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Abstract

Contemporary deep learning techniques have made im-

age recognition a reasonably reliable technology. How-

ever training effective photo classifiers typically takes nu-

merous examples which limits image recognition’s scalabil-

ity and applicability to scenarios where images may not be

available. This has motivated investigation into zero-shot

learning, which addresses the issue via knowledge transfer

from other modalities such as text. In this paper we inves-

tigate an alternative approach of synthesizing image clas-

sifiers: almost directly from a user’s imagination, via free-

hand sketch. This approach doesn’t require the category to

be nameable or describable via attributes as per zero-shot

learning. We achieve this via training a model regression

network to map from free-hand sketch space to the space

of photo classifiers. It turns out that this mapping can be

learned in a category-agnostic way, allowing photo classi-

fiers for new categories to be synthesized by user with no

need for annotated training photos. We also demonstrate

that this modality of classifier generation can also be used

to enhance the granularity of an existing photo classifier, or

as a complement to name-based zero-shot learning.

1. Introduction

With the maturing of sophisticated deep learning tech-

niques, the conventional image recognition problem has

begun to approach a solved problem [25, 6]. However

these great successes depend on large-scale labeled image

datasets like ImageNet [6]. This dependence limits the

scalability of the – otherwise highly successful – current

paradigm. This is because we can’t guarantee sufficient

annotated examples for all possible concepts – particularly

rare (e.g., rare animals) or emerging (e.g., new man-made

objects) categories. This limitation has motivated extensive

research into zero-shot learning [29, 11, 1, 15], which aims

to learn a cross-modal mapping from a domain where cat-

egories can be described to the image domain. In this way

classifiers can be synthesized given a category description

such as attributes [5] or word-vectors [23].

The zero-shot learning (ZSL) approach to approach to
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Figure 1: Sketch a Classifier: Illustrative Schematic. MRN:

model regression network, which takes a sketch classifier or

sketch as input and outputs a photo classifier. For example,

during training we have a sketch classifier or sketch of dog,

then we train our model regression network to regress to dog

photo classifier. At testing time, given a sketch classifier or

sketch of an unseen category(e.g., cat), we can use the pre-

trained MRN to generate a corresponding photo classifier.

avoiding per-category data annotation is appealing but has

the drawback that it depends on categories being clearly

nameable or cleanly describable via attributes [1]. At-

tributes must be arranged in a pre-determined ontology and

so suffer from a different kind of scalability barrier than nor-

mal image category annotation [23]. Meanwhile, although

more convenient, the efficacy of naming-based approaches

that rely on word-vectors depends on having no ambiguity

in the category names, and an adequate number of consis-

tent references to the visual concept name in a text corpora

to learn meaningful word-vectors. This means that name

(word-vector) based ZSL may not be suitable for emerg-

ing categories where there is not yet widespread agreement

on the name or a large corpora of references to the named

concept for word-vector training. It is also unsuited for spe-

cialist categories where large text corpora simply may not

exist [1]; or for polysemous concept names (apple computer
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Figure 2: Sketch a Fine-grained Classifier: Illustrative

Schematic. Coarse2FG: coarse to fine-grained model re-

gression network. For example, during training we have

a coarse photo classifier of aquatic bird and a single swan

sketch, then we can train our Coarse2FG to regress the fu-

sion of coarse photo aquatic bird classifier and swan sketch

to the fine-grained swan photo classifier. At testing time, if

a coarse photo classifier of artiodactyl (arbitrary category)

is given, we can draw a simple giraffe sketch to generate a

giraffe photo classifier.

vs. apple company, financial bank vs. river bank, etc.).

In this paper we explore an alternative approach to

annotation-free generation of photo classifiers that side-

steps the above limitations: that of predicting photo clas-

sifiers from free-hand sketches. This has the advantage that

neither consistent unambiguous naming, large relevant text

corpora, nor structured category description via attributes

or parts is necessary. So long as the user can visually imag-

ine the desired category, they can sketch it and synthesize a

classifier. This is related to the task of sketch-based image

retrieval (SBIR) [28, 20], in that both tasks use sketch as in-

put. However SBIR approaches output a list of similar im-

ages, while our Sketch-a-Classifier paradigm outputs a clas-

sifier that can differentiate different kinds of photos from

each other. Moreover, existing SBIR methods either aim to

engineer an invariant feature space [14, 7] or learn an invari-

ant feature space [28, 20, 4, 16]. The former are not very ef-

fective, while the latter depend on being trained on a known

set of categories – they have not been demonstrated to gen-

eralize across categories. In contrast, our model-regression

approach is designed to learn a category agnostic transfor-

mation from sketches to photo classifiers. Given a set of

paired sketches and photo classifier examples, we can syn-

thesize classifiers for novel photo categories given an ex-

isting sketch classifier, or as little as a single drawing as

illustrated in Figure 1.

