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Abstract

Convolutional neural networks are built upon the con-

volution operation, which extracts informative features by

fusing spatial and channel-wise information together within

local receptive fields. In order to boost the representa-

tional power of a network, several recent approaches have

shown the benefit of enhancing spatial encoding. In this

work, we focus on the channel relationship and propose

a novel architectural unit, which we term the “Squeeze-

and-Excitation” (SE) block, that adaptively recalibrates

channel-wise feature responses by explicitly modelling in-

terdependencies between channels. We demonstrate that by

stacking these blocks together, we can construct SENet ar-

chitectures that generalise extremely well across challeng-

ing datasets. Crucially, we find that SE blocks produce

significant performance improvements for existing state-of-

the-art deep architectures at minimal additional computa-

tional cost. SENets formed the foundation of our ILSVRC

2017 classification submission which won first place and

significantly reduced the top-5 error to 2.251%, achiev-

ing a ∼25% relative improvement over the winning en-

try of 2016. Code and models are available at https:

//github.com/hujie-frank/SENet.

1. Introduction

Convolutional neural networks (CNNs) have proven to

be effective models for tackling a variety of visual tasks

[21, 27, 33, 45]. For each convolutional layer, a set of

filters are learned to express local spatial connectivity pat-

terns along input channels. In other words, convolutional

filters are expected to be informative combinations by fus-

ing spatial and channel-wise information together within lo-

cal receptive fields. By stacking a series of convolutional

layers interleaved with non-linearities and downsampling,

CNNs are capable of capturing hierarchical patterns with

global receptive fields as powerful image descriptions. Re-

cent work has demonstrated that the performance of net-

works can be improved by explicitly embedding learning

∗Equal contribution.

mechanisms that help capture spatial correlations without

requiring additional supervision. One such approach was

popularised by the Inception architectures [16, 43], which

showed that the network can achieve competitive accuracy

by embedding multi-scale processes in its modules. More

recent work has sought to better model spatial dependence

[1, 31] and incorporate spatial attention [19].

In this paper, we investigate a different aspect of archi-

tectural design - the channel relationship, by introducing a

new architectural unit, which we term the “Squeeze-and-

Excitation” (SE) block. Our goal is to improve the rep-

resentational power of a network by explicitly modelling

the interdependencies between the channels of its convolu-

tional features. To achieve this, we propose a mechanism

that allows the network to perform feature recalibration,

through which it can learn to use global information to se-

lectively emphasise informative features and suppress less

useful ones.

The basic structure of the SE building block is illustrated

in Fig. 1. For any given transformation Ftr : X → U,

X ∈ R
H′×W ′×C′

,U ∈ R
H×W×C , (e.g. a convolution

or a set of convolutions), we can construct a correspond-

ing SE block to perform feature recalibration as follows.

The features U are first passed through a squeeze opera-

tion, which aggregates the feature maps across spatial di-

mensions H × W to produce a channel descriptor. This

descriptor embeds the global distribution of channel-wise

feature responses, enabling information from the global re-

ceptive field of the network to be leveraged by its lower lay-

ers. This is followed by an excitation operation, in which

sample-specific activations, learned for each channel by a

self-gating mechanism based on channel dependence, gov-

ern the excitation of each channel. The feature maps U

are then reweighted to generate the output of the SE block

which can then be fed directly into subsequent layers.

An SE network can be generated by simply stacking a

collection of SE building blocks. SE blocks can also be

used as a drop-in replacement for the original block at any

depth in the architecture. However, while the template for

the building block is generic, as we show in Sec. 6.4, the

role it performs at different depths adapts to the needs of the

network. In the early layers, it learns to excite informative
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Figure 1: A Squeeze-and-Excitation block.

features in a class agnostic manner, bolstering the quality of

the shared lower level representations. In later layers, the

SE block becomes increasingly specialised, and responds

to different inputs in a highly class-specific manner. Con-

sequently, the benefits of feature recalibration conducted by

SE blocks can be accumulated through the entire network.

The development of new CNN architectures is a chal-

lenging engineering task, typically involving the selection

of many new hyperparameters and layer configurations. By

contrast, the design of the SE block outlined above is sim-

ple, and can be used directly with existing state-of-the-art

architectures whose modules can be strengthened by direct

replacement with their SE counterparts.

