
Decorrelated Batch Normalization

Lei Huang†‡∗ Dawei Yang‡ Bo Lang† Jia Deng ‡

†State Key Laboratory of Software Development Environment, Beihang University, P.R.China
‡University of Michigan, Ann Arbor

Abstract

Batch Normalization (BN) is capable of accelerating the

training of deep models by centering and scaling activations

within mini-batches. In this work, we propose Decorre-

lated Batch Normalization (DBN), which not just centers

and scales activations but whitens them. We explore multiple

whitening techniques, and find that PCA whitening causes a

problem we call stochastic axis swapping, which is detrimen-

tal to learning. We show that ZCA whitening does not suffer

from this problem, permitting successful learning. DBN re-

tains the desirable qualities of BN and further improves BN’s

optimization efficiency and generalization ability. We design

comprehensive experiments to show that DBN can improve

the performance of BN on multilayer perceptrons and con-

volutional neural networks. Furthermore, we consistently

improve the accuracy of residual networks on CIFAR-10,

CIFAR-100, and ImageNet.

1. Introduction

Batch Normalization [25] is a technique for accelerating

deep network training. Introduced by Ioffe and Szegedy, it

has been widely used in a variety of state-of-the-art systems

[17, 49, 19, 54, 48, 20]. Batch Normalization works by

standardizing the activations of a deep network within a mini-

batch—transforming the output of a layer, or equivalently

the input to the next layer, to have a zero mean and unit

variance. Specifically, let {xi ∈ R, i = 1, 2, . . . ,m} be

the original outputs of a single neuron on m examples in a

mini-batch. Batch Normalization produces the transformed

outputs

x̂i = γ
xi − µ√
σ2 + ǫ

+ β, (1)

where µ = 1
m

∑m
j=1 xj and σ2 = 1

m

∑m
j=1(xj−µ)2 are the

mean and variance of the mini-batch, ǫ > 0 is a small number

to prevent numerical instability, and γ, β are extra learnable

parameters. Crucially, during training, Batch Normalization

∗This work was mainly done while Lei Huang was a visiting student at

the University of Michigan.

is part of both the inference computation (forward pass) as

well as the gradient computation (backward pass). Batch

Normalization can be inserted extensively into a network,

typically between a linear mapping and a nonlinearity.

Batch Normalization was motivated by the well-known

fact that whitening inputs (i.e. centering, decorrelating, and

scaling) speeds up training [32]. It has been shown that bet-

ter conditioning of the covariance matrix of the input leads

to better conditioning of the Hessian in updating the weights,

making the gradient descent updates closer to Newton up-

dates [32, 50]. Batch Normalization exploits this fact further

by seeking to whiten not only the input to the first layer of

the network, but also the inputs to each internal layer in the

network. But instead of whitening, Batch Normalization

only performs standardization. That is, the activations are

centered and scaled, but not decorrelated. Such a choice

was justified in [25] by citing the cost and differentiability

of whitening, but no actual attempts were made to derive or

experiment with a whitening operation.

While standardization has proven effective for Batch Nor-

malization, it remains an interesting question whether full

whitening—adding decorrelation to Batch Normalization—

can help further. Conceptually, there are clear cases where

whitening is beneficial. For example, when the activations

are close to being perfectly1 correlated, standardization

barely improves the conditioning of the covariance matrix,

whereas whitening remains effective. In addition, prior work

has shown that decorrelated activations result in better fea-

tures [3, 43, 5] and better generalization [9, 53], suggesting

room for further improving Batch Normalization.

In this paper, we propose Decorrelated Batch Normaliza-

tion, in which we whiten the activations of each layer within

a mini-batch. Let xi ∈ R
d be the input to a layer for the i-th

example in a mini-batch of size m. The whitened input is

given by

x̂i = Σ−
1

2 (xi − µ), (2)

where µ = 1
m

∑m
j=1 xj is the mini-batch mean and Σ =

1
m

∑m
j=1(xj − µ)(xj − µ)T is the mini-batch covariance

matrix.

1For example, in 2D, this means all points lie close to the line y = x

and Batch Normalization does not change the shape of the distribution.

791

Several questions arise for implementing Decorrelated

Batch Normalization. One is how to perform back-

propagation, in particular, how to back-propagate through

the inverse square root of a matrix (i.e. ∂Σ−
1

2 /∂Σ), whose

key step is an eigen decomposition. The differentiability of

this matrix transform was one of the reasons that whiten-

ing was not pursued in the Batch Normalization paper [25].

Desjardins et al. [12] whiten the activations but avoid back-

propagation through it by treating the mean µ and the whiten-

ing matrix Σ−
1

2 as model parameters, rather than as func-

tions of the input examples. However, as has been pointed

out [25, 24], doing so may lead to instability in training.

In this work, we decorrelate the activations and perform

proper back-propagation during training. We achieve this by

using the fact that eigen-decomposition is differentiable, and

its derivatives can be obtained using matrix differential cal-

culus, as shown by prior work [15, 26]. We build upon these

existing results and derive the back-propagation updates for

Decorrelated Batch Normalization.

Another question is, perhaps surprisingly, the choice of

how to compute the whitening matrix Σ−
1

2 . The whitening

matrix is not unique because a whitened input stays whitened

after an arbitrary rotation [27]. It turns out that PCA whiten-

ing, a standard choice [13], does not speed up training at

all and in fact inflicts significant harm. The reason is that

PCA whitening works by performing rotation followed by

scaling, but the rotation can cause a problem we call stochas-

tic axis swapping, which, as will be discussed in Section

3.1, in effect randomly permutes the neurons of a layer for

each batch. Such permutation can drastically change the data

representation from one batch to another to the extent that

training never converges.

To address this stochastic axis swapping issue, we dis-

cover that it is critical to use ZCA whitening [4, 27], which

rotates the PCA-whitened activations back such that the

distortion of the original activations is minimal. We show

through experiments that the benefits of decorrelation are

only observed with the additional rotation of ZCA whitening.

A third question is the amount of whitening to perform.

