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Abstract

Deep learning with 3D data such as reconstructed point

clouds and CAD models has received great research inter-

ests recently. However, the capability of using point clouds

with convolutional neural network has been so far not fully

explored. In this paper, we present a convolutional neural

network for semantic segmentation and object recognition

with 3D point clouds. At the core of our network is point-

wise convolution, a new convolution operator that can be

applied at each point of a point cloud. Our fully convolu-

tional network design, while being surprisingly simple to

implement, can yield competitive accuracy in both semantic

segmentation and object recognition task.

1. Introduction

Deep learning with 3D data has received great research

interests recently, which leads to noticeable advances in

typical applications including scene understanding, shape

completion, and shape matching. Among these, scene un-

derstanding is considered as one of the most important tasks

for robots and drones as it can assist exploratory scene nav-

igations. Tasks such as semantic scene segmentation and

object recognition are often performed to predict contex-

tual information about objects for both indoor and outdoor

scenes.

Unfortunately, deep learning in 3D was deemed difficult

due to the fact that there are several ways to represent 3D data

such as volumes, point clouds, or multi-view images. Vol-

ume representation is a true 3D representation and straight-

forward to implement but often requires a large amount of

memory for data storage. By contrast, multi-view represen-

tation is not a true 3D representation but shows promising

prediction accuracy as existing pre-trained weights from 2D

networks can be utilized. Among such representations, point

clouds have been the most flexible as they are compact and

0This work was done when Binh-Son Hua was a postdoctoral researcher

in Singapore University of Technology and Design in 2017.

Figure 1: Pointwise convolution. We define a new convo-

lution operator for point cloud input. For each point, near-

est neighbors are queried on the fly and binned into kernel

cells before convolving with kernel weights. By stacking

pointwise convolution operators together, we can build fully

convolutional neural networks for scene segmentation and

object recognition for point clouds.

could be exported from a wide range of CAD modelling

and 3D reconstruction software. However, the capability of

using point clouds with neural network has been so far not

fully explored.

In this paper, we present a convolutional neural network

for semantic segmentation and object recognition with 3D

point clouds. At the core of our network is a new convolution

operator, called pointwise convolution, which can be applied

at each point in a point cloud to learn pointwise features.

This leads to surprisingly simple and fully convolutional net-

work designs for scene segmentation and object recognition.

Our experiments show that pointwise convolution can yield

competitive accuracy to previous techniques while being

much simpler to implement. In summary, our contributions

are:

• A pointwise convolution operator that can output fea-

tures at each point in a point cloud;

• Two pointwise convolutional neural networks for se-

mantic scene segmentation and object recognition.
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Figure 2: Pointwise convolutional neural network. The input point cloud is fed into each convolution operator, and all outputs

are concatenated before being fed to a a final convolution layer for dense semantic segmentation, or to fully connected layers

for object recognition. In this figure, we assume point cloud with n points and c attributes (colors, normals, coordinates, etc.).

We use 9 output channels for each convolution operator before concatenation. Source code is available at our homepage [13].

2. Related Works

Recently, there has been a great number of works about

deep learning with 3D data. Let us focus on those for scene

understanding tasks such as semantic segmentation and ob-

ject recognition.

2.1. Shape descriptors

Hand-crafted shape descriptors were widely used in com-

puter vision and graphics applications before the era of deep

learning. For example, 3D shapes can be projected into

2D images and represented by a set of 2D descriptors on

such images. Shapes can then be represented as histograms

or bag-of-feature models which can be constructed from

surface normals and curvatures [12]. 3D shapes can also

be represented by their inherent statistical properties, such

as distance distribution [25] and harmonic descriptors [15].

Heat kernel signatures extract shape descriptions by simulat-

ing an heat diffusion process on 3D shapes [38]. The Light

Field Descriptor (LFD) is another popular descriptor useful

in the shape classification tasks. It extracts geometric and

Fourier descriptors from object silhouettes rendered from

several different viewpoints [4]. Despite their long history

and being widely used, hand-crafted 3D shape descriptors

do not generalize well across different domains.