Moreover, as shown in Sec. 4, SE blocks are computa-

tionally lightweight and impose only a slight increase in

model complexity and computational burden. To support

these claims, we develop several SENets and provide an

extensive evaluation on the ImageNet 2012 dataset [34].

To demonstrate their general applicability, we also present

results beyond ImageNet, indicating that the proposed ap-

proach is not restricted to a specific dataset or a task.

Using SENets, we won the first place in the ILSVRC

2017 classification competition. Our top performing model

ensemble achieves a 2.251% top-5 error on the test set1.

This represents a ∼25% relative improvement in compari-

son to the winner entry of the previous year (with a top-5

error of 2.991%).

2. Related Work

Deep architectures. VGGNets [39] and Inception mod-

els [43] demonstrated the benefits of increasing depth.

Batch normalization (BN) [16] improved gradient propa-

gation by inserting units to regulate layer inputs, stabilis-

ing the learning process. ResNets [10, 11] showed the ef-

fectiveness of learning deeper networks through the use of

identity-based skip connections. Highway networks [40]

employed a gating mechanism to regulate shortcut connec-

tions. Reformulations of the connections between network

layers [5, 14] have been shown to further improve the learn-

ing and representational properties of deep networks.

An alternative line of research has explored ways to tune

the functional form of the modular components of a net-

work. Grouped convolutions can be used to increase car-

1http://image-net.org/challenges/LSVRC/2017/results

dinality (the size of the set of transformations) [15, 47].

Multi-branch convolutions can be interpreted as a generali-

sation of this concept, enabling more flexible compositions

of operators [16, 42, 43, 44]. Recently, compositions which

have been learned in an automated manner [26, 54, 55]

have shown competitive performance. Cross-channel cor-

relations are typically mapped as new combinations of fea-

tures, either independently of spatial structure [6, 20] or

jointly by using standard convolutional filters [24] with 1×1
convolutions. Much of this work has concentrated on the

objective of reducing model and computational complexity,

reflecting an assumption that channel relationships can be

formulated as a composition of instance-agnostic functions

with local receptive fields. In contrast, we claim that provid-

ing the unit with a mechanism to explicitly model dynamic,

non-linear dependencies between channels using global in-

formation can ease the learning process, and significantly

enhance the representational power of the network.

Attention and gating mechanisms. Attention can be

viewed, broadly, as a tool to bias the allocation of available

processing resources towards the most informative compo-

nents of an input signal [17, 18, 22, 29, 32]. The benefits

of such a mechanism have been shown across a range of

tasks, from localisation and understanding in images [3, 19]

to sequence-based models [2, 28]. It is typically imple-

mented in combination with a gating function (e.g. a soft-

max or sigmoid) and sequential techniques [12, 41]. Re-

cent work has shown its applicability to tasks such as im-

age captioning [4, 48] and lip reading [7]. In these appli-

cations, it is often used on top of one or more layers rep-

resenting higher-level abstractions for adaptation between

modalities. Wang et al. [46] introduce a powerful trunk-

and-mask attention mechanism using an hourglass module

[31]. This high capacity unit is inserted into deep resid-

ual networks between intermediate stages. In contrast, our

proposed SE block is a lightweight gating mechanism, spe-

cialised to model channel-wise relationships in a computa-

tionally efficient manner and designed to enhance the repre-

sentational power of basic modules throughout the network.

3. Squeeze-and-Excitation Blocks

The Squeeze-and-Excitation block is a computational

unit which can be constructed for any given transformation

Ftr : X → U, X ∈ R
H′×W ′×C′

,U ∈ R
H×W×C . For
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simplicity, in the notation that follows we take Ftr to be a

convolutional operator. Let V = [v1,v2, . . . ,vC ] denote

the learned set of filter kernels, where vc refers to the pa-

rameters of the c-th filter. We can then write the outputs of

Ftr as U = [u1,u2, . . . ,uC ], where

uc = vc ∗X =
C′∑

s=1

v
s
c ∗ x

s. (1)

Here ∗ denotes convolution, vc = [v1
c ,v

2
c , . . . ,v

C′

c ] and

X = [x1,x2, . . . ,xC′

] (to simplify the notation, bias terms

are omitted), while v
s
c is a 2D spatial kernel, and therefore

represents a single channel of vc which acts on the corre-

sponding channel of X. Since the output is produced by

a summation through all channels, the channel dependen-

cies are implicitly embedded in vc, but these dependencies

are entangled with the spatial correlation captured by the

filters. Our goal is to ensure that the network is able to in-

crease its sensitivity to informative features so that they can

be exploited by subsequent transformations, and to suppress

less useful ones. We propose to achieve this by explicitly

modelling channel interdependencies to recalibrate filter re-

sponses in two steps, squeeze and excitation, before they are

fed into next transformation. A diagram of an SE building

block is shown in Fig. 1.