Given a particular batch size, DBN may not have enough

samples to obtain a suitable estimate for the full covariance

matrix. We thus control the extent of whitening by decorre-

lating smaller groups of activations instead of all activations

together. That is, for an output of dimension d, we divide it

into groups of size kG < d and apply whitening within each

group. This strategy has the added benefit of reducing the

computational cost of whitening from O(d2 max(m, d)) to

O(mdkG), where m is the mini-batch size.

We conduct extensive experiments on multilayer per-

ceptrons and convolutional neural networks, and show that

Decorrelated Batch Normalization (DBN) improves upon the

original Batch Normalization (BN) in terms of training speed

and generalization performance. In particular, experiments

demonstrate that using DBN can consistently improve the

performance of residual networks [17, 19, 54] on CIFAR-10,

CIFAR-100 [29] and ILSVRC-2012 [11].

2. Related Work

Normalized activations [35, 51] and gradients [44, 38]

have long been known to be beneficial for training neural

networks. Batch Normalization [25] was the first to per-

form normalization per mini-batch in a way that supports

back-propagation. One drawback of Batch Normalization,

however, is that it requires a reasonable batch size to estimate

the mean and variance, and is not applicable when the batch

size is very small. To address this issue, Ba et al. [2] pro-

posed Layer Normalization, which performs normalization

on a single example using the mean and variance of the acti-

vations from the same layer. Batch Normalization and Layer

Normalization were later unified by Ren et al. under the

Division Normalization framework [39]. Other attempts to

improve Batch Normalization for small batch sizes, include

Batch Renormalization [24] and Stream Normalization [33].

There have also been efforts to adapt Batch Normalization

to Recurrent Neural Networks [31, 10]. Our work extends

Batch Normalization by decorrelating the activations, which

is a direction orthogonal to all these prior works.

Our work is closely related to Natural Neural Net-

works [12, 34], which whiten activations by periodically

estimating and updating a whitening matrix. Our work dif-

fers from Natural Neural Networks in two important ways.

First, Natural Neural Networks perform whitening by treat-

ing the mean and the whitening matrix as model parameters

as opposed to functions of the input examples, which, as

pointed out by Ioffe & Szegedy [25, 24], can cause instabil-

ity in training, with symptoms such as divergence or gradient

explosion. Second, during training, a Natural Neural Net-

work uses a running estimate of the mean and whitening

matrix to perform whitening for each mini-batch; as a result,

it cannot ensure that the transformed activations within each

batch are in fact whitened, whereas in our case the activations

with a mini-batch are guaranteed to be whitened. Natural

Neural Networks thus may suffer instability in training very

deep neural networks [12].

Another way to obtain decorrelated activations is to in-

troduce additional regularization in the loss function [9, 53].

Cogswell et al. [9] introduced the DeCov loss on the acti-

vations as a regularizer to encourage non-redundant repre-

sentations. Xiong et al. [53] extends [9] to learn group-wise

decorrelated representations. Note that these methods are not

designed for speeding up training. In fact, empirically they

often slow down training [9], probably because decorrelated

activations are part of the learning objective and thus may

not be achieved until later in training.

Our approach is also related to work that implicitly

normalizes activations by either normalizing the network

792

weights—e.g. through re-parameterization techniques [41,

23, 22], Riemannian optimization methods [21, 7], or addi-

tional weight regularization [30, 37, 40]—or by designing

special scaling coefficients and bias values that can induce

normalized activations under certain assumptions [1]. Our

work bears some similarity to that of Huang et al. [22],

which also back-propagates gradients through a ZCA-like

normalization transform that involves eigen-decomposition.

But the work by Huang et al. normalizes weights instead of

activations, which leads to significantly different derivations

especially with regards to convolutional layers; in addition,

unlike ours, it does not involve a separately estimated whiten-

ing matrix during inference, nor does it discuss the stochastic

axis swapping issue. Finally, all of these works including

[22] are orthogonal to ours in the sense that their normaliza-

tion is data independent, whereas ours is data dependent. In

fact, as shown in [23, 7, 22, 21], data-dependent and data-

independent normalization can be combined to achieve even

greater improvement.

3. Decorrelated Batch Normalization

Let X ∈ R
d×m be a data matrix that represents inputs to

a layer in a mini-batch of size m. Let xi ∈ R
d be the i-th

column vector of X, i.e. the d-dimensional input from the

i-th example. The whitening transformation φ : Rd×m →
R

d×m is defined as

φ(X) = Σ−1/2(X− µ · 1T), (3)

where µ = 1
mX · 1 is the mean of X, Σ = 1

m (X − µ ·
1T)(X − µ · 1T)T + ǫI is the covariance matrix of the

centered X, 1 is a column vector of all ones, and ǫ > 0 is

a small positive number for numerical stability (preventing

a singular Σ). The whitening transformation φ(X) ensures

that for the transformed data X̂ = φ(X) is whitened, i.e.,

X̂X̂T = I.

Although Eqn. 3 gives an analytical form of the whitening

transformation, this transformation is in fact not unique.

The reason is that Σ−1/2, the inverse square root of the

covariance matrix, is defined only up to rotation, and as a

result there exist infinitely many whitening transformations.

Thus, a natural question is whether the specific choice of

Σ−1/2 matters, and if so, which choice to use.

To answer this question, we first discuss a phenomenon

we call stochastic axis swapping and show that not all whiten-

ing transformations are equally desirable.

3.1. Stochastic Axis Swapping

Given a data point represented as a vector x ∈ R
d under

the standard basis, its representation under another orthogo-

nal basis {d1, ...,dd} is x̂ = DTx, where D = [d1, ...,dd]
is an orthogonal matrix. We define stochastic axis swapping

as follows:

Definition 3.1 Assume a training algorithm that iteratively

update weights using a batch of randomly sampled data

points per iteration. Stochastic axis swapping occurs when

a data point x is transformed to be x̂1 = DT
1 x in one

iteration and x̂2 = DT
2 x in another iteration such that

D1 = PD2 where P 6= I is a permutation matrix solely

determined by the statistics of a batch.

Stochastic axis swapping makes training difficult, because

the random permutation of the input dimensions can greatly

confuse the learning algorithm—in the extreme case where

the permutation is completely random, what remains is only

a bag of activation values (similar to scrambling all pixels

in an image), potentially resulting in an extreme loss of

information and discriminative power.