We further show that this paradigm enables various novel

extensions including using sketch to define a fine-grained

category, and synergistic combination with conventional

zero-shot learning. Fine-Grained: It is often the case that

a photo classifier already exists for a broad category due

to less difficult annotation, and what is missing is a fine-

grained classifier for a rare or emerging sub-category. E.g.

bird vs. rare species of bird. In this case we can combine

the original coarse photo classifier with a sketch of the fine-

grained category and produce a fine-grained photo classi-

fier. Again this does not require access to task-relevant text

corpora or consistent naming. This process is illustrated

in Figure 2. Enhancing ZSL: If a category embedding

does already exist (e.g., via relevant word-vectors) we show

promising results that the category embedding and sketch

representation of the category are complementary.

Our contributions are as follows: (i) We introduce the

problem of category-agnostic sketch-based classifier syn-

thesis (SBCS). (ii) We propose an initial model regression

based framework for SBCS that can generate classifiers in

a zero-shot manner. (iii) Several extensions are presented

including a fine-grained variant and fusion of SBCS with

the standard ZSL paradigm. (iv) Promising results are pre-

sented on all of these tasks.

2. Related Work

Zero-Shot Learning Our proposed problem is related to

zero-shot learning (ZSL) in that it aims to induce photo-

domain classifiers. ZSL is now a well studied area which

we can only briefly review here. The majority of ZSL

approaches exploit category embeddings in the form of

word-vectors [9, 1, 23] or attribute-vectors [15, 1]. Com-

mon approaches use these category embeddings to learn

a cross-domain (image to category embedding) mapping

that enables neighbor style matching of images to proto-

types of novel categories [23, 10]; or train a matching

function to verify if a given image and category embed-

ding pair match [9, 1]. However, as we outlined earlier

these approaches have the drawback that they rely on cate-

gories being cleanly describable by a pre-established ontol-

ogy of attributes, or being unambiguously nameable with a

large corpus of textual references to the category for word-

vector training. In contrast we train a category-agnostic

sketch→photo model regression network that allows users

to synthesize classifiers based solely on their imagination

via free-hand sketches. In our experiments, we show that

our approach is complementary to zero-shot learning in that

if we use both category name and freehand sketch illustra-

tion as input, we can improve performance compared to ei-

ther alone.

One ZSL study is related to ours in use of visually ab-

stract (cartoon) person inputs to generate classifiers for pho-

tos [3]. However, this significantly easier and less general

than our task. It only uses cartoon as a manipulation modal-

ity to solicit user input. It then uses the annotated pose

of persons in the cartoon and photo domain as the repre-

9137



sentation. This means that: (i) By using a high level pose

representation, it does not directly address the whole com-

puter vision problem of sketch and photo interpretation in

the respective domains. (ii) This cross-domain mapping of

cartoon-person-pose to photo-person-pose is much simpler

than the more general mapping between cartoon images and

photo images overall. (iii) As a result it is constrained to

recognizing photo categories which can be defined by the

pose of one or two persons. In contrast, our more general

approach does not require any such pose annotation in ei-

ther modality, and can apply to arbitrary categories.

Sketch-based image retrieval Sketch based image re-

trieval aims to input a sketch and retrieve photos of the same

category as that sketch (category level SBIR [7, 14]) or

photos corresponding to the specific sketch instance (fine-

grained SBIR [28, 20]). Our task is different in that we

aim to use sketches to generate photo classifiers. And

compared to current deep learning-based SBIR methods

[28, 20, 4, 16, 27, 24] we define a category-agnostic model

regression network that can be used to generate classifiers

from disjoint categories to those it was trained on. Existing

SBIR models drop rapidly in performance when tested in

this ‘zero-shot’ setting on novel categories.

Learning to learn Existing ZSL methods typically pre-

dict prototypes across domains, or train pairwise verifica-

tion functions. In contrast, our approach is to predicting

the weights of a classifier [19, 12] – specifically the weights

of an effective photo classifier for a novel category. This

is related to the recently topical area of learning to learn.