3.1. Squeeze: Global Information Embedding

In order to tackle the issue of exploiting channel depen-

dencies, we first consider the signal to each channel in the

output features. Each of the learned filters operates with a

local receptive field and consequently each unit of the trans-

formation output U is unable to exploit contextual informa-

tion outside of this region. This is an issue that becomes

more severe in the lower layers of the network whose re-

ceptive field sizes are small.

To mitigate this problem, we propose to squeeze global

spatial information into a channel descriptor. This is

achieved by using global average pooling to generate

channel-wise statistics. Formally, a statistic z ∈ R
C is gen-

erated by shrinking U through spatial dimensions H ×W ,

where the c-th element of z is calculated by:

zc = Fsq(uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc(i, j). (2)

Discussion. The transformation output U can be in-

terpreted as a collection of the local descriptors whose

statistics are expressive for the whole image. Exploiting

such information is prevalent in feature engineering work

[35, 38, 49]. We opt for the simplest, global average pool-

ing, noting that more sophisticated aggregation strategies

could be employed here as well.

3.2. Excitation: Adaptive Recalibration

To make use of the information aggregated in the squeeze

operation, we follow it with a second operation which aims

to fully capture channel-wise dependencies. To fulfil this

objective, the function must meet two criteria: first, it must

be flexible (in particular, it must be capable of learning a

nonlinear interaction between channels) and second, it must

learn a non-mutually-exclusive relationship since we would

like to ensure that multiple channels are allowed to be em-

phasised opposed to one-hot activation. To meet these cri-

teria, we opt to employ a simple gating mechanism with a

sigmoid activation:

s = Fex(z,W) = σ(g(z,W)) = σ(W2δ(W1z)), (3)

where δ refers to the ReLU [30] function, W1 ∈ R
C

r
×C and

W2 ∈ R
C×C

r . To limit model complexity and aid generali-

sation, we parameterise the gating mechanism by forming a

bottleneck with two fully connected (FC) layers around the

non-linearity, i.e. a dimensionality-reduction layer with pa-

rameters W1 with reduction ratio r (this parameter choice

is discussed in Sec. 6.4), a ReLU and then a dimensionality-

increasing layer with parameters W2. The final output of

the block is obtained by rescaling the transformation output

U with the activations:

x̃c = Fscale(uc, sc) = sc · uc, (4)

where X̃ = [x̃1, x̃2, . . . , x̃C ] and Fscale(uc, sc) refers to

channel-wise multiplication between the feature map uc ∈

R
H×W and the scalar sc.

Discussion. The activations act as channel weights

adapted to the input-specific descriptor z. In this regard,

SE blocks intrinsically introduce dynamics conditioned on

the input, helping to boost feature discriminability.

3.3. Exemplars: SE­Inception and SE­ResNet

It is straightforward to apply the SE block to AlexNet

[21] and VGGNet [39]. The flexibility of the SE block

means that it can be directly applied to transformations be-

yond standard convolutions. To illustrate this point, we de-

velop SENets by integrating SE blocks into modern archi-

tectures with sophisticated designs.

For non-residual networks, such as Inception network,

SE blocks are constructed for the network by taking the

transformation Ftr to be an entire Inception module (see

Fig. 2). By making this change for each such module

in the architecture, we construct an SE-Inception network.

Moreover, SE blocks are sufficiently flexible to be used in

residual networks. Fig. 3 depicts the schema of an SE-

ResNet module. Here, the SE block transformation Ftr

is taken to be the non-identity branch of a residual mod-

ule. Squeeze and excitation both act before summation

with the identity branch. More variants that integrate with

ResNeXt [47], Inception-ResNet [42], MobileNet [13] and

ShuffleNet [52] can be constructed by following the simi-

lar schemes. We describe the architecture of SE-ResNet-50

and SE-ResNeXt-50 in Table 1.
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Figure 2: The schema of the original Inception module (left) and

the SE-Inception module (right).