Here, we demonstrate that the whitening of activations,

if not done properly, can cause stochastic axis swapping in

training neural networks. We start with standard PCA whiten-

ing [13], which computes Σ−1/2 through eigen decomposi-

tion: Σ
−1/2
pca = Λ−1/2DT , where Λ = diag(σ1, . . . , σd) and

D = [d1, ...,dd] are the eigenvalues and eigenvectors of Σ,

i.e. Σ = DΛDT . That is, the original data point (after cen-

tering) is rotated by DT and then scaled by Λ−1/2. Without

loss of generalization, we assume that di is unique by fixing

the sign of its first element. A first opportunity for stochastic

axis swapping is that the columns (or rows) of Λ and D can

be permuted while still giving a valid whitening transforma-

tion. But this is easy to fix—we can commit to a unique Λ
and D by ordering the eigenvalues non-increasingly.

But it turns out that ensuring a unique Λ and D is insuf-

ficient to avoid stochastic axis swapping. Fig. 1 illustrates

an example. Given a mini-batch of data points in one iter-

ation as shown in Fig. 1(a), PCA whitening rotates them

by DT = [dT
1 ,d

T
2]

T and stretches them along the new axis

system by Λ−1/2 = diag(1/
√
σ1, 1/

√
σ2), where σ1 > σ2.

Considering another iteration shown in Figure 1(b), where all

data points except the red points are the same, it has the same

eigenvectors with different eigenvalues, where σ1 < σ2. In

this case, the new rotation matrix is (D
′

)T = [dT
2 ,d

T
1]

T

because we always order the eigenvalues non-increasingly.

The blue data points thus have two different representations

with the axes swapped.

To further justify our conjecture, we perform an exper-

iment on multilayer perceptrons (MLPs) over the MNIST

dataset as shown in Figure 2. We refer to the network with-

out whitening activations as ‘plain’ and the network with

PCA whitening as DBN-PCA. We find that DBN-PCA has

significantly inferior performance to ‘plain’. Particularly, on

the 4-layer MLP, DBN-PCA behaves similarly to random

guessing, which implies that it causes severe stochastic axis

swapping.

The stochastic axis swapping caused by PCA whitening

exists because the rotation operation is executed over varied

activations. Such variation is a result of two factors: (1) the

793

xଵ

xଶ xଶ

 xଵ
xଵ

xଶ xଵ

 xଶ
(a)

xଵ

xଶ xଶ

 xଵ
xଵ

xଶ xଵ

 xଶ
(b)

Figure 1. Illustration that PCA whitening suffers from stochastic

axis swapping. (a) The axis alignment of PCA whitening in the

initial iteration; (b) The axis alignment in another iteration.

0 200 400 600 800 1000

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

T
r
a
i
n
i
n
g

l
o
s
s plain

DBN-PCA

DBN-ZCA

(a) 2 layer MLP

0 200 400 600 800 1000

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

T
r
a
i
n
i
n
g

l
o
s
s plain

DBN-PCA

DBN-ZCA

(b) 4 layer MLP

Figure 2. Illustration of different whitening methods in training an

MLP on MNIST. We use full batch gradient descent and report

the best results with respect to the training loss among learning

rates={0.1, 0.5, 1, 5}. (a) and (b) show the training loss of the 2-

layer and 4-layer MLP, respectively. The number of neurons in each

hidden layer is 100. We refer to the network without whitening

activation as ‘plain‘, with PCA whitening activation as DBN-PCA,

and with ZCA whitening as DBN-ZCA.

activations can change due to weight updates during training,

following the internal covariate shift described in [25]; (2)

the optimization is based on random mini-batches, which

means that each batch will contain a different random set of

examples in each training epoch.

A similar phenomenon is also observed in [22]. In this

work, PCA-style orthogonalization failed to learn orthogonal

filters effectively in neural networks. However, no further

analysis was provided to explain why this is the case.

3.2. ZCA Whitening

To address the stochastic axis swapping problem, one

straightforward idea is to rotate the transformed input back

using the same rotation matrix D:

Σ−1/2 = DΛ−1/2DT . (4)

In other words, we scale along the eigenvectors to get the

whitened activations under the original axis system. Such

whitening is known as ZCA whitening [4], and has been

shown to minimize the distortion introduced by whitening

under L2 distance [4, 27, 22]. We perform the same experi-

ments with ZCA whitening as we did with PCA whitening:

with MLPs on MNIST. Shown in Figure 2, ZCA whitening

(referred to as DBN-ZCA) improves training performance

significantly compared to no whitening (‘plain’) and DBN-

PCA. This shows that ZCA whitening is critical to addressing

the stochastic axis swapping problem.

Back-propagation It is important to note that the back-

propagation through ZCA whitening is non-trivial. In our

DBN, the mean µ and the covariance Σ are not parameters

of the whitening transform φ, but are functions of the mini-

batch data X. We need to back-propagate the gradients

through φ as in [25, 22]. Here, we use the results from [26]

to derive the back-propagation formulations of whitening:

∂L

∂Σ
= D{(KT ⊙ (DT ∂L

∂D)) + (∂L∂Λ)diag}DT , (5)

where L is the loss function, K ∈ R
d×d is 0-diagonal with

Kij =
1

σi−σj
[i 6= j], the ⊙ operator is element-wise matrix

multiplication, and (∂L∂Λ)diag sets the off-diagonal elements

of ∂L
∂Λ as zero. Detailed derivation can be found in the sup-

plementary materials. Here we only show the simplified

formulation:

∂L
∂xi

=
(∂L
∂x̃i

− f + x̃T
i S− x̃T

i M
)
Λ−1/2DT , (6)

where S = 2(KT ⊙(ΛFT
c +Λ

1

2FcΛ
1

2))sym, M = (Fc)diag ,

Fc = 1
m (

∑m
i=1

∂L
∂x̃i

T
x̃T
i), and f = 1

m

∑m
i=1

∂L
∂x̃i

. The no-

tation (·)sym represents symmetrizing the corresponding

matrix.