For example, learned optimizers predict effective weight

updates for new tasks during learning [18, 2]. Studies in

this area have also addressed few-shot learning. For exam-

ple [13] proposed to force the model learning on few sam-

ples to have equivalent performance with the model learn-

ing on the large scale dataset. Related to ours [26] aimed to

regress low-shot models onto many-shot models, thus learn-

ing a category agnostic ‘model improvement’ transforma-

tion that could be used to improve any low-shot model. Our

approach is related in that our regression output is a model,

i.e., a photo domain classifier. Beyond [26], we learn a re-

gressor that is both a few → many-shot and a sketch →
photo domain category agnostic transformation; and we ex-

plore using both instances (sketch images), as well as mod-

els (sketch classifiers) as input to our model regressor.

3. Methodology

The goal of our framework is to produce good photo

classifiers, e.g., linear support vector machine (SVM) for

binary or multi-way recognition, via regression networks

given input sketches or other classifier models trained to

recognize those sketches. We consider three kinds of in-

puts to our regression networks including: SVM model w

(binary) or W (multi-class), image features φ(.)1 or com-

bination of the coarse-category SVM models and the fine-

grained sketch image features C(w, φ). Meanwhile, for bi-

nary and multi-way recognition purposes, we consider two

different regression networks, multi-layer perceptron and

convolutional neural networks respectively.

3.1. Regression Networks

Model to model regression: Binary For binary photo

recognition problems, we input SVM parameters trained

on sketch domain and predict the parameters of the corre-

sponding SVM for the photo domain. If the regression net-

work is parameterized as Θ, then our model function FΘ(.)
is to learn the mapping,

ŵp = FΘ(ws) (1)

where, ws and ŵp are the sketch and photo SVM models,

i.e., d+1 dimensional vector with weight for d-dimensional

image features and bias, corresponding to the same binary

categories. To train the sketch classifier, k positive sketches

and j negative sketches are randomly selected from the tar-

get class and other training categories respectively.

Model to model regression: Multi-class For the multi-

way photo recognition problem, we regress multi-class

sketch-domain SVM models onto multi-class photo-domain

SVM models. In this case both input and output are

matrices W ∈ R(d+1)×c for c-way classification and d-

dimensional features. To deal with these inputs and outputs

we design a convolutional network for training. Then the

model is to learn

Ŵp = FΘ(Ws) (2)

where, Ŵp and Ws are the multi-class classifier parameters.

Instead of fully connected layers, six convolutional layers

with kernel size of m× 1 are used. Setting stride as 1, the

output size remains the same as the input.

Feature to model regression Besides the above model to

model regression, we also consider direct feature to model

regression. This corresponds to allowing the user to draw a

free-hand sketch and directly regressing this sketch onto a

photo classifier, rather than training a sketch classifier first

before applying the regression. In this case Eq. 1 becomes

ŵp = FΘ(σ
k(φ)) (3)

where, the φ(.) is the feature extractor. E.g. the FC7 of

VGG-19 in our experiments to extract the 4096 dimensional

features. k is the number of sketch samples used to ex-

tract features. σk(.) is the fusion function of the k different

1Word-vector can equivalently replace image features, for description

simplicity it will not be elaborated here.
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Figure 3: Network architecture: Left: binary classifier generation network. Right: multi-class classifier generation network.

Better read in zoomed view with color.

sketch features generating a d dimensional feature vector,

e.g., element-wise average.

For multi-way classification, we similarly concatenate

the feature vectors σk(.) from different c categories to con-

struct a (d + 1) × c matrix as inputs of the convolutional

networks. Thus, the Eq. 2 becomes

Ŵp = FΘ(C
c(σk(φ)) (4)

where C(.) is the concatenation of feature vectors σk(.)
from c different categories.

Fusion to Model Regression for Fine-grained Classifier

Tuning The previous sections described standard sketch

feature or sketch model to photo-classifier regression. We

also consider the situation where a coarse-grained photo

classifier already exists, and this should be combined with

a sketch illustrating a fine-grained category to produce a

photo classifier for the desired fine-grained category. The

intuition is that combining the existing knowledge of the

photo-domain super-category with the fine-grained sketch

may do better than regressing the fine-grained sketch di-

rectly to produce a photo classifier.