SE-ResNet Module

+

Global pooling

FC

ReLU

+
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X
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Figure 3: The schema of the original Residual module (left) and

the SE-ResNet module (right).

4. Model and Computational Complexity

For the proposed SE block to be viable in practice, it

must provide an effective trade-off between model com-

plexity and performance which is important for scalability.

We set the reduction ratio r to be 16 in all experiments, ex-

cept where stated otherwise (more discussion can be found

in Sec. 6.4). To illustrate the cost of the module, we take

the comparison between ResNet-50 and SE-ResNet-50 as

an example, where the accuracy of SE-ResNet-50 is supe-

rior to ResNet-50 and approaches that of a deeper ResNet-

101 network (shown in Table 2). ResNet-50 requires ∼3.86
GFLOPs in a single forward pass for a 224 × 224 pixel in-

put image. Each SE block makes use of a global average

pooling operation in the squeeze phase and two small fully

connected layers in the excitation phase, followed by an

inexpensive channel-wise scaling operation. In aggregate,

SE-ResNet-50 requires ∼3.87 GFLOPs, corresponding to a

0.26% relative increase over the original ResNet-50.

In practice, with a training mini-batch of 256 images,

a single pass forwards and backwards through ResNet-50

takes 190 ms, compared to 209 ms for SE-ResNet-50 (both

timings are performed on a server with 8 NVIDIA Titan X

GPUs). We argue that this represents a reasonable overhead

particularly since global pooling and small inner-product

operations are less optimised in existing GPU libraries.

Moreover, due to its importance for embedded device ap-

plications, we also benchmark CPU inference time for each

model: for a 224× 224 pixel input image, ResNet-50 takes

164 ms, compared to 167 ms for SE-ResNet-50. The small

additional computational overhead required by the SE block

is justified by its contribution to model performance.

Next, we consider the additional parameters introduced

by the proposed block. All of them are contained in the two

FC layers of the gating mechanism, which constitute a small

fraction of the total network capacity. More precisely, the

number of additional parameters introduced is given by:

2

r

S∑

s=1

Ns · Cs
2 (5)

where r denotes the reduction ratio, S refers to the num-

ber of stages (where each stage refers to the collection of

blocks operating on feature maps of a common spatial di-

mension), Cs denotes the dimension of the output channels

and Ns denotes the repeated block number for stage s. SE-

ResNet-50 introduces ∼2.5 million additional parameters

beyond the ∼25 million parameters required by ResNet-50,

corresponding to a ∼10% increase. The majority of these

parameters come from the last stage of the network, where

excitation is performed across the greatest channel dimen-

sions. However, we found that the comparatively expensive

final stage of SE blocks could be removed at a marginal cost

in performance (<0.1% top-1 error on ImageNet) to reduce

the relative parameter increase to ∼4%, which may prove

useful in cases where parameter usage is a key considera-

tion (see further discussion in Sec. 6.4).

5. Implementation

Each plain network and its corresponding SE counter-

part are trained with identical optimisation schemes. Dur-

ing training on ImageNet, we follow standard practice and

perform data augmentation with random-size cropping [43]

to 224 × 224 pixels (299 × 299 for Inception-ResNet-v2

[42] and SE-Inception-ResNet-v2) and random horizontal

flipping. Input images are normalised through mean chan-

nel subtraction. In addition, we adopt the data balancing

strategy described in [36] for mini-batch sampling. The

networks are trained on our distributed learning system

“ROCS” which is designed to handle efficient parallel train-

ing of large networks. Optimisation is performed using syn-

chronous SGD with momentum 0.9 and a mini-batch size

of 1024. The initial learning rate is set to 0.6 and decreased

by a factor of 10 every 30 epochs. All models are trained
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Output size ResNet-50 SE-ResNet-50 SE-ResNeXt-50 (32× 4d)

112× 112 conv, 7× 7, 64, stride 2

56× 56
max pool, 3× 3, stride 2



conv, 1× 1, 64

conv, 3× 3, 64

conv, 1× 1, 256


× 3




conv, 1× 1, 64

conv, 3× 3, 64

conv, 1× 1, 256

fc, [16, 256]


× 3




conv, 1× 1, 128

conv, 3× 3, 128 C = 32

conv, 1× 1, 256

fc, [16, 256]