3.3. Training and Inference

Decorrelated Batch Normalization (DBN) is a data-

dependent whitening transformation with back-propagation

formulations. Like Batch Normalization [25], it can be in-

serted extensively into a network. Algorithms 1 and 2 de-

scribe the forward pass and the backward pass of our pro-

posed DBN respectively. During training, the mean µ and

the whitening matrix Σ−1/2 are calculated within each mini-

batch to ensure that the activations are whitened for each

mini-batch. We also maintain the expected mean µE and

the expected whitening matrix Σ
−1/2
E for use during infer-

ence. Specifically, during training, we initialize µE as 0 and

Σ
−1/2
E as I and update them by running average as described

in Line 10 and 11 of Algorithm 1.

Normalizing the activations constrains the model’s capac-

ity for representation. To remedy this, Ioffe and Szegedy

[25] introduce extra learnable parameters γ and β in Eqn. 1.

These learnable parameters often marginally improve the per-

formance in our observation. For DBN, we also recommend

to use learnable parameters. Specifically, the learnable pa-

rameters can be merged into the following ReLU activation

[36], resulting in the Translated ReLU (TReLU) [52].

For a convolutional neural network, the input to the DBN

transformation is XC ∈ R
h×w×d×m where h and w indicate

the height and width of feature maps, and d and m are the

numbers of feature maps and examples respectively. Follow-

ing [25], we view each spatial position of the feature map as

794

Algorithm 1 Forward pass of DBN for each iteration.

1: Input: mini-batch inputs {xi, i = 1, 2...,m}, expected mean

µE and expected projection matrix Σ
−1/2
E .

2: Hyperparameters: ǫ, running average momentum λ.

3: Output: the ZCA-whitened activations {x̂i, i = 1, 2...,m}.
4: calculate: µ = 1

m

∑m
j=1

xj .

5: calculate: Σ = 1

m

∑m
j=1

(xj − µ)(xj − µ)T + ǫI.

6: execute eigenvalue decomposition: Σ = DΛDT .

7: calculate PCA-whitening matrix: U = Λ−1/2
D

T .

8: calculate PCA-whitened activation : x̃i = U(xi − µ).
9: calculate ZCA-whitened output: x̂i = Dx̃i.

10: update: µE ← (1− λ) µE + λ µ.

11: update: Σ
−1/2
E ← (1− λ)Σ

−1/2
E + λDU.

Algorithm 2 Backward pass of DBN for each iteration.

1: Input: mini-batch gradients respect to whitened outputs

{ ∂L
∂x̂i

, i = 1, 2...,m}. Other auxiliary data from respective

forward pass: (1) eigenvalues; (2) x̃; (3) D.

2: Output: the gradients respect to the inputs { ∂L
∂xi

, i =

1, 2...,m}.
3: calculate the gradients respect to x̃: ∂L

∂x̃i
= ∂L

∂x̂i
D.

4: calculate f = 1

m

∑m
i=1

∂L
∂x̃i

T
.

5: calculate 0-diagonal K matrix by Kij = 1

σi−σj
[i 6= j].

6: generate diagonal matrix Λ from eigenvalues.

7: calculate Fc = 1

m
(
∑m

i=1

∂L
∂x̃i

T
x̃
T
i) and M = (Fc)diag .

8: calculate S = 2(KT ⊙ (ΛFT
c + Λ

1

2FcΛ
1

2))sym.

9: calculate ∂L
∂xi

by formula 6.

a sample. We thus unroll XC as X ∈ R
d×(mhw) with mhw

examples and d feature maps. The whitening operation is

performed over the unrolled X.

3.4. Group Whitening

As discussed in Section 1, it is necessary to control the

extent of whitening such that there are sufficient examples

in a batch for estimating the whitening matrix. To do this

we use “group whitening”, specifically, we divide the acti-

vations along the feature dimension with size d into smaller

groups of size kG (kG < d) and perform whitening within

each group. The extent of whitening is controlled by the

hyperparameter kG. In the case kG = 1, Decorrelated Batch

Normalization reduces to the original Batch Normalization.

In addition to controlling the extent of whitening, group

whitening reduces the computational complexity [22]. Full

whitening costs O(d2 max(m, d)) for a batch of size m.

When using group whitening, the cost is reduced to

O(d
kG

(k2G(max(m, kG)))). Typically, we choose kG < m,

therefore the cost of group whitening is O(mdkG).

3.5. Analysis and Discussion

DBN extends BN such that the activations are decorre-

lated over mini-batch data. DBN thus inherits the beneficial

properties of BN, such as the ability to perform efficient

training with large learning rates and very deep networks.

Here, we further highlight the benefits of DBN over BN,

in particular achieving better dynamical isometry [42] and

improved conditioning.

Approximate Dynamical Isometry Saxe et al. [42] in-

troduce dynamical isometry—the desirable property that

occurs when the singular values of the product of Jacobians

lie within a small range around 1. Enforcing this property,

even approximately, is beneficial to training because it pre-

serves the gradient magnitudes during back-propagation and

alleviates the vanishing and exploding gradient problems

[42]. Ioffe and Szegedy [25] find that Batch Normalization

achieves approximate dynamical isometry under the assump-

tion that (1) the transformation between two consecutive

layers is approximately linear, and (2) the activations in each

layer are Gaussian and uncorrelated. Our DBN inherently

satisfies the second assumption, and therefore is more likely

to achieve dynamical isometry than BN.

Improved Conditioning [12] demonstrated that whiten-

ing activations results in a block diagonal Fisher Information

Matrix (FIM) for each layer under certain assumptions [16].

Their experiments show that such a block diagonal structure

in the FIM can improve the conditioning. The proposed

method in [12], however, cannot whiten the activations ef-

fectively, as shown in [34] and also discussed in Section 2.

DBN, on the other hand, does this directly. Therefore, we

conjecture that DBN can further improve the conditioning of

the FIM, and we justify this experimentally in Section 4.1.