In this case the inputs of the regression network become

the fusion of a prior coarse-grained photo SVM model wcg
p

and sketch image feature C(wcg
p , σ). For example C may

concatenate the dp dimensional photo SVM weights wcg
p ,

the ds dimensional sketch feature σ to a dp+ds dimensional

vector. Then, Eq. 1 becomes

ŵfg
p = FΘ(C(w

cg
p , σ)) (5)

3.2. Architecture

Our model regression networks are illustrated in Fig-

ure 3. On the left, the binary classification model regression

network consists of fully-connected layers and flexibly fits

three different kinds of inputs. The right schematic shows

the multi-way classification model regression network. The

multi-way model regression network only has convolutional

layers. It can handle two different kinds of inputs: few-shot

sketch models and few-shot sketch features. For the above

two regression networks, Batch Norm and Leaky RELU lay-

ers are applied after each fully-connected and convolutional

layer prior to the output layer.

3.3. Objective Function

To learn to synthesize effective photo classifiers from

sketch, we are inspired by [26] to define two kinds of losses:

a regression loss and a performance loss.

Regression Loss This penalizes the L2 distance between

the synthesized photo classifier and the ground-truth photo

classifier:

L = ‖ŵ − w‖2 (6)

or

L = ‖Ŵ −W‖F (7)

where, w and W are the ground truth photo classifiers for

binary and multi-class respectively.

Performance Loss Solely requiring that the predicted

classifier matches the ground truth may not be sufficient.

A small difference in weight values may sometimes have a

big difference in classification performance, or vice-versa.

Therefore we also define a performance loss to evaluate the

practical classification performance of the generated photo

classifier on the training photos. For binary classification,

the performance loss is the hinge loss

L̇ = max(0, 1− y · ŷ) = max(0, 1− y · fŵ(I)) (8)

where, I is the given photo, ŷ = fŵ(I) is the prediction us-

ing the generated weights ŵ and y ∈ {−1, 1} is the ground

truth category label for this given photo.

For multi-way classification,we use cross-entropy for the

performance loss

L̇ = −
∑

y · log(ŷ) = −
∑

y · log(f
Ŵ
(I)) (9)
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Coarse Fine-grained Category Names

C1 airplane, blimp, helicopter, sailboat

C2 scorpion, spider, crab, hermit crab, lobster

C3 cannon, knife, pistol, rifle, rocket, sword

C4 rabbit, mouse, squirrel, hedgehog

C5 axe, hammer, racket, saw, scissors, teapot

C6 bench, chair, couch, table, wheelchair

C7 cabin, door, skyscraper, window

C8 armor, hat, shoe, umbrella

C9 bread, hamburger, hotdog, pizza, pretzel

C10 apple, banana, pear, pineapple, strawberry

C11 duck, penguin, seagull, swan, wading bird

C12 crocodilian, lizard, sea turtle, snake, turtle

C13 camel, cow, deer, giraffe

C14 bear, cat, lion, raccoon, tiger

C15 ant, bee, beetle, butterfly

C16 parrot, owl, chicken, songbird

C17 horse, rhinoceros, zebra, elephant

C18 fish, ray, shark, dolphin, seal

C19 guitar, harp, piano, saxophone, trumpet, violin

C20 bicycle, car (sedan), motorcycle, pickup truck, tank

Table 1: Coarse/fine-grained grouping for Sketchy dataset cate-

gories. We split Sketchy into 20 coarse-category groups, where

each group has 4 to 6 fine-grained categories.

Analogously, ŷ = f
Ŵ
(I) ∈ Rc is the multi-class predica-

tion using the generated Ŵ , where y ∈ Rc is 1-hot encoded.

Summary The overall learning objective for the regres-

sion network is to input a sketch feature or model and syn-

thesize a photo model that matches the ground-truth model

and works as a photo classifier:

argmin
Θ

α · L+ β · L̇ (10)

4. Experiments

4.1. Datasets and Settings

Datasets We use Sketchy dataset [20] which contains

about 75000 sketches sketch and 12500 photos across 125

categories, as well as 56166 additional ImageNet photos

of categories in Sketchy. For evaluating category-agnostic

model regression, we split Sketchy into training and testing

categories (details given in each specific experiment). We

train on sketches from our Sketchy train split and photos

from the corresponding ImageNet categories. We test on

sketches and photos from our Sketchy test split. In this way

the photos used in testing are truly novel photos.

Model Regression Architecture For binary classifier re-

gression, four fully connected layers are used. The number

of units for each layer is the same as [26]. For multi-class

classifier regression the architecture is a six layer fully con-

volutional (matching size input and output) network with

32, 64, 128, 64, 32, 1 channel(s) at each respective layer.