× 3

28× 28



conv, 1× 1, 128

conv, 3× 3, 128

conv, 1× 1, 512


× 4




conv, 1× 1, 128

conv, 3× 3, 128

conv, 1× 1, 512

fc, [32, 512]


× 4




conv, 1× 1, 256

conv, 3× 3, 256 C = 32

conv, 1× 1, 512

fc, [32, 512]


× 4

14× 14



conv, 1× 1, 256

conv, 3× 3, 256

conv, 1× 1, 1024


×6




conv, 1× 1, 256

conv, 3× 3, 256

conv, 1× 1, 1024

fc, [64, 1024]


× 6




conv, 1× 1, 512

conv, 3× 3, 512 C = 32

conv, 1× 1, 1024

fc, [64, 1024]


× 6

7×7



conv, 1× 1, 512

conv, 3× 3, 512

conv, 1× 1, 2048


×3




conv, 1× 1, 512

conv, 3× 3, 512

conv, 1× 1, 2048

fc, [128, 2048]


× 3




conv, 1× 1, 1024

conv, 3× 3, 1024 C = 32

conv, 1× 1, 2048

fc, [128, 2048]


× 3

1× 1 global average pool, 1000-d fc, softmax

Table 1: (Left) ResNet-50. (Middle) SE-ResNet-50. (Right) SE-ResNeXt-50 with a 32×4d template. The shapes and operations with

specific parameter settings of a residual building block are listed inside the brackets and the number of stacked blocks in a stage is presented

outside. The inner brackets following by fc indicates the output dimension of the two fully connected layers in an SE module.

original re-implementation SENet

top-1 err. top-5 err. top-1err. top-5 err. GFLOPs top-1 err. top-5 err. GFLOPs

ResNet-50 [10] 24.7 7.8 24.80 7.48 3.86 23.29(1.51) 6.62(0.86) 3.87

ResNet-101 [10] 23.6 7.1 23.17 6.52 7.58 22.38(0.79) 6.07(0.45) 7.60

ResNet-152 [10] 23.0 6.7 22.42 6.34 11.30 21.57(0.85) 5.73(0.61) 11.32

ResNeXt-50 [47] 22.2 - 22.11 5.90 4.24 21.10(1.01) 5.49(0.41) 4.25

ResNeXt-101 [47] 21.2 5.6 21.18 5.57 7.99 20.70(0.48) 5.01(0.56) 8.00

VGG-16 [39] - - 27.02 8.81 15.47 25.22(1.80) 7.70(1.11) 15.48

BN-Inception [16] 25.2 7.82 25.38 7.89 2.03 24.23(1.15) 7.14(0.75) 2.04

Inception-ResNet-v2 [42] 19.9† 4.9† 20.37 5.21 11.75 19.80(0.57) 4.79(0.42) 11.76

Table 2: Single-crop error rates (%) on the ImageNet validation set and complexity comparisons. The original column refers to the results

reported in the original papers. To enable a fair comparison, we re-train the baseline models and report the scores in the re-implementation

column. The SENet column refers to the corresponding architectures in which SE blocks have been added. The numbers in brackets denote

the performance improvement over the re-implemented baselines. † indicates that the model has been evaluated on the non-blacklisted

subset of the validation set (this is discussed in more detail in [42]), which may slightly improve results. VGG-16 and SE-VGG-16 are

trained with batch normalization.

for 100 epochs from scratch, using the weight initialisation

strategy described in [9].

When testing, we apply a centre crop evaluation on the

validation set, where 224×224 pixels are cropped from each

image whose shorter edge is first resized to 256 (299× 299
from each image whose shorter edge is first resized to 352
for Inception-ResNet-v2 and SE-Inception-ResNet-v2).

6. Experiments

6.1. ImageNet Classification

The ImageNet 2012 dataset is comprised of 1.28 mil-

lion training images and 50K validation images from 1000
classes. We train networks on the training set and report the

top-1 and the top-5 errors.

Network depth. We first compare the SE-ResNet against

ResNet architectures with different depths. The results in

Table 2 shows that SE blocks consistently improve perfor-

mance across different depths with an extremely small in-

crease in computational complexity.