4. Experiments

We start with experiments to highlight the effectiveness

of Decorrelated Batch Normalization (DBN) in improving

the conditioning and speeding up convergence on multilayer

perceptrons (MLP). We then conduct comprehensive exper-

iments to compare DBN and BN on convolutional neural

networks (CNNs). In the last section, we apply our DBN

to residual networks on CIFAR-10, CIFAR-100 [29] and

ILSVRC-2012 to show its power to improve modern network

architectures. The code to reproduce the experiments is avail-

able at https://github.com/huangleiBuaa/DecorrelatedBN.

We focus on classification tasks and the loss function is

the negative log-likelihood: − logP (y|x). Unless otherwise

stated, we use random weight initialization as described in

[32] and ReLU activations [36].

4.1. Ablation Studies on MLPs

In this section, we verify the effectiveness of our proposed

method in improving conditioning and speeding up conver-

795

0 50 100 150

Iterations (x20)

10
0

10
50

C
o
n
d
i
t
i
o
n

n
u
m
b
e
r

o
f

F
I
M

plain

NNN

LN

BN

DBN

(a)

0 100 200 300 400 500

Time/s

0

1

2

3

4

T
r
a
i
n
i
n
g

l
o
s
s

plain

NNN

LN

BN

DBN

(b)

Figure 3. Conditioning analysis with MLPs trained on the Yale-

B dataset. (a) Condition number (log-scale) of relative FIM as a

function of updates in the last layer; (b) training loss with respect

to wall clock time.

0 500 1000 1500 2000

Iterations

0

1

2

3

4

T
r
a
i
n
i
n
g

l
o
s
s

G1

G8

G16

G32

G64

G128

(a)

0 20 40 60 80 100

Time/s

0

1

2

3

4

T
r
a
i
n
i
n
g

l
o
s
s

plain

NNN

LN

BN

DBN

(b)

Figure 4. Experiments on MLP architecture over PIE dataset. (a)

The effects of group size of DBN, where ’Gn’ indicates kG = n;

(b) Comparison of training loss with respect to wall clock time.

gence on MLPs. We also discuss the effect of the group size

on the tradeoff between the performance and computation

cost. We compare against several baselines, including the

original network without any normalization (referred to as

‘plain’), Natural Neural Networks (NNN) [12], Layer Nor-

malization (LN) [2], and Batch Normalization (BN) [25].

All results are averaged over 5 runs.

Conditioning Analysis We perform conditioning analysis

on the Yale-B dataset [14], specifically, the subset [6] with

2,414 images and 38 classes. We resize the images to 32×32

and reshape them as 1024-dimensional vectors. We then con-

vert the images to grayscale in the range [0, 1] and subtract

the per-pixel mean.

For each method, we train a 5-layer MLP with the num-

bers of neurons in each hidden layer={128, 64, 48, 48} and

use full batch gradient descent. Hyper-parameters are se-

lected by grid search based on the training loss. For all meth-

ods, the learning rate is chosen from {0.1, 0.2, 0.5, 1, 2}.

For NNN, the revised term ε is one of {0.001, 0.01, 0.1, 1}
and the natural re-parameterization interval T is one of

{20, 50, 100, 200, 500}.

We evaluate the condition number of the relative Fisher

Information Matrix (FIM) [47] with respect to the last layer.

Figure 3 (a) shows the evolution of the condition number

over training iterations. Figure 3 (b) shows the training loss

over the wall clock time. Note that the experiments are

performed on CPUs and the model with DBN is 2× slower

than the model with BN per iteration. From both figures,

we see that NNN, LN, BN and DBN converge faster, and

achieve better conditioning compared to ‘plain’. This shows

that normalization is able to make the optimization problem

easier. Also, DBN achieves the best conditioning compared

to other normalization methods, and speeds up convergence

significantly.

Effects of Group Size As discussed in Section 3.4, the

group size kG controls the extent of whitening. Here we

show the effects of the hyperparameter kG on the perfor-

mance of DBN. We use a subset [6] of the PIE face recog-

nition [45] dataset with 68 classes with 11,554 images. We

adopt the same pre-processing strategy as with Yale-B.

We trained a 6-layer MLP with the numbers of neurons

in each hidden layer={128, 128, 128, 128, 128}. We use

Stochastic Gradient Descent (SGD) with a batch size of

256. Other configurations are chosen in the same way as the

previous experiment. Additionally, we explore group sizes

in {1, 8, 16, 32, 64, 128} for DBN. Note that when kG = 1,

DBN is reduced to the original BN without the extra learn-

able parameters.

Figure 4 (a) shows the training loss of DBN with different

group sizes. We find that the largest (G128) and smallest

group sizes (G1) both have noticeably slower convergence

compared to the ones with intermediate group sizes such as

G16. These results show that (1) decorrelating activations

over a mini-batch can improve optimization, and (2) con-

trolling the extent of whitening is necessary, as the estimate

of the full whitening matrix might be poor over mini-batch

samples. Also, the eigendecomposition with small group

sizes (e.g. 16) is less computationally expensive. We thus

recommend using group whitening in training deep models.

We also compared DBN with group whitening (kG = 16)

to other baselines and the results are shown in Figure 4 (b).

We find that DBN converges significantly faster than other

normalization methods.

4.2. Experiments on CNNs

We design comprehensive experiments to evaluate the

performance of DBN with CNNs against BN, the state-of-

the-art normalization technique. For these experiments we

use the CIFAR-10 dataset [29], which contains 10 classes,

50k training images, and 10k test images.

4.2.1 Comparison of DBN and BN

We compare DBN to BN over different experimental con-

figurations, including the choice of optimization method,

non-linearities, and the position of DBN/BN in the network.

We adopt the VGG-A architecture [46] for all experiments,

and pre-process the data by subtracting the per-pixel mean

and dividing by the variance.

We use SGD with a batchsize of 256, momentum of 0.9

and weight decay of 0.0005. We decay the learning rate by

half every T iterations. The hyper-parameters are chosen

by grid search over a random validation set of 5k examples

796

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train

DBN-train

BN-test

DBN-test

(a) Basic Configuration

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train

DBN-train

BN-test

DBN-test

(b) Adam optimization

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train

DBN-train

BN-test

DBN-test

(c) ELU non-linearity

0 20 40 60 80

Epochs

0

10

20

30

40

E
r
r
o
r

(
%
)

BN-train

DBN-train

BN-test

DBN-test

(d) DBN/BN after non-linearity

Figure 5. Comprehensive performance comparison between DBN and BN with the VGG-A architecture on CIFAR-10. We show the training

accuracy (solid line) and test accuracy (line marked with plus) for each epoch.