2.2. Object recognition

Convolutional neural networks (CNNs) [17] has been

successfully applied in various areas of computer vision and

artificial intelligence. Recently, significant achievements

have been reached in understanding images through learning

features by CNNs. Large RGB image datasets like ImageNet

[7] can be used in training a CNN, which is in turn able to

learn general purpose image descriptors from such datasets.

Image descriptors generated by CNNs are proved to greatly

outperform other hand-crafted features for various tasks,

including object detection [9], scene recognition [8], texture

recognition [31, 6] and classification [10].

Recently, several approaches to using 3D convolu-

tional networks to extract shape descriptor have been pro-

posed, ranging from voxel-based representation [42, 20]

panorama [32], feature pooling from 2D projections from

multiple viewpoints [37, 27], to point set [27]. Among these,

Qi et al. [26]’s PointNet is one of the first network architec-

tures that can handle point cloud data. PointNet is robust

as it can learn an order-invariance function to canonicalize

input point clouds. Subsequently, PointCNN [18] explored

the idea of equivariance instead of invariance and demon-

strated competitive performance to PointNet. To achieve

scalability, it is also possible to learn representations on un-

structured point clouds by building computational graphs

based on hierarchical data structures such as octree [30] and

kd-tree [16].

Despite their competitive performance, network struc-

tures based on PointNet [26] are rather complex. In this

work, we show that it is possible to perform scene under-

standing tasks such as semantic segmentation and object

recognition on ordered point clouds. We design pointwise

convolution, a simple convolution operator for 3D point

cloud and use it to make (fully) convolutional neural net-

works for object recognition and semantic segmentation.

With the availability of our pointwise convolution, we aim

to pave the way towards adapting many existing network

architecture designed for scene understanding with color and

RGB-D images [34, 19, 35] to the 3D domain.

2.3. Semantic segmentation

There are considerably great numbers of related works in

semantic segmentation. Since the introduction of the NYUv2
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dataset from Silberman et al. [33], there has been a spark in

the direction of RGBD semantic segmentation. The work

from Long et al. [19] showed how to adopt a conventional

classifcation network for the semantic segmentation prob-

lem. Since then, different techniques have been proposed

to further improve the segmentation results. Some notable

examples are SegNet [2] which employs an encoder-decoder

architecture, or the dilation filter [43].

In the 3D domain, interactive semantic segmentation [40,

39] relied on user strokes to propagate segmentation. McCor-

mac et al. [21] explored transfering semantic segmentation

from 2D predictions to the 3D domain. An advantage of such

methods is that they can produce high-resolution segmen-

tation. However, none of the predictions can be performed

directly in the 3D domain.

SSCNet [36] applied convolutional neural network to a

3D volume representation to classify each voxel in the scene.

This could be flexible as real-time scene reconstruction tech-

niques such as KinectFusion [23] and voxel hashing [24] are

often based on volumes. PointNet [26] can also be used for

semantic segmentation with minor modifications from their

object recognition network.

Recently, Qi et al. [29] proposed to build a graph neural

network for semantic segmentation on a point cloud, where

each graph node is a group of points and graph edges are

constructed by nearest neighbor search on the point cloud.

Their results are shown with RGB-D images, where color

features from a pre-trained VGG-16 network [34, 5] are used

to initialize the prediction. Here, we demonstrate a fully con-

volutional neural network for 3D point cloud segmentation.

Compared to the method by Qi et al. [29], we train our

network from scratch. The input point cloud is also more

general such as CAD models or 3D meshes reconstructed

from RGB-D sensors.