Features For photo features we use the ILSVRC 1000-

category pre-trained VGG19 [22] model to extract FC7

layer features. The photo model is not well tuned for sketch

feature extraction, so we fine-tune the VGG-19 model for

sketch recognition on Sketchy dataset (excluding the test-

ing categories), and apply the fine-tuned model for sketch

feature extraction. For word-vectors we use the word2vec

model pre-trained on Google News corpus (3 billion run-

ning words) to get one 300d word-vector [17] (as per most

recent ZSL [23, 1] work) for each of 125 categories.

Training Setting: Regression model Adam optimizer

is used in all experiments with initial learning rate of 2 ×
10−5, hyper parameters α = 0.01, β = 1. The mini batch

size for multi-class classifier regression and binary classifier

regression are 16 and 64 respectively.

4.2. Models for Comparison

To evaluate the efficacy of our proposed method. We

consider the following models as baselines for comparison:

Feature-Based

Sketch Nearest Neighbor: We take the target category

sketches, extract deep features and treat these as labeled

photos. These are compared directly to the deep features

of the photos to classify.

Sketch Nearest Neighbor + Subspace Alignment: Vanilla

nearest neighbor may not work well due to the domain shift

between sketch and photo. Subspace alignment [8] aims to

improves cross-domain matching by aligning the subspaces

for comparison.

Triplet Ranking: These methods [28, 20] use a three

branch network and triplet loss to learn a good aligned

sketch-photo representation for sketch-photo matching. For

fair comparison, we re-train the Sketch Me That Shoe net-

work [28] using the same training categories.

Model-Based

Sketch-model: SVM models trained with one or five posi-

tive sketches.

Photo-model: The upper bound, assuming we have photos

to train a few shot model.

Feature→Model Regression

Word-vector: This corresponds to the standard regression-

based approach to zero-shot learning such as: [23, 10].

Such ZSL approaches are not a direct competitor for our

approach as we do not rely on word-vectors, but it provides

some context for performance.

Sketch-feature: Our framework, regressing the features of

k = {1, 5} shot sketches as inputs.

Photo-feature: This extends the few→many shot regres-

sion as per [26] to the case of using feature (few-shot exam-

ple) rather than model (few-shot classifier) inputs. It pro-

vides an upper bound of how well we could do if we actu-

ally have photos of the target categories to recognize.

Model→Model Regression

Sketch-model: Our framework, regressing the k = {1, 5}
shot trained sketch classifier to a many-shot photo domain

classifier before applying it.
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Photo-model: The upper bound of photo model based

few→many shot regression [26].

4.3. Results

4.3.1 Binary Photo Classifier from Sketch

In the first experiment we evaluate synthesizing 1-vs.-all

photo classifiers based on sketches.

Settings: Of the 125 Sketchy categories, we use 115

for training and 10 for testing. To train the input and tar-

get SVMs, we keep the number of negative examples at

600 for all few-shot and ground-truth models. For train-

ing the model regression network, we need multiple few-

shot sketch models. We train 500 input SVM models

for each category with different regularization parameters

from 10−2,−1,0,1,2 and different randomly selected positive

sketches. For ground-truth (target) photo model, all Ima-

geNet photos of the target category are taken as positive

examples when training one many-shot photo recognition

model per category. The same ground-truth photo models

are used in the feature and model-based regression input.

Evaluation Metrics We use average precision of binary

photo classification. Average precision is computed by

ranking the the testing set according to the classifier score

and compute the average precision over all recalls. Re-

ported results are averages over the performance of 100

regressed features/models for different choices of input

sketches (except W.V. as there is only one per category).

Results: The classification results are shown in Table

2. From the results we make the following observations:

(i) Comparing the direct cross-domain application of sketch

models to the regressed models (Non Reg. S.M. vs. M2M

Reg. S.M.), we see that the regression network significantly

improves performance in the 1-shot but not 5-shot case. (ii)

Generally the regression network worked better for sketch

feature input than model input (Sketch F2M vs. M2M). It

also trains a classifier that is much better than using the

raw input sketch feature for NN matching (F2M One S.F.

vs. Sketch NN). (iii) Contrary to [26], we found limited

improvement from photo-based few→many-shot model re-

gression. (iv) Although word-vector-based ZSL is not a di-

rect competitor to sketch-based classifier generation (since

it depends on name-ability), it is interesting that the F2M

regressed sketch inputs (F2M Reg. Sketch Feature) outper-

form it. The margin becomes larger if the user spends more

effort to provide five rather than one input sketch – there is

no analogy to this in conventional ZSL. (v) Our regression

network is capable of combining sketch inputs and word-

vector inputs in a complementary way: F2M One S.F. +

WV outperforms F2M One S.F. and F2M W.V. alone. (vi)

