigmoid. The classifier loss can only

be minimized if there is a meaningful attribute encoded in

every chunk. Hence, the shortcut problem cannot occur as

it would be impossible to decide which chunks were used

to create the composite image.

Finally, our overall objective consists of the weighted

sum of the three components described above,

minθEnc,θDec,θCls
maxθDsc

λMLM + λGLG + λCLC . (4)

Note that during training, we randomly sample the masks

m instead of computing a sum over all possibilities for all

image sample pairs (Eqns. (1), (2) and (3)).
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(a) MIX (b) MIX+G (c) MIX+C (d) MIX+G+C

Figure 3: Comparison of different methods on Sprites. In all subfigures, images are generated by taking one of the 8 feature

chunks from the topmost row, and the others from the leftmost column. Red frames indicate whether a feature chunk encodes

an attribute. MIX denotes the mixing loss, G the adversarial loss and C the classifier loss in the objective. MIX+G+C

disentangles pose, torso color, hair color, and leg color (columns marked with red boxes, left to right).

1 4 16 32 64

chunksize

0.4

0.5

0.6

0.7

m
A

P

Figure 4: Mean average precision of the nearest neighbor

search averaged across labeled attributes, as a function of

the chunk size on the Sprites dataset with the complete

model: the mixing autoencoder + the classifier + GAN.

3.2. Implementation

We use a network architecture similar to DCGAN [24]

for the encoder, decoder, and discriminator. For the clas-

sifier, we use AlexNet with batch normalization after each

convolutional layer, but we do not use any dropout. The im-

age inputs of the classifier are concatenated along the RGB

channels. We use equal weights λM = λG = λC = 1 for

the mixing autoencoder, GAN, and classifier for our exper-

iments on the MNIST and Sprites datasets. For CelebA, we

increase the weight of the mixing autoencoder to λM = 30.

In all experiments, the feature vector is the output of the

last layer of the encoder. We separate it into 8 chunks,

where each chunk is expected to represent one attribute,

with equal size for each of the eight chunks. Our results are

obtained with chunk size 8 for MNIST, 64 for Sprites and

64 for CelebA. We observed that reducing the chunk size

in CelebA leads to lower rendering quality. For CelebA, we

also show experiments using BEGAN [2] for the adversarial

training. The detailed architectures are shown in Table 1.

4. Experiments

We experimented on three public datasets, the MNIST

handwritten digits [19], Sprites animated figures [25], and

CelebA faces [20]. We show qualitative results on all

datasets and quantitative evaluations and ablation studies on

Sprites and CelebA.

MNIST. The MNIST dataset consists of 60K handwritten

digits for the training and 10K for the test set, given as

grayscale images with a size of 28 × 28 pixels. There are

10 different classes referring to the different digits. Other

attributes like rotation angle or stroke width are not labeled.

Our method can disentangle the labeled attribute as well

as some non-labeled ones. Figure 2 shows visual attribute

transfers for three factors: digit class, rotation angle, and

stroke width. The three chunks were chosen by visually

inspecting which chunk corresponded to which attribute.

All discernible variations seem to be encoded in the three

chunks, and transferring the other chunks seem to have lit-

tle visual effect.

Sprites. The sprites dataset has 672 synthetically rendered

animated characters (sprites). The dataset is split into a

training set with 500, a validation set with 72, and a test set

with 100 sprites. Each sprite is rendered at 178 positions,

thus the number of images is 120K in total. The dataset has

many labeled attributes: body shape, skin color, vest color,

hairstyle, arm and leg color, and finally weapon type. The

pose labels can be extracted from the frame number of the

animations. This rich attribute labeling is ideal for testing

the disentanglement of our algorithms.

We perform ablation studies on the components of our

method. The qualitative results are shown in Figure 3. We

can see that mixing autoencoder already learned to disen-

tangle 2 chunks. Adding only GAN does not improve the

disentangling, as its job is to make the images look more

realistic. However, the rendering quality without GAN is

already good. Adding only the classifier does not improve

disentangling either, it rather creates artifacts in the render-

ing. The intuitive explanation is that the classifier solves

the shortcut problem in the sense that it forces all chunks to

carry information about the inputs. However, the informa-
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Table 2: Mean average precision performance of nearest neighbor classification on the Sprites dataset, which comes with

labeled attributes. Each row contains different methods, while the columns show the classification performance of different

attributes. MIX denotes the mixing loss, G the adversarial loss, C the classifier loss and AE is the vanilla autoencoder in the

objective.