3. Pointwise Convolution

Before presenting pointwise convolution, we briefly re-

vise a few possibilities to represent 3D data for neural net-

work. The most straightforward approach is perhaps to em-

ploy volumetric representation. For example, VoxNet [20]

represents each object by a volume up to 64× 64× 64 res-

olution. This is natural because almost existing network

architecture for image applications can be adopted. How-

ever, a significant drawback is that volumetric representation

requires a large amount of memory while the number of

non-zero values in a volume only accounts for a very small

percentage. This could be addressed by a sparse representa-

tion [30].

A second possibility is to use point clouds. This is a di-

rect representation as point cloud is often the output of many

applications such as RGB-D reconstruction and CAD model-

ing. However, mapping point cloud to neural network is not

natural because traditional convolution operators are only

designed for grid and volumes. PointNet [26] implements

point feature learning by fully connected layers.

The previous limitations motivate us to design fully con-

volutional networks for point clouds. The basic building

block of our architecture is a convolution operator applied

at each point in a point cloud, which we term the pointwise

convolution. This operator works as follows.

Convolution. A convolution kernel is centered at each

point of a point cloud. Neighbor points within the kernel

support can contribute to the center point. Each kernel has

a size or radius value, which can be adjusted to account

for different number of neighbor points in each convolution

layer. Figure 1 shows a diagram that demonstrates this idea.

Formally, pointwise convolution can be written as

xℓ
i =

∑

k

wk

1

| Ωi(k) |

∑

pj∈Ωi(k)

xℓ−1
j , (1)

where k iterates over all sub-domains in the kernel support;

Ωi(k) is the k-th sub-domain of the kernel centered at point

i; pi is the coordinate of point i; | · | counts all points within

the sub-domain; wk is the kernel weight at the k-th sub-

domain, xi and xj the value at point i and j, and ℓ− 1 and ℓ
the index of the input and output layer.

Gradient backpropagation. To make pointwise convolu-

tion trainable, it is necessary to compute the gradients with

respects to the input data and the kernel weights. Let L is

the loss function. The gradient with respect to input could

be defined as

∂L

∂xℓ−1
j

=
∑

i∈Ωj

∂L

∂xℓ
i

∂xℓ
i

∂xℓ−1
j

(2)

where we iterate over all neighbor points i of a given point

j. In the chain rule, ∂L/∂xℓ
i is the gradient up to layer ℓ,

which is known during back propagation. The derivative

∂xℓ
i/∂x

ℓ−1
j could be written as

∂xℓ
i

∂xℓ−1
j

=
∑

k

wk

1

| Ωi(k) |

∑

pj∈Ωi(k)

1 (3)

Similarly, the gradient with respect to kernel weights

could be defined by iterating over all points i:

∂L

∂wk

=
∑

i

∂L

∂xℓ
i

∂xℓ
i

∂wk

(4)

where

∂xℓ
i

∂wk

=
1

| Ωi(k) |

∑

pj∈Ωi(k)

xℓ−1
j (5)
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Note that the above formula does not assume a specific

shape for convolution kernel. Here we simply use a uniform

grid kernel. In conjunction with an acceleration structure

for neighbor query, e.g., grid, the convolution operator can

be efficiently implemented on both CPU and GPU. In this

paper, we use convolution kernels of size 3 × 3 × 3. All

points within each kernel cell have the same weights.

Unlike convolution in volumes, in our design, we do not

use pooling. There are some advantages of doing so. First, it

is no longer required to deal with point cloud downsampling

and upsampling, which is not straightforward when the point

attributes become high dimensional when the point cloud is

processed in the network. Second, by keeping the point cloud

unchanged in the entire network, acceleration structures for

neighbor query only need to be built once. This significantly

speeds up computation and simplifies network design.

Point order. A notable difference between our design and

PointNet [26] is how points are ordered before being fed to

the network. In PointNet, point cloud is orderless, and the

training process of PointNet learns a symmetric function to

turn an ordered point cloud into order invariant. However,

we argue that this might not be necessary. In our method, we

input points sorted in a specific order, e.g., XYZ or Morton

curve [22], to the network and can still achieve competitive

performance in the object recognition task. In this task, the

order of the points only affects the final global feature vector

used to predict the object category. In semantic segmentation,

in principle we can leverage local features at each point, and

hence point order is not necessary.