Remarkably, SE-ResNet-50 achieves a single-crop top-5

validation error of 6.62%, exceeding ResNet-50 (7.48%)

by 0.86% and approaching the performance achieved by

the much deeper ResNet-101 network (6.52% top-5 error)

with only half of the computational overhead (3.87 GFLOPs

vs. 7.58 GFLOPs). This pattern is repeated at greater

depth, where SE-ResNet-101 (6.07% top-5 error) not only

matches, but outperforms the deeper ResNet-152 network

(6.34% top-5 error) by 0.27%. Fig. 4 depicts the training

and validation curves of SE-ResNet-50 and ResNet-50 (the

7136



original re-implementation SENet

top-1

err.

top-5

err.

top-1

err.

top-5

err.
MFLOPs

Million

Parameters

top-1

err.

top-5

err.
MFLOPs

Million

Parameters

MobileNet [13] 29.4 - 29.1 10.1 569 4.2 25.3(3.8) 7.9(2.2) 572 4.7

ShuffleNet [52] 34.1 - 33.9 13.6 140 1.8 31.7(2.2) 11.7(1.9) 142 2.4

Table 3: Single-crop error rates (%) on the ImageNet validation set and complexity comparisons. Here, MobileNet refers to “1.0

MobileNet-224” in [13] and ShuffleNet refers to “ShuffleNet 1× (g = 3)” in [52].

Figure 4: Training curves of ResNet-50 and SE-ResNet-50 on Im-

ageNet.

curves of more networks are shown in supplementary mate-

rial). While it should be noted that the SE blocks themselves

add depth, they do so in an extremely computationally ef-

ficient manner and yield good returns even at the point at

which extending the depth of the base architecture achieves

diminishing returns. Moreover, we see that the performance

improvements are consistent through training across a range

of different depths, suggesting that the improvements in-

duced by SE blocks can be used in combination with in-

creasing the depth of the base architecture.

Integration with modern architectures. We next inves-

tigate the effect of combining SE blocks with another two

state-of-the-art architectures, Inception-ResNet-v2 [42] and

ResNeXt (using the setting of 32 × 4d) [47], which both

introduce prior structures in modules.

We construct SENet equivalents of these networks, SE-

Inception-ResNet-v2 and SE-ResNeXt (the configuration of

SE-ResNeXt-50 is given in Table 1). The results in Ta-

ble 2 illustrate the significant performance improvement

induced by SE blocks when introduced into both archi-

tectures. In particular, SE-ResNeXt-50 has a top-5 er-

ror of 5.49% which is superior to both its direct counter-

part ResNeXt-50 (5.90% top-5 error) as well as the deeper

ResNeXt-101 (5.57% top-5 error), a model which has al-

most double the number of parameters and computational

overhead. As for the experiments of Inception-ResNet-

v2, we conjecture the difference of cropping strategy might

lead to the gap between their reported result and our re-

implemented one, as their original image size has not been

clarified in [42] while we crop the 299 × 299 region from

a relatively larger image (where the shorter edge is resized

224× 224 320× 320 /

299× 299

top-1

err.

top-5

err.

top-1

err.

top-5

err.

ResNet-152 [10] 23.0 6.7 21.3 5.5

ResNet-200 [11] 21.7 5.8 20.1 4.8

Inception-v3 [44] - - 21.2 5.6

Inception-v4 [42] - - 20.0 5.0

Inception-ResNet-v2 [42] - - 19.9 4.9

ResNeXt-101 (64 × 4d) [47] 20.4 5.3 19.1 4.4

DenseNet-264 [14] 22.15 6.12 - -

Attention-92 [46] - - 19.5 4.8

Very Deep PolyNet [51] † - - 18.71 4.25

PyramidNet-200 [8] 20.1 5.4 19.2 4.7

DPN-131 [5] 19.93 5.12 18.55 4.16

SENet-154 18.68 4.47 17.28 3.79

NASNet-A (6@4032) [55] † - - 17.3‡ 3.8‡

SENet-154 (post-challenge) - - 16.88‡ 3.58‡

Table 4: Single-crop error rates of state-of-the-art CNNs on Im-

ageNet validation set. The size of test crop is 224 × 224 and

320 × 320 / 299 × 299 as in [11]. † denotes the model with a

larger crop 331×331. ‡ denotes the post-challenge result. SENet-

154 (post-challenge) is trained with a larger input size 320 × 320
compared to the original one with the input size 224× 224.

to 352). SE-Inception-ResNet-v2 (4.79% top-5 error) out-

performs our reimplemented Inception-ResNet-v2 (5.21%
top-5 error) by 0.42% (a relative improvement of 8.1%) as

well as the reported result in [42].