The triplet ranking approach [28] learns a shared embed-

ding that improves significantly on vanilla NN matching or

subspace alignment, but it is still not competitive with the
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Figure 4: Dependence on number of train categories (binary

one-shot feature regression)

model-regression approaches. (vii) If the user is willing to

draw more than one sketch to convey some intra-class vari-

ability when defining classifier, performance improves for

both feature and model input. In particular the classifier

generated by regressing 5 sketch features is comparable to

using one-shot photo. Thus a ‘photo is worth five sketches’.

(viii) The Photo classification accuracy is affected by how

easily confusable the test categories are, e.g. relatively large

number of mis-classifications between the similar ’Duck’

and ’Seagull’ classes. (ix) An analysis on the impact of

sketch quality on classification accuracy can be found in

Table 3. Higher quality sketches produce better photo clas-

sifier, but the performance gap is obvious only for the bot-

tom 10 sketches. (x) As shown in Figure 4, more training

categories would improve results due to having more data

for training and increased chance of including a similar cat-

egory to a given test category.

4.3.2 Multi-class Photo Classifier from Sketch

We next evaluate synthesizing multi-way photo classifiers

using our convolutional model regression network.

Settings: We use the same 10 categories as the binary

classifier regression for the test set. To train the model re-

gression, among the 115 training categories we randomly

select 10 categories to train 100 10-way multi-class sketch

classifier and one 10-way multi-class photo classifier. All

together 500 random groups are created in order to gen-

erate classifiers and train this model regressor. All photos

from selected categories are used to train the ground-truth

multi-class classification model for both feature and model

regression.

Results: From the results shown in Table 4, we can draw

the conclusions: (i) Our model to model regression success-

fully improved the multi-class sketch recognition model for

application to photos (M2M Reg. S.M. improves Non Reg.

S.M.). However we found that the photo performance was

little affected by model regression. (ii) Our feature to model
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Classification

Method
Car (sedan) Pear Deer Couch Duck Airplane Cat Mouse Seagull Knife

Binary:

mAP(%)

Non

Reg.

S.F. NN 78.27 49.64 55.67 64.97 34.24 43.63 46.60 40.32 56.24 58.91 52.85

S.F. NN+SA [8] 84.15 48.74 51.76 69.25 41.88 36.98 49.87 39.25 68.87 58.22 54.90

SAN-S [28] 89.64 82.97 86.84 84.27 75.04 77.58 74.39 66.05 75.78 75.35 78.79

Non

Reg.

one-shot S.M. 99.24 81.77 86.46 92.31 55.98 69.28 88.45 69.11 63.35 79.69 78.56

five-shot S.M. 99.95 94.88 97.65 97.85 79.60 95.23 96.21 82.57 76.12 92.06 91.21

one-shot P.M. 99.98 98.06 98.66 97.49 87.69 98.96 94.20 92.91 91.82 96.39 95.62

five-shot P.M. 100.00 99.79 99.87 99.59 99.00 99.95 98.15 98.80 99.02 99.01 99.32

M2M

Reg.

one-shot S.M. 97.78 93.42 92.66 99.51 65.10 80.44 73.13 69.66 54.06 90.16 81.59

five-shot S.M. 99.98 94.59 93.17 98.92 80.11 96.22 85.54 88.46 67.42 94.64 89.91

one-shot P.M. 99.98 99.17 99.78 98.58 84.80 99.92 87.72 95.61 74.13 98.73 93.84

five-shot P.M. 100.00 99.64 99.93 99.72 96.55 99.90 94.02 98.27 84.90 99.00 97.19

F2M

Reg.

W.V. 99.91 98.37 92.75 99.24 69.15 99.08 80.02 83.03 86.11 98.38 90.60

one S.F. 97.51 95.00 96.38 95.56 93.13 93.40 89.05 87.41 80.17 94.30 92.19

five S.F. 100.00 96.65 99.85 99.38 96.41 98.34 91.17 92.16 87.05 92.54 95.35

one S.F.+W.V. 98.33 95.09 97.30 97.33 95.02 94.90 88.39 85.28 81.41 92.10 92.52

one P.F. 99.93 98.24 99.00 99.32 96.58 99.83 87.57 93.76 88.25 96.37 95.89

five P.F. 99.99 99.67 99.86 99.81 98.37 99.94 94.86 98.00 93.01 98.47 98.20

Table 2: Photo classification accuracy on Sketchy Dataset: Binary. Metrics: mean Average Precision (%). Non Reg.: no regression used.