À-trous convolution. The original pointwise convolution

can be easily extended to à-trous convolution by including

a stride parameter that determines the gaps between kernel

cells. The benefit of pointwise à-trous convolution is that it

is possible to extend the kernel size, and hence the perceptive

field, without actually processing too many points in the con-

volution. This yields significant speed up without sacrificing

accuracy as to be demonstrated in our experiments.

Point attributes. For easy housekeeping in the implemen-

tation of our convolution operator, we separately store point

coordinates and other point attributes such as colors, normals,

or other high-dimensional features output from preceding

convolutional layers. Point coordinates can be passed to any

layer despite the layer depth so that they can be used for

neighbor queries to determine which points can participate

in the convolution at a particular point. Point attributes can

then be retrieved accordingly.

Relevance to geometric deep learning. Our pointwise

convolution is relevant to geodesic convolution in geometric

deep learning [3], which is more robust for tasks such as

non-rigid shape correspondences and retrieval. To compute

a geodesic convolution at a particular point, only neighbor

points on its local surface manifold are considered. This is

achieved by definition because the filter support in geodesic

convolution is directly defined on the surface manifold. By

contrast, our pointwise convolution operates adaptively in

the 3D Euclidean space, and does not require any surface

definition to operate.

4. Evaluations

Semantic segmentation. We evaluate our pointwise con-

volutional neural network with semantic scene segmentation

and object recognition. For scene segmentation, we first ex-

periment with the S3DIS dataset [1], which has 13 categories

of indoor scene objects. Each point has 9 attributes: XYZ

coordinates, RGB color, and normalized coordinates w.r.t.

the room space it belongs to. To perform segmentation of a

scene, each squared-meter block of the scene (measured on

the floor), sampled to 4096 points, are fed into the network.

The predictions of all blocks are then assembled to obtain

the prediction of the entire scene.

We report per-point accuracy of the semantic segmenta-

tion. As shown in Table 1, our network is able to produce

comparable accuracy to PointNet [26], with the accuracy of

81.5%. Table 2 reports per-class accuracy. Figure 3 shows

visualization of predictions and ground truths of the scenes

in the evaluation dataset.

Network
Accuracy

(per class)
Accuracy

PointNet [26] - 87.0

Ours 56.5 81.5

Table 1: Comparison of scene segmentation on S3DIS

dataset [1].

To further test semantic segmentation with more cate-

gories and more complex indoor scenes, we annotate 76

scenes from the SceneNN dataset [13] with 40 categories

defined by the NYU v2 dataset [33]. Scenes in this dataset

appear to be more cluttered, which poses great challenges

to semantic segmentation. We use 56 scenes for training,

and 20 scenes for evaluation. In each scene, a 2 × 2 sqm.

window with stride 0.2 meter and height 2 meters is used

to scan the floor area, resulting in approximately 30K scene

blocks for training and 15K blocks for testing. Each block is

sampled to 4096 points.

For SceneNN dataset, we additionally compare with

VoxNet [20], a voxel-based representation technique, and

SemanticFusion [21], a multi-view 2D-3D semantic segmen-

tation with RGB-D images. For VoxNet [20], we apply their
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Network ceiling floor wall column

PointNet [26] 98.3 98.8 83.3 63.4

Ours 97.4 99.1 89.1 56.2

door table chair sofa clutter

PointNet [26] 84.6 70.3 66.0 56.7 69.0

Ours 62.9 73.7 68.4 54.6 65.2

Table 2: Per-class accuracy of semantic segmentation on

S3DIS dataset [1].

network to predict labels of scene blocks as described above

and gather all outputs into a final scene prediction. For Se-

manticFusion [21], we perform 2D semantic segmentation

on the RGB-D images independently and then integrate all

2D predictions to a 3D point cloud to generate the final

segmentation.