0 50 100 150

epoch

0

10

20

30

40

50

t
r
a
i
n

e
r
r
o
r

(
%
)

DBN-20L

DBN-32L

DBN-44L

BN-20L

BN-32L

BN-44L

(a) Deeper Networks

0 50 100 150 200

epoch

0

20

40

60

80

100

t
r
a
i
n

e
r
r
o
r

(
%
)

DBN-20L

DBN-32L

DBN-44L

BN-20L

BN-32L

BN-44L

(b) 4× Learning Rate

Figure 6. DBN can make optimization easier and benefits from a

higher learning rate. Results are reported on the S-plain architecture

over the CIFAR-10 dataset. (a) Comparison by varying the depth

of network. ’-nL’ means the network has n layers; (b) Comparison

by using a higher learning rate.

taken from the training set. The grid search includes the

initial learning rate lr = {1, 2, 4, 8} and the decay interval

T = {1000, 2000, 4000, 8000}. We set the group size of

DBN as kG = 16. Figure 5 (a) compares the performance

of BN and DBN under this configuration.

We also experiment with other configurations, including

using (1) Adam [28] as the optimization method, (2) replac-

ing ReLU with another widely used non-linearity called Ex-

ponential Linear Units (ELU) [8], and (3) inserting BN/DBN

after the non-linearity. All the experimental setups are other-

wise the same, except that Adam [28] is used with an initial

learning rate in {0.001, 0.005, 0.01, 0.05}. The respective

results are shown in Figure 5 (b), (c) and (d).

In all configurations, DBN converges faster with respect

to the epochs and generalizes better, compared to BN. Par-

ticularly, in the four experiments above, DBN reduces the

absolute test error by 0.61%, 1.34%, 1.44% and 0.38% re-

spectively. The results demonstrate that our Decorrelated

Batch Normalization outperforms Batch Normalization in

terms of optimization quality and regularization ability.

4.2.2 Analyzing the Properties of DBN

We conduct experiments to support the conclusions from

Section 3.5, specifically that DBN has better stability and

converges faster than BN with high learning rates in very

deep networks. The experiments were conducted on the

S-plain network, which follows the design of the residual

network [18] but removes the identity maps and uses the

same feature maps for simplicity.

Method Res-20 Res-32 Res-44 Res-56

Baseline* 8.75 7.51 7.17 6.97

Baseline 7.94 7.31 7.17 7.21

DBN-L1 7.94 7.28 6.87 6.63

DBN-scale-L1 7.77 6.94 6.83 6.49

Table 1. Comparison of test errors (%) with residual networks on

CIFAR-10. ‘Res-L’ indicates residual network with L layers, and

‘Baseline*’ indicates the results reported in [17] with only one run.

Our results are averaged over 5 runs.

Going Deeper He et al. [18] addressed the degradation

problem for the network without identity mappings: that

is, when the network depth increases, the training accuracy

degrades rapidly, even when Batch Normalization is used.

In our experiments, we demonstrate that DBN will relieve

this problem to some extent. In other words, a model with

DBN is easier to optimize. We validate this on the S-plain

architecture with feature maps of dimension d = 48 and

number of layers 20, 32 and 44. The models are trained

with a mini-batch size of 128, momentum of 0.9 and weight

decay of 0.0005. We set the initial learning rate to be 0.1,

dividing it by 5 at 80 and 120 epochs, and end training at 160

epochs. The results in Figure 6 (a) show that, with increased

depth, the model with BN was more difficult to optimize than

with DBN. We conjecture that the approximate dynamical

isometry of DBN alleviates this problem.

Higher Learning Rate A network with Batch Normaliza-

tion can benefit from high learning rates, and thus faster train-

ing, because it reduces internal covariate shift [25]. Here, we

show that DBN can help even more. We train the networks

with BN and DBN with a 4× higher learning rate — 0.4. We

use the S-plain architecture with feature maps of dimensions

d = 42 and divide the learning rate by 5 at 60, 100, 140,

and 180 epochs. The results in Figure 6 (b) show that DBN

has significantly better training accuracy than BN. We argue

that DBN benefits from higher learning rates because of its

property of improved conditioning.

4.3. Applying DBN to Residual Network in Practice

Due to our current un-optimized implementation of DBN,

it would incur a high computational cost to replace all BN

797

CIFAR-10 CIFAR-100

Method Baseline* [54] Baseline DBN-scale-L1 Baseline* [54] Baseline DBN-scale-L1

WRN-28-10 3.89 3.99 ± 0.13 3.79 ± 0.09 18.85 18.75 ± 0.28 18.36 ± 0.17

WRN-40-10 3.80 3.80 ± 0.11 3.74 ± 0.11 18.3 18.7 ± 0.22 18.27 ± 0.19

Table 2. Test errors (%) on wide residual networks over CIFAR-10 and CIFAR-100. ‘Baseline’ and ‘DBN-scale-L1’ refer to the the results

we perform, based on the released code of paper [54], and the results are shown in the format of ‘mean ±std’ computed over 5 random

seeds. ‘Baseline*’ refers to the results reported by authors of [54] on their Github. They report the median of 5 runs on WRN-28-10 and

only perform one run on WRN-40-10.

modules of a network with DBN2. We instead only decorre-

late the activations among a subset of layers. We find that

this in practice is already effective for residual networks

[17], because the information in previous layers can pass

directly to the later layers through the identity connections.

We also show that we can improve upon residual networks

[17, 19, 54] by using only one DBN module before the first

residual block, which introduces negligible computation cost.

In principle, an optimized implementation of DBN will be

much faster, and could be injected in multiple places in

the network with little overhead. However, optimizing the

implementation of DBN is beyond the scope of this work.