M2M Reg.: model to model regression. F2M Reg.: feature to model regression. S.M.: sketch model. P.M.: photo model. S.F.: sketch

feature. P.F.: photo feature. W.V.: word-vector. Entries based on photos are upper bounds for context. Best non-photo results are in bold.

Car (sedan) Pear Deer Couch Duck Airplane Cat Mouse Seagull Knife Binary mAP(%)

Bottom 10 85.87 89.82 84.03 91.58 93.41 73.83 82.17 84.13 81.39 89.28 85.55

Middle 10 96.44 94.27 98.47 96.88 95.59 97.93 87.93 89.10 73.06 96.60 92.63

Top 10 99.95 96.23 99.57 98.22 94.72 99.87 93.32 94.50 85.54 97.07 95.90

Table 3: Influence of sketch quality (binary one-shot feature regression). VGG-19 trained for sketch recognition is used as

an indicator of sketch quality.

regression outperformed model to model regression (F2M

Reg. S.F. vs. M2M Reg. S.M.). (iii) As in the previous ex-

periment, if multiple sketches are available to encode some

intra-class variability performance is greatly improved (five

S.F. vs. one S.F.). (iii) Overall in this case the sketch-based

model regression outperformed the word-vector alone base-

line (F2M Reg. S.F. vs. F2M Reg. W.V.). (v) Again compar-

ing to the upper bound that assumes photo availability, we

see that model-regression based on five sketches performs

comparably to the availability of a single target class photo.

4.3.3 Coarse to Fine-Grained Photo Classification

through Sketching

The goal of this task is to transform a coarse-grained photo

classifier to a fine-grained classifier using a sketch. This

is motivated by the idea of defining a classifier for a new

(e.g. man made object) or rare (e.g. animal) fine-grained

category within a known coarse category. In the absence

of specific datasets for this we illustrate the concept us-

ing a coarse/fine-grained category grouping within Sketchy

dataset. Specifically, we group the categories in Sketchy

according to the WordNet structure in ImageNet. This

gives us 20 groups (coarse categories) containing 95 sub-

categories (fine-grained categories) as illustrated in Table 1.

Settings: Coarse photo models are trained by taking pho-

tos from all fine-grained categories in one group as posi-

tive examples and the other (non-overlapping with Sketchy

Classification Method Multi-class: Accuracy(%)
Sketch NN 16.25

SAN-S [28] 23.95

Non Reg.
five S.M. 78.60

five P.M. 93.30

M2M Reg.
five S.M. 79.93

five P.M. 93.55

F2M Reg.

W.V. 35.90

one S.F. 68.16

five S.F. 83.01

one P.F. 84.12

five P.F. 93.89

Table 4: Photo classification accuracy on Sketchy Dataset: Multi-

class. Abbreviations as in Table 2. Best non-photo result is in bold.

dataset) photos from ImageNet as negative examples. Fine-

grained photo models are trained by taking photos from one

fine-grained category as positive examples. In this setup the

model regressor inputs both a coarse-grained photo classi-

fier and a fine-grained sketch feature2, and predicts the cor-

responding fine-grained photo classifier. For each coarse

training category, 500 SVM models are trained by taking

250 photos in this coarse category as positive examples and

the same number of random negative samples from the re-

maining training categories.

In this experiment we train on 17 coarse categories and se-

2Since the prior experiments showed sketch feature input was typically

better than sketch model input, we stick to sketch feature input here.
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Auxiliary input type CG helicopter airplane blimp sailboat giraffe deer cow camel window door skyscraper cabin Binary:mAP (%)

NN + S.F. × 15.37 5.83 9.75 25.79 8.23 7.38 6.09 5.11 22.54 11.24 22.23 17.52 13.09

W.V. × 34.28 12.61 10.23 69.10 8.09 8.03 20.75 21.07 33.58 29.64 10.32 13.87 22.63

one S.F. × 32.78 40.16 38.23 34.79 15.01 34.52 35.72 28.95 29.82 21.25 17.85 32.98 30.16

five S.F. × 46.15 58.90 55.02 30.42 17.07 50.09 39.82 52.90 20.39 23.09 16.72 44.82 37.95

one S.F. + W.V. × 34.27 46.08 35.75 18.13 16.29 53.26 35.17 29.01 25.91 25.84 14.18 44.98 31.57

one P.F. × 30.58 69.67 55.88 61.29 38.00 35.36 50.51 58.09 26.60 53.32 25.11 69.67 47.84

five P.F. × 25.46 80.50 53.67 89.56 25.99 34.34 49.63 73.58 34.42 55.19 38.23 77.87 53.20