We also assess the effect of SE blocks when operating

on non-residual networks by conducting experiments with

the VGG-16 [39] and BN-Inception architecture [16]. As a

deep network is tricky to optimise [16, 39], to facilitate the

training of VGG-16 from scratch, we add a Batch Normal-

ization layer after each convolution. We apply the identical

scheme for training SE-VGG-16. The results of the compar-

ison are shown in Table 2, exhibiting the same phenomena

that emerged in the residual architectures.

Finally, we evaluate on two representative efficient ar-

chitectures, MobileNet [13] and ShuffleNet [52] in Table

3, showing that SE blocks can consistently improve the ac-

curacy by a large margin at minimal increases in computa-

tional cost. These experiments demonstrate that improve-

ments induced by SE blocks can be used in combination

with a wide range of architectures. Moreover, this result

holds for both residual and non-residual foundations.
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top-1 err. top-5 err.

Places-365-CNN [37] 41.07 11.48

ResNet-152 (ours) 41.15 11.61

SE-ResNet-152 40.37 11.01

Table 5: Single-crop error rates (%) on Places365 validation set.

Results on ILSVRC 2017 Classification Competition.

SENets formed the foundation of our submission to the

competition where we won first place. Our winning en-

try comprised a small ensemble of SENets that employed

a standard multi-scale and multi-crop fusion strategy to ob-

tain a 2.251% top-5 error on the test set. One of our high-

performing networks, which we term SENet-154, was con-

structed by integrating SE blocks with a modified ResNeXt

[47] (details are provided in supplemental material), the

goal of which is to reach the best possible accuracy with

less emphasis on model complexity. We compare it with

the top-performing published models on the ImageNet val-

idation set in Table 4. Our model achieved a top-1 error

of 18.68% and a top-5 error of 4.47% using a 224 × 224
centre crop evaluation. To enable a fair comparison, we

provide a 320× 320 centre crop evaluation, showing a sig-

nificant performance improvement on prior work. After the

competition, we train an SENet-154 with a larger input size

320 × 320, achieving the lower error rate under both the

top-1 (16.88%) and the top-5 (3.58%) error metrics.

6.2. Scene Classification

We conduct experiments on the Places365-Challenge

dataset [53] for scene classification. It comprises 8 million

training images and 36, 500 validation images across 365
categories. Relative to classification, the task of scene un-

derstanding can provide a better assessment of the ability of

a model to generalise well and handle abstraction, since it

requires the capture of more complex data associations and

robustness to a greater level of appearance variation.

We use ResNet-152 as a strong baseline to assess the ef-

fectiveness of SE blocks and follow the training and eval-

uation protocols in [37]. Table 5 shows the results of

ResNet-152 and SE-ResNet-152. Specifically, SE-ResNet-

152 (11.01% top-5 error) achieves a lower validation error

than ResNet-152 (11.61% top-5 error), providing evidence

that SE blocks can perform well on different datasets. This

SENet surpasses the previous state-of-the-art model Places-

365-CNN [37] which has a top-5 error of 11.48% on this

task.

6.3. Object Detection on COCO

We further evaluate the generalisation of SE blocks on

object detection task using COCO dataset [25] which con-

tains 80k training images and 40k validation images, fol-

lowing [10]. We use Faster R-CNN [33] as the detec-

tion method and follow the basic implementation in [10].

AP@IoU=0.5 AP

ResNet-50 45.2 25.1

SE-ResNet-50 46.8 26.4

ResNet-101 48.4 27.2

SE-ResNet-101 49.2 27.9

Table 6: Object detection results on the COCO 40k validation set

by using the basic Faster R-CNN.

Here our intention is to evaluate the benefit of replacing the

base architecture ResNet with SE-ResNet, so that the im-

provements can be attributed to better representations. Ta-

ble 6 shows the results by using ResNet-50, ResNet-101

and their SE counterparts on the validation set, respectively.

SE-ResNet-50 outperforms ResNet-50 by 1.3% (a relative

5.2% improvement) on COCO’s standard metric AP and

1.6% on AP@IoU=0.5. Importantly, SE blocks are capable

of benefiting the deeper architecture ResNet-101 by 0.7%
(a relative 2.6% improvement) on the AP metric.