Method body skin vest hair arm leg pose average

Random 0.5 0.25 0.33 0.17 0.5 0.5 0.006 0.32

C+G 0.53 0.31 0.41 0.24 0.51 0.52 0.06 0.37

AE 0.56 0.37 0.40 0.31 0.54 0.56 0.46 0.46

AE+C+G 0.59 0.50 0.53 0.46 0.56 0.54 0.44 0.52

MIX 0.57 0.61 0.51 0.62 0.54 0.94 0.53 0.62

MIX + C 0.57 0.65 0.43 0.63 0.55 0.58 0.51 0.56

MIX + G 0.59 0.31 0.44 0.24 0.54 0.96 0.47 0.51

MIX + C + G 0.58 0.80 0.94 0.49 0.58 0.96 0.52 0.70

(a) Pose+arm (b) Undefined (c) Undefined (d) White bar

(e) Vest (f) Skin+hair (g) Leg (h) Undefined

Figure 5: Attribute transfer on the Sprites dataset. For every subfigure (a) to (h), one of the eight chunks is taken from the

topmost row and the rest from the leftmost column. Each subfigure visualizes the role of one of the eight chunks, and the

subfigure captions indicate the attribute (if semantically meaningful) associated with the chunk.

tion seem to be stored as artifacts, while the interpretable

attributes are ignored. The full objective with all three com-

ponents on the other hand improves the performance, as

the artifacts are eliminated by GAN, and the shortcut prob-

lem can only be avoided by disentangling the factors. The

method recovers 4 independent factors.

For quantitative analysis we perform nearest neighbor

search using a chunk of the features and compute the mean

average precision using an attribute as ground truth. We re-

peat the search for all chunk and attribute pairs, and for each

attribute we choose the best performing chunk to represent

it. We ignore the weapon type attribute in our evaluation, as

it is only visible in a small subset of poses. We also com-

pare our method to the vanilla autoencoder. It has only one

chunk, but its dimensionality is the same as the full feature

of the other methods. In Table 2 we compare the results of

our methods. We can see a consistent improvement of our

proposed mixing autoencoder over the vanilla autoencoder,

whether we use the classifier and the GAN or not. The clas-

sifier and the GAN together also consistently help, no mat-

ter which autoencoder was used (MIX, vanilla or none). The

classifier or the GAN alone do not help the performance,

which is in line with the qualitative experiments as well.

Figure 4 shows the effect of the chunk size on the classifi-

cation performance. Increasing the number of dimensions

helps, but we reach a plateau at 16 dimensions. We chose a

large chunk size 64 for our experiments to better highlight

that we can avoid the shortcut problem, the degenerate solu-
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(a
)

D
C

G
A

N

Undefined Glasses Undefined Hair style

Brightness Hair color Undefined Pose/smile

(b
)

B
E

G
A

N

Undefined Brightness Hair style Background

Glasses Undefined Saturation Pose/gender

Figure 6: Attribute transfer on the CelebA dataset with our method using (a) DCGAN and (b) BEGAN. For every subfigure,

one chunk is taken from the topmost row and the rest from the leftmost column. Different subfigures show the role of different

chunks. The captions indicate the attribute associated with the chunk.

tion where all information is stored in one chunk. Figure 5

visualizes attribute transfer for all chunks, similarly to Fig-

ure 2, using our complete method. We can recover the leg

and vest colors into single chunks, while the pose and arm

color attribute pair is represented by one chunk. The skin

color and hairstyle attributes are also entangled and repre-

sented by another chunk. There are 6 positions, where the

sprites stand on a white bar. Even though this attribute is

fully determined by the position, our method separates it to

its own chunk.