NN + S.F. X 35.71 17.64 23.66 51.32 41.71 32.68 23.41 17.37 35.57 20.85 41.61 31.66 31.10

W.V. X 38.01 21.99 16.23 71.21 22.60 42.22 32.40 33.23 40.86 32.82 25.05 24.25 33.40

one S.F. X 50.34 46.93 51.09 49.21 26.40 39.74 39.66 36.84 33.20 26.69 44.50 37.92 40.21

five S.F. X 58.31 62.78 65.39 40.52 20.28 51.12 40.34 54.35 23.37 27.47 38.82 47.52 44.19

one S.F. + W.V. X 53.64 54.01 53.84 29.74 25.42 57.02 37.83 35.62 29.26 32.13 34.53 49.68 41.06

one P.F. X 35.26 70.65 57.35 63.34 40.64 36.44 51.68 58.94 29.20 55.17 71.98 73.39 53.67

five P.F. X 28.75 81.13 54.73 90.49 28.87 34.73 49.89 73.86 34.91 55.66 80.67 78.59 57.69

Table 5: Photo classification accuracy on Sketchy Dataset: coarse to fine-grained, holding out out 3 coarse categories. Abbreviations as

in Table 2. CG indicates coarse category known at runtime or not. Best non-photo results are in bold.

lect three coarse categories for testing. Evaluation uses bi-

nary AP. We consider two conditions: (1) Coarse category

unknown at runtime. AP is evaluated among all 12 fine-

grained categories in the 3 held out coarse categories. (2)

Coarse category assumed known at runtime. We only dif-

ferentiate among the constituent fine-grained categories in

AP evaluation.

Results: From the results in Table 5 we can see that: (i)

Sketch-based coarse→fine regression does indeed provide

a reasonable fine-grained photo classifier that outperforms

the NN + S.F. baseline. (ii) As in the previous experiments,

availability of more sketches is still beneficial. (iv) The

sketch-based coarse → fine classifier clearly outperforms

the word-vector baseline (S.F. vs. W.V.) supporting the ef-

ficacy of this novel input modality for classifier generation.

(v) There is a slight performance increase when combining

sketch features and word-vectors.

4.3.4 Visualization

We finally provide a qualitative visualization of the com-

putation of our sketch-based classifier synthesis compared

to alternatives. We exploit the recent deep network analy-

sis tool GradCAM [21] to visualize the region of interests

of the classifiers in some example images (Figure 5). We

compare four models: 1. Word-vector regressed models. 2.

Directly applied sketch models, raw sketch model. 3. Re-

gressed sketch model. 4. Ground truth photo model. In each

case we replace the normal output layer of VGG-19 with the

corresponding classifier and apply GradCAM to visualize

its reasoning. From Figure 5, we can see some differences:

The word-vector regressed model (first row) doesn’t look at

the full spatial extent of the knife, and it is more distracted

by background texture in the case of the mouse. The raw

sketch model (second row) gets closer to the extent of the

knife but is still distracted by background of the mouse. The

regressed sketch model (third row) better estimates the ex-

tent of the objects, doing so comparably to the ground truth

photo model (fourth row).

Figure 5: CNN photo classification decision process visualized

by GradCAM [21]. Rows: 1. W.V. regressed model. 2. Raw

sketch model. 3. F2M Sketch Regressed model. 4. Ground truth

many-shot photo model. Left: Region of interest heatmap (images

recognized correctly have a green border, and those recognized

incorrectly have red). Right: Important pixels for recognition.

5. Conclusion

We proposed the novel concept of sketch-based classifier

synthesis that provides an alternative to zero-shot learning

when categories are easier to draw than to name. Using a

model-regression approach we showed that effective photo

classifiers can be synthesized using one or few sketches.

The approach is synergistic with traditional zero-shot ap-

proach of synthesis based on word-vectors, and can be ex-

tended to diverse variants such as using sketch to generate

a fine-grained classifier from a coarse-grained classifier. In

future work we will apply this idea to synthesizing models

for other photo tasks such as segmentation.
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