Residual Network on CIFAR-10 We apply our method

on residual networks [17] by using only one DBN module

before the first residual block (denoted as DBN-L1). We

also consider DBN with adjustable scale (denoted as DBN-

scale-L1) as discussed in Section 3.3. We adopt the Torch

implementation of residual networks3 and follow the same

experimental protocol as described in [17]. We train the

residual networks with depth 20, 32, 44 and 56 on CIFAR-10.

Table 1 shows the test errors of these networks. Our methods

obtain lower test errors compared to BN over all 4 networks,

and the improvement is more dramatic for deeper networks.

Also, we see that DBN-scale-L1 marginally outperforms

DBN-L1 in all cases. Therefore, we focus on comparing

DBN-scale-L1 to BN in later experiments.

Wide Residual Network on CIFAR We apply DBN to

Wide Residual Network (WRN) [54] to improve the per-

formance on CIFAR-10 and CIFAR-100. Following the

convention set in [54], we use the abbreviation WRN-d-k to

indicate a WRN with depth d and width k. We again adopt

the publicly available Torch implementation4 and follow the

same setup as in [54]. The results in Table 2 show that DBN

improves the original WRN on both datasets and both net-

works. In particular, we reduce the test error by 3.74% and

18.27% on CIFAR-10 and CIFAR-100, respectively.

Residual Network on ILSVRC-2012 We further validate

the scalability of our method on ILSVRC-2012 with 1000

classes [11]. We use the given official 1.28M training images

2See the supplementary material for more details on computational cost.
3https://github.com/facebook/fb.resnet.torch
4https://github.com/szagoruyko/wide-residual-networks

Res-50 Res-101

Method Top-1 Top-5 Top-1 Top-5

Baseline* 24.70 7.80 23.60 7.10

Baseline 24.87 7.58 22.54 6.38

DBN-scale-L1 24.29 7.08 22.17 6.09

Table 3. Comparison of test errors (%, single model and single-

crop) on 50 and 101-layer residual networks on ILSVRC-2012.

‘Baseline*’ indicates that the results are obtained from the website:

https://github.com/KaimingHe/deep-residual-networks

as a training set, and evaluate the top-1 and top-5 classifica-

tion errors on the validation set with 50k images. We use

the 50 and 101-layer residual network (Res-50 and Res-101)

and perform single model and single-crop testing. We follow

the same experimental setup as described in [17], except

that we use 4 GPUs instead of 8 GPUs for training Res-50:

we apply SGD with a mini-batch size of 256 over 4 GPUs

for Res-50 and 8 GPUs for Res-101, momentum of 0.9 and

weight decay of 0.0001; we set the initial learning rate of 0.1,

dividing it by 10 at 30 and 60 epochs, and end the training

at 90 epochs. The results are shown in Table 3. We can see

that the DBN-scale-L1 achieves lower test errors compared

to the original residual networks.

Conclusions

In this paper, we propose Decorrelated Batch Normaliza-

tion (DBN), which extends Batch Normalization to include

whitening over mini-batch data. We find that PCA whitening

can sometimes be detrimental to training because it causes

stochastic axis swapping, and demonstrate that it is critical to

use ZCA whitening, which avoids this issue. DBN retains the

advantages of Batch Normalization while using decorrelated

representations to further improve models’ optimization ef-

ficiency and generalization abilities. This is because DBN

can maintain approximate dynamical isometry and improve

the conditioning of the Fisher Information Matrix. These

properties are experimentally validated, suggesting DBN has

great potential to be used in designing DNN architectures.

Acknowledgement This work was partially supported by

China Scholarship Council, NSFC-61370125 and SKLSDE-

2017ZX-03. We also thank Jonathan Stroud and Lanlan Liu

for their help with proofreading and editing.

798

References

[1] D. Arpit, Y. Zhou, B. U. Kota, and V. Govindaraju. Normal-

ization propagation: A parametric technique for removing

internal covariate shift in deep networks. In ICML, volume 48

of JMLR Workshop and Conference Proceedings, pages 1168–

1176. JMLR.org, 2016. 3

[2] L. J. Ba, R. Kiros, and G. E. Hinton. Layer normalization.

CoRR, abs/1607.06450, 2016. 2, 6

[3] H. B. Barlow. Possible principles underlying the transfor-

mations of sensory messages, pages 217–234. MIT Press,

Cambridge, MA, 1961. 1

[4] A. J. Bell and T. J. Sejnowski. The ”independent compo-

nents” of natural scenes are edge filters. Vision research,

37(23):3327–3338, Dec. 1997. 2, 4

[5] Y. Bengio and J. S. Bergstra. Slow, decorrelated features

for pretraining complex cell-like networks. In Advances in

Neural Information Processing Systems 22, pages 99–107.

2009. 1

[6] D. Cai, X. He, Y. Hu, J. Han, and T. Huang. Learning a

spatially smooth subspace for face recognition. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition Machine

Learning (CVPR’07), 2007. 6

[7] M. Cho and J. Lee. Riemannian approach to batch normal-

ization. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-

vances in Neural Information Processing Systems 30, pages

5225–5235. Curran Associates, Inc., 2017. 3

[8] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-

rate deep network learning by exponential linear units (elus).

2016. 7

[9] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick, and D. Ba-

tra. Reducing overfitting in deep networks by decorrelating

representations. In ICLR, 2016. 1, 2

[10] T. Cooijmans, N. Ballas, C. Laurent, and A. C. Courville.

Recurrent batch normalization. In ICLR, 2017. 2

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 2, 8

[12] G. Desjardins, K. Simonyan, R. Pascanu, and k. kavukcuoglu.

Natural neural networks. In Advances in Neural Information

Processing Systems 28, pages 2071–2079, 2015. 2, 5, 6

[13] G. Desjardins, K. Simonyan, R. Pascanu, and

K. Kavukcuoglu. Natural neural networks. In Pro-

ceedings of the 28th International Conference on Neural

Information Processing Systems, NIPS’15, pages 2071–2079,

2015. 2, 3

[14] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: Illumination cone models for face recognition under

variable lighting and pose. IEEE Trans. Pattern Anal. Mach.