6.4. Analysis and Interpretation

Reduction ratio. The reduction ratio r introduced in

Eqn. (5) is an important hyperparameter which allows us to

vary the capacity and computational cost of the SE blocks

in the model. To investigate this relationship, we conduct

experiments based on SE-ResNet-50 for a range of differ-

ent r values. The comparison in Table 7 reveals that per-

formance does not improve monotonically with increased

capacity. This is likely to be a result of enabling the SE

block to overfit the channel interdependencies of the train-

ing set. In particular, we found that setting r = 16 achieved

a good tradeoff between accuracy and complexity and con-

sequently, we used this value for all experiments.

The role of Excitation. While SE blocks have been empir-

ically shown to improve network performance, we would

also like to understand how the self-gating excitation mech-

anism operates in practice. To provide a clearer picture of

the behaviour of SE blocks, in this section we study exam-

ple activations from the SE-ResNet-50 model and examine

their distribution with respect to different classes at different

blocks. Specifically, we sample four classes from the Ima-

geNet dataset that exhibit semantic and appearance diver-

Ratio r top-1 err. top-5 err. Million Parameters

4 23.21 6.63 35.7

8 23.19 6.64 30.7

16 23.29 6.62 28.1

32 23.40 6.77 26.9

original 24.80 7.48 25.6

Table 7: Single-crop error rates (%) on ImageNet validation set

and parameter sizes for SE-ResNet-50 at different reduction ratios

r. Here original refers to ResNet-50.
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(a) SE 2 3 (b) SE 3 4 (c) SE 4 6

(d) SE 5 1 (e) SE 5 2 (f) SE 5 3

Figure 5: Activations induced by Excitation in the different modules of SE-ResNet-50 on ImageNet. The module is named as

“SE stageID blockID”.

sity, namely goldfish, pug, plane and cliff (example images

from these classes are shown in supplemental material). We

then draw fifty samples for each class from the validation

set and compute the average activations for fifty uniformly

sampled channels in the last SE block in each stage (imme-

diately prior to downsampling) and plot their distribution in

Fig. 5. For reference, we also plot the distribution of aver-

age activations across all 1000 classes.

We make the following three observations about the role

of Excitation. First, the distribution across different classes

is nearly identical in lower layers, e.g. SE 2 3. This sug-

gests that the importance of feature channels is likely to

be shared by different classes in the early stages of the

network. Interestingly however, the second observation is

that at greater depth, the value of each channel becomes

much more class-specific as different classes exhibit differ-

ent preferences to the discriminative value of features, e.g.

SE 4 6 and SE 5 1. The two observations are consistent

with findings in previous work [23, 50], namely that lower

layer features are typically more general (i.e. class agnostic

in the context of classification) while higher layer features

have greater specificity. As a result, representation learning

benefits from the recalibration induced by SE blocks which

adaptively facilitates feature extraction and specialisation to

the extent that it is needed. Finally, we observe a some-

what different phenomena in the last stage of the network.

SE 5 2 exhibits an interesting tendency towards a saturated

state in which most of the activations are close to 1 and the

remainder is close to 0. At the point at which all activations

take the value 1, this block would become a standard resid-

ual block. At the end of the network in the SE 5 3 (which is

immediately followed by global pooling prior before clas-

sifiers), a similar pattern emerges over different classes, up

to a slight change in scale (which could be tuned by the

classifiers). This suggests that SE 5 2 and SE 5 3 are less

important than previous blocks in providing recalibration to

the network. This finding is consistent with the result of the

empirical investigation in Sec. 4 which demonstrated that

the overall parameter count could be significantly reduced

by removing the SE blocks for the last stage with only a

marginal loss of performance.

7. Conclusion

In this paper we proposed the SE block, a novel architec-

tural unit designed to improve the representational capacity

of a network by enabling it to perform dynamic channel-

wise feature recalibration. Extensive experiments demon-

strate the effectiveness of SENets which achieve state-of-

the-art performance on multiple datasets. In addition, they

provide some insight into the limitations of previous archi-

tectures in modelling channel-wise feature dependencies,

which we hope may prove useful for other tasks requiring

strong discriminative features. Finally, the feature impor-

tance induced by SE blocks may be helpful to related fields

such as network pruning for compression.
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