CelebA. CelebA contains 200K color images of celebrity

faces. The training, validation, and test sizes are 160K,

20K and 20K respectively. There are 40 labeled binary

attributes indicating gender, hair color, facial hair and so
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Table 3: The classification performance on CelebA. Each row contains different methods, while the columns show the

different attributes (“eyebr.” is arched eyebrows and “attr.” is attractive).

Method Eyebr. Attr. Bangs Black Blond Makeup Male Mouth Beard Wavy Hat Lips Avg.

VAE 71.8 73.0 89.8 78.0 88.9 79.6 83.9 76.3 87.3 70.2 95.8 83.0 81.5

β=2 71.6 72.6 90.6 79.3 89.1 79.3 83.5 76.1 86.9 67.8 95.9 82.4 81.3

β=4 71.6 72.6 90.0 76.6 88.9 77.8 82.3 75.7 85.3 66.8 95.8 80.6 80.3

β=8 71.6 71.7 90.0 76.0 87.2 76.2 80.5 73.1 85.3 63.7 95.8 79.6 79.2

DIP-VAE 73.7 73.2 90.9 80.6 91.9 81.5 85.9 75.9 85.3 71.5 96.2 84.7 82.6

Ours (DCGAN) 72.2 68.5 88.8 75.7 89.9 76.9 80.1 73.6 83.8 70.5 95.8 78.6 79.5

Ours (BEGAN) 73 69.7 90.2 79.6 89.3 78.9 85.4 77.1 88.1 70.8 96.4 81.7 81.7

(a) Brightness (b) Glasses (c) Hair color (d) Hair style (e) Pose/smile

Figure 7: Image retrieval on CelebA of our method with DCGAN. Subfigures show the nearest neighbor matches for different

feature chunks. For all subfigures, the first column contains the query images and subsequent columns contain the top matches

using the L2 distance. The caption indicates the discovered semantic meaning.

on. We applied our method with both BEGAN and DC-

GAN architectures. Figure 6 shows the attribute transfer for

each chunk. We can see that DCGAN exhibits more pro-

nounced attribute transfer, while BEGAN tends to blur out

the changes. Figure 7 shows the nearest neighbors of some

query images in the dataset using DCGAN. We used the L2

distance on the specified feature chunks to search for top

matches. For each chunk the top matches preserve a seman-

tic attribute of the query image. Our method could recover

five semantically meaningful attributes: brightness, glasses,

hair color, hair style, and pose and smile. Notice that the

attributes discovered with attribute transfer match the at-

tributes in image retrieval. For brevity we only show those

five chunks. We performed quantitative tests on our learned

features. We followed the evaluation technique based on the

equivariant disentanglement property described in [18]. A

feature representation is considered disentangled when the

attributes can be classified using a simple linear classifier.

In our special case when an attribute depends only on one

chunk (a subspace), a linear classifier would perform well

by setting the classifier weights with respect to the other

chunks to zero. We train binary classifiers on the whole fea-

ture vector, each with a different labeled attribute as ground

truth. The classifier prediction is sign(wT f + b), where the

classifier weights are computed as

w = 1

|i:ci=+1|

∑

i:ci=+1
fi −

1

|i:ci=−1|

∑

i:ci=−1
fi, (5)

where ci ∈ {−1,+1} are the attribute labels. The bias term

b is set by minimizing the hinge loss. For a fair compar-

ison we normalize the features by setting the variance for

each coordinate to one, as in [18] the features are already

normalized by the variational autoencoder. The results are

shown in Table 3. We can see that our network is com-

petitive with the state of the art methods, β-VAE [10] and

concurrent work DIP-VAE [18]. The BEGAN architecture

performs slightly better than DCGAN, despite the superior

rendering quality of the latter.

5. Conclusions

We have introduced a novel method to disentangle fac-

tors of variation of a single set of images where no anno-

tation is available. Our representation is computed through

an autoencoder, which is trained by imposing constraints

between the encoded features and the rendered images. We

train the decoder to render realistic images by feeding fea-

tures obtained by randomly mixing features from two im-

ages and by using adversarial training. Moreover, we force

the autoencoder to make full use of the features by training

it jointly with a classifier that determines how features have

been mixed from an input image. We show that this tech-

nique successfully disentangles factors of variation in the

MNIST, Sprites and CelebA datasets.
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