(a) Our predictions (b) Ground truth

Figure 3: Semantic segmentation on the S3DIS dataset [1].

The visualization of the predictions and ground truth are

shown in Figure 4. It can be seen that structures like wall

and floor have very good accuracy, and small objects are

moderately well segmented. A notable issue is noise due to

prediction inconsistency in the overlap regions of the blocks.

This could be addressed by a conditional random field and

would be an interesting future work.

Table 3 reports the accuracy of a few common categories.

While structures and chairs are quite accurate, table and

desk are often ambiguous, resulting in lower accuracy for

both classes. In general, the performance of VoxNet [20]

is inferior to ours and SemanticFusion [21] due to limited

resolution (we used 643 volume). Our method works com-

petitively to SemanticFusion, but note that our method does

not apply any label smoothing while SemanticFusion has a

conditional random field to remove noise after propagating

predictions from 2D to 3D.

(a) Our predictions (b) Ground truth

Figure 4: Semantic segmentation on SceneNN dataset [13].
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Network wall floor chair table desk

VoxNet [20] 82.8 74.3 3.1 0.8 5.4

SemanticFusion [21] 72.8 94.4 46.3 70.1 28.1

Ours 93.8 88.6 58.6 23.5 29.5

Table 3: Per-class accuracy of semantic segmentation on

SceneNN dataset [13].

Object recognition. We evaluate object recognition with

two datasets, ModelNet40 [42] and ObjectNN [14]. Model-

Net40 is a CAD model dataset of 40 categories which has

served as a standard benchmark for object recognition in

the recent years. On the other hand, ObjectNN is an ob-

ject dataset from RGB-D scene reconstruction mixed with

CAD models for studying 3D object retrieval. Objects in

ObjectNN is particularly difficult to classify because they are

reconstructed from noisy RGB-D data and often has missing

parts.

For object recognition, our point attributes are simple

XYZ coordinates. In fact, we also trained the network with

point attributes set to one, making the convolution equivalent

to density estimation, and found no significant change in

accuracy. Our results on ModelNet40 are shown in Table 4.

As can be seen, our network performs comparably to state-

Network
Accuracy

(per class)
Accuracy

VoxNet [20] 83 -

MO-SubvolumeSup [27] 86 89.2

PointNet [26] 86.2 89.2

PointNet++ [28] - 90.7

Ours 81.4 86.1

Table 4: Comparison of performance of network architec-

tures using 3D object representations on the ModelNet40

dataset [42].

of-the-art methods. Note that compared to VoxNet [20], our

input point cloud is more compact. Our network is also

significantly simpler in design compared to PointNet [26]

and PointNet++ [28] while being close to their accuracy.

The results on ObjectNN are shown in Table 5. In this

dataset, again our method performs comparably to PointNet,

Network
Accuracy

(per class)
Accuracy

PointNet [26] 57.1 65.6

Ours 57.1 65.1

Table 5: Comparison of object recognition accuracy on the

ObjectNN dataset [14].
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(b) Object recognition

Figure 5: Train and test accuracy over time.

but overall both methods are less effective due to the ambigu-

ity in learning features from both CAD models and RGB-D

objects.

Table 9 and Table 10 further provide per-class accuracy

on the ModelNet40 and the ObjectNN dataset, respectively.

Convergence. Figure 5 shows a plot of the training and

test accuracy of our networks over time. The graph shows

that our pointwise convolutional neural network can be

trained effectively.

Ablation experiments. Here we analyze the effectiveness

of pointwise convolution. We first start with with a basic 4-

layer model as in Figure 2. The accuracy improvement when

more features are added are presented in Table 6. As can be

seen, feature concatenation, à-trous convolution, SELU acti-

vation, and dropout each contributes a small improvement to

the final result.