Intelligence, 23(6):643–660, 2001. 6

[15] M. B. Giles. Collected Matrix Derivative Results for Forward

and Reverse Mode Algorithmic Differentiation. 2008. 2

[16] R. B. Grosse and J. Martens. A kronecker-factored approxi-

mate fisher matrix for convolution layers. In ICML, volume 48

of JMLR Workshop and Conference Proceedings, pages 573–

582. JMLR.org, 2016. 5

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In arXiv prepring arXiv:1506.01497,

2015. 1, 2, 7, 8

[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV. IEEE Computer Society, 2015. 7

[19] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In B. Leibe, J. Matas, N. Sebe, and

M. Welling, editors, Computer Vision – ECCV 2016, pages

630–645, Cham, 2016. Springer International Publishing. 1,

2, 8

[20] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected

convolutional networks. CoRR, abs/1608.06993, 2016. 1

[21] L. Huang, X. Liu, B. Lang, and B. Li. Projection based

weight normalization for deep neural networks. CoRR,

abs/1710.02338, 2017. 3

[22] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li. Or-

thogonal weight normalization: Solution to optimization over

multiple dependent stiefel manifolds in deep neural networks.

In AAAI, 2018. 3, 4, 5

[23] L. Huang, X. Liu, Y. Liu, B. Lang, and D. Tao. Centered

weight normalization in accelerating training of deep neural

networks. In ICCV, 2017. 3

[24] S. Ioffe. Batch renormalization: Towards reducing mini-

batch dependence in batch-normalized models. CoRR,

abs/1702.03275, 2017. 2

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

Proceedings of the 32nd International Conference on Machine

Learning, ICML 2015, 2015. 1, 2, 4, 5, 6, 7

[26] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep

networks with structured layers by matrix backpropagation.

In Proceedings of International Conference on Computer

Vision, ICCV 2015, 2015. 2, 4

[27] A. Kessy, A. Lewin, and K. Strimmer. Optimal whitening and

decorrelation. The American Statistician, 0(ja):0–0, 2017. 2,

4

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014. 7

[29] A. Krizhevsky. Learning multiple layers of features from tiny

images. Technical report, 2009. 2, 5, 6

[30] A. Krogh and J. A. Hertz. A simple weight decay can improve

generalization. In NIPS. 1992. 3

[31] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio.

Batch normalized recurrent neural networks. In 2016 IEEE

International Conference on Acoustics, Speech and Signal

Processing, ICASSP 2016, pages 2657–2661, 2016. 2

[32] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Effiicient

backprop. In Neural Networks: Tricks of the Trade, This Book

is an Outgrowth of a 1996 NIPS Workshop, pages 9–50, 1998.

1, 5

[33] Q. Liao, K. Kawaguchi, and T. Poggio. Streaming normaliza-

tion: Towards simpler and more biologically-plausible nor-

malizations for online and recurrent learning. arXiv preprint

arXiv:1610.06160, 2016. 2

[34] P. Luo. Learning deep architectures via generalized whitened

neural networks. In Proceedings of the 34th International

799

Conference on Machine Learning, pages 2238–2246, 2017.

2, 5

[35] G. Montavon and K.-R. Müller. Deep Boltzmann Machines

and the Centering Trick, volume 7700 of LNCS. Springer,

2nd edn edition, 2012. 2

[36] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

International Conference on Machine Learning ICML 2010,

2010. 4, 5

[37] B. Neyshabur, R. Salakhutdinov, and N. Srebro. Path-sgd:

Path-normalized optimization in deep neural networks. In An-

nual Conference on Neural Information Processing Systems

NIPS 2015, pages 2422–2430, 2015. 3

[38] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made eas-

ier by linear transformations in perceptrons. In International

Conference on Artificial Intelligence and Statistics (AISTATS),

pages 924–932, 2012. 2

[39] M. Ren, R. Liao, R. Urtasun, F. H. Sinz, and R. S. Zemel. Nor-

malizing the normalizers: Comparing and extending network

normalization schemes. 2017. 2

[40] P. Rodrı́guez, J. Gonzàlez, G. Cucurull, J. M. Gonfaus, and

F. X. Roca. Regularizing cnns with locally constrained decor-

relations. 2017. 3

[41] T. Salimans and D. P. Kingma. Weight normalization: A sim-

ple reparameterization to accelerate training of deep neural

networks. CoRR, abs/1602.07868, 2016. 3

[42] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions

to the nonlinear dynamics of learning in deep linear neural

networks. CoRR, abs/1312.6120, 2013. 5

[43] J. Schmidhuber. Learning factorial codes by predictability

minimization. Neural Computation, 4(6):863–879, 1992. 1

[44] N. N. Schraudolph. Accelerated gradient descent by factor-

centering decomposition. Technical report, 1998. 2

[45] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumina-

tion, and expression (pie) database. In Proceedings of the

Fifth IEEE International Conference on Automatic Face and

Gesture Recognition, FGR ’02, pages 53–, 2002. 6

[46] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 6

[47] K. Sun and F. Nielsen. Relative natural gradient for learning

large complex models. CoRR, abs/1606.06069, 2016. 6

[48] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. CoRR, abs/1602.07261, 2016. 1

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

CoRR, abs/1512.00567, 2015. 1

[50] S. Wiesler and H. Ney. A convergence analysis of log-linear

training. In NIPS, pages 657–665, 2011. 1

[51] S. Wiesler, A. Richard, R. Schlüter, and H. Ney. Mean-

normalized stochastic gradient for large-scale deep learning.

In ICASSP, pages 180–184. IEEE, 2014. 2

[52] S. Xiang and H. Li. On the effects of batch and weight

normalization in generative adversarial networks. CoRR,

abs/1704.03971, 2017. 4

[53] W. Xiong, B. Du, L. Zhang, R. Hu, and D. Tao. Regularizing

deep convolutional neural networks with a structured decorre-

lation constraint. In IEEE 16th International Conference on

Data Mining, ICDM 2016, 2016. 1, 2

[54] S. Zagoruyko and N. Komodakis. Wide residual networks.

CoRR, abs/1605.07146, 2016. 1, 2, 8

800