Base Concat. À-trous SELU Dropout Accuracy

X 78.6

X X 78.0

X X 75.0

X X X 82.5

X X 81.7

X X X 81.9

X X X X 85.2

X X X X X 86.1

Table 6: Ablation experiment. Accuracy improvement is

achieved when pointwise convolution is combined with

feature concatenation (Concat.), à-trous convolution, self-

normalization activation function (SELU), and dropout.

Point order. In object recognition, the order of the in-

put points determine the orders of the features in the fully

connected layers. As long as this layer has an order, it is

sufficient to discriminate their features and predict the cat-

egories. We experiment with different orders of the input
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point set and report the results in Table 7(a). We found that

point orders sorted by space filling curve techniques such as

Morton curve [22] yields comparable accuracy, which means

that it is sufficient to just follow an order, but not a particular

one. However, a benefit is that space filling curves organize

points such that nearby points in space are stored close to

each other in memory, allowing more memory coherence.

Neighborhood radius. So far we have been setting the

radius for neighbor query as constant in each convolution

layer. In our experience, this works well for both tasks. We

also explore the capability of adaptive radius using k-nearest

neighbors. The modification for the convolution operator is

as follows.

At each point, a k-nearest neighbor is performed, and the

query radius is set to the distance to the furthest neighbor.

This radius is used each time neighbor points have to be

queried for convolution. To compute gradients for backprop-

agation for this operator, it is worth noting that in this case,

neighbor lookup is no longer symmetric. Therefore, at a

point j, it is required to look up all points i such that point i
can contribute to point j in the forward convolution.

We compare the performance of the k-nearest neighbor

and the fixed radius convolution for object recognition task.

The result is shown in Table 7(b). In general, we found no

significant difference in terms of accuracy.

Order Accuracy

ZYX 86.1

Morton 86.0

(a)

Neighbor query Accuracy

Fixed-size radius 86.1

K-nearest neighbor 85.7

(b)

Table 7: (a) Object recognition with different ways of or-

dering the input point cloud. (b) Object recognition with

convolution using neighbor queries with adaptive radius.

Deeper networks. Finally, we study the capability of

learning with deeper networks using pointwise convolution.

From the basic model, we increase the number of layers

from 4 to 8 and 16, and then retrain from scratch. The per-

formance are reported in Table 8 below. Generally, it takes

Network Accuracy

4 layers 86.1

8 layers 82.1

16 layers 82.6

Table 8: Deep pointwise convolutional neural network. We

compare object recognition performance with 4-, 8-, and

16-layer architecture.

longer to train networks with 8 and 16 layers, resulting in

slightly slower accuracy. Experimenting the training with

residual learning [11] would be an interesting future work.

Running time. A key challenge when implementing point-

wise convolution is how to perform fast nearest neighbor

query without impacting too much the network training and

prediction time. To make the training feasible, we choose to

use a grid for neighbor query because this is a lightweight

and GPU-friendly data structure to build and query on the

fly. In fact, we experimented with kd-tree, but found that on

modern CPUs and GPUs, a kd-tree query does not outper-

form a grid unless the number of points are more than 16K

points, not to mention extra time needed for tree construction

that has O(n log n) complexity.

Our pointwise convolution is currently implemented with

Tensorflow. We report the running time, including grid build

and query each time convolution is invoked, as follows. For

a batch size of 128 point clouds, each with 2048 points, a

forward convolution of our network takes 1.272 seconds on

an Intel Core i7 6900K with 16 threads, and a backward

propagation takes 2.423 seconds to compute the gradients.

Our GPU implementation on an NVIDIA TITAN X can fur-

ther improve the running time for about 10%. Compared to

PointNet [26] and VoxNet [20] which leverage Tensorflow’s

optimized convolution operators, our pointwise convolution

is not yet engineering optimized. Our training time is about

2× slower which we currently compensate by using multiple

CPUs and GPUs.

5. Conclusion

In this paper, we proposed pointwise convolution and

leveraged it to build convolutional neural networks for scene

understanding with point cloud data. We demonstrated two

scene understanding applications including scene segmenta-

tion and object recognition. We showed that it is practical

to simply sort input point clouds in a specific order before

feature learning for object classification. Our pointwise con-

volution can offer competitive accuracy while being simple

to implement, allowing us to create effective and simple

neural networks for learning local features of point clouds.

There are several research avenues to be further explored.

For example, finding a robust solution to handle large-scale

point clouds for scene understanding would be an interesting

future work. Currently, we just circumvent the large-scale

issue in semantic segmentation by simply dividing the scene

into blocks and resample each block to fixed number of

points for prediction. In addition, it would be of great in-

terest to extend pointwise convolutional neural networks to

geometry point cloud processing [44], or explore the connec-

tion of pointwise convolution to tensor voting [41], which

was used in the literature to detect structures in a local point

neighborhood.
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Network airplane bathtub bed bench bookshelf bottle bowl car chair cone

PointNet [26] 100 80.0 94.0 75.0 93.0 94.0 100.0 97.9 96.0 100.0

Ours 100 82.0 93.0 68.4 91.8 93.9 95.0 95.6 96.0 80.0

cup curtain desk door dresser flower pot glass box guitar keyboard lamp

PointNet [26] 70.0 90.0 79.0 95.0 65.1 30.0 94.0 100.0 100.0 90.0

Ours 60.0 80.0 76.7 75.0 67.4 10.0 80.8 98.0 100.0 83.3

laptop mantel monitor night stand person piano plant radio range hood sink

PointNet [26] 100.0 96.0 95.0 82.6 85.0 88.8 73.0 70.0 91.0 80.0

Ours 95.0 93.9 92.9 70.2 89.5 84.5 78.8 65.0 88.9 65.0

sofa stairs stool table tent toilet tv stand vase wardrobe xbox

PointNet [26] 96.0 85.0 90.0 88.0 95.0 99.0 87.0 78.8 60.0 70.0

Ours 96.0 80.0 83.3 90.9 90.0 94.9 84.5 81.3 30.0 75.0

Table 9: Per-class accuracy of object recognition on the ModelNet40 dataset. Average: PointNet: 86.3. Ours 81.4.

Network chair display desk book storage box table bin bag keyboard

PointNet [26] 84.2 85.4 56.7 30.1 62.5 23.8 80.0 75.0 47.4 82.4

Ours 83.1 85.4 70.0 57.7 45.8 23.8 60.0 65.0 36.8 88.2

sofa bookshelf pillow machine pc case light oven cup printer bed

PointNet [26] 76.5 23.1 84.6 18.2 36.4 77.8 60.0 37.5 50.0 28.6

Ours 88.2 38.5 76.9 18.2 54.5 88.9 30.0 75.0 12.5 42.9

Table 10: Per-class accuracy of object recognition on the ObjectNN dataset. Average: PointNet: 56.0. Ours: 57.1.

A. Layer Visualization

Intuitively, pointwise convolution works by summarizing

local spatial point distributions to build feature vectors for

each point in a point cloud. As shown in per-class accuracy

tables, local features work the most effectively in classifying

structures such as ceiling, floor, or walls and common furni-

ture such as tables and chairs. In our observation, it is quite

challenging to differentiate between tables (for dining) and

desks (for study and work).

We visualize the filters of the first four layers in the object

recognition network in Figure 6. Here we display each

3× 3× 3 filter on a row in the visualization. The number of

rows is equal to the product of the total number of input and

output channels of each filter (27 for the first layer, and 81

for the subsequent layers). In the visualization, blue and red

represent positive and negative values, respectively. White

represents zero. This shows that the filters in the network are

relatively sparse and smooth. We also observed that positive

and negative values dominate the filters interchangeably in

each layer.

(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Figure 6: Visualization of the filters in pointwise convolution

network for object recognition.
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