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Abstract

Cross-media retrieval is a research hotspot in multime-
dia area, which aims to perform retrieval across different
media types such as image and text. The performance of
existing methods usually relies on labeled data for model
training. However, cross-media data is very labor consum-
ing to collect and label, so how to transfer valuable knowl-
edge in existing data o new data is a key problem towards
application. For achieving the goal, this paper proposes
deep cross-media knowledge transfer (DCKT) approach,
which transfers knowledge from a large-scale cross-media
dataset to promote the model training on another small-
scale cross-media dataset. The main contributions of DCKT
are: (1) Two-level transfer architecture is proposed to
Jjointly minimize the media-level and correlation-level do-
main discrepancies, which allows two important and com-
plementary aspects of knowledge to be transferred: intra-
media semantic and inter-media correlation knowledge. It
can enrich the training information and boost the retrieval
accuracy. (2) Progressive transfer mechanism is pro-
posed to iteratively select training samples with ascending
transfer difficulties, via the metric of cross-media domain
consistency with adaptive feedback. It can drive the transfer
process to gradually reduce vast cross-media domain dis-
crepancy, so as to enhance the robustness of model training.
For verifying the effectiveness of DCKT, we take the large-
scale dataset XMediaNet as source domain, and 3 widely-
used datasets as target domain for cross-media retrieval.
Experimental results show that DCKT achieves promising
improvement on retrieval accuracy.

1. Introduction

With the rapid development of computer and digital tran-
sition technology, multimedia data such as image, text,
video and audio can be found everywhere and exists as a
whole to reshape our lives. Human can naturally receive
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Figure 1: An example of cross-media retrieval.

information from different sensory channels, such as vision
and auditory. However, it has been indicated that the impor-
tances of sensory channels differ among people, resulting
in different learning styles [6]]. For example, when students
take in information with all the senses, such as seeing pic-
tures and reading texts, they will have the highest efficiency
of studying [6]. If relevant multimedia data can be conve-
niently retrieved and provided, it will be very helpful to in-
crease the efficiency of information acquisition for human.
Cross-media retrieval [28] is such a kind of technique
to flexibly provide data of different media types, with one
query of any media type. Figure [T] shows an example of
cross-media retrieval, which includes two media types: im-
age and text. As a highlighting research hotspot, cross-
media retrieval has the advantage for realizing the coordi-
nation of different media types compared with traditional
single-media retrieval. To perform cross-media retrieval,
we have to deal with “heterogeneity gap”. This means
that different media types have inconsistent representation
forms, so the similarity of them cannot be directly measured
in their original feature spaces. Intuitively, the mainstream
methods of cross-media retrieval are common representa-
tion learning, which aim to project data of different media
types into an intermediate common space [10,[27,[35]44].
Among them, deep neural network (DNN) based methods
have currently become an active topic, which take DNN

8837



as basic model to perform common representation projec-
tion [SL[121[25[271[38].

Cross-media retrieval is still a challenging problem, and
the performance of existing methods usually relies on la-
beled data for model training. However, insufficient train-
ing data is a common and severe challenge, especially for
DNN-based methods. From the view of model training re-
quirement, because cross-media correlation is very complex
and diverse, high-quality labeled data is crucial to provide
cues for training “good” DNN models. Insufficient data
limits the training performance and easily leads to overfit-
ting. From the view of human labor, it is extremely labor-
consuming to collect and label cross-media data. For exam-
ple, if we want to collect data for “water”, we need to see
the images, read the texts, watch the videos, and even listen
to the audio, and carefully judge whether the data is actually
relevant to each other.

In this situation, the idea of transfer learning [21},22}[26]]
becomes significant, which exploits general knowledge
from source domain (usually a large-scale dataset) for re-
lieving the problem of insufficient data. As known, cross-
media data is quite labor consuming to collect and label, so
existing labeled cross-media data is precious and valuable.
It is a key problem towards application to distill knowledge
from existing data for boosting retrieval performance on
new data. Nevertheless, existing transfer methods pay lit-
tle attention to transfer between a large-scale cross-media
dataset and a small-scale one. They also usually assume
the domains share the same label space, which is often not
satisfied due to the challenge of collecting cross-media data
with the same semantic across domains. So we consider
the following problem: How can we fully transfer knowl-
edge from a large-scale cross-media dataset to promote the
model training on another small-scale dataset, where they
may have different label spaces? For addressing this prob-
lem, this paper proposes deep cross-media knowledge trans-
fer (DCKT) approach. The main contributions of DCKT
can be summarized as follows:

o Two-level transfer architecture is proposed to jointly
minimize the media-level and correlation-level do-
main discrepancies, which allows two important and
complementary aspects of knowledge to be trans-
ferred: intra-media semantic and inter-media correla-
tion knowledge. It can enrich the training information
and boost the retrieval accuracy on target domain.

e Progressive transfer mechanism is proposed to itera-
tively select training samples with ascending transfer
difficulties in target domain, via the metric of cross-
media domain consistency with adaptive feedback. It
can gradually reduce the vast cross-media domain dis-
crepancy to enhance the robustness of model training.

For performing knowledge transfer, a high-quality

source domain is indispensable. In the experiment, we take
a large-scale dataset XMediaNet as source domain, contain-
ing more than 100,000 labeled data with 200 distinct se-
mantic categories. For target domain, we adopt 3 widely-
used datasets: Wikipedia, NUS-WIDE-10k and Pascal Sen-
tences. Experimental results show that DCKT achieves
promising improvement on cross-media retrieval accuracy.

The following sections are organized as follows: Section
[2)gives a brief review of related work. Section[3|presents the
network architecture of DCKT, and Section[d]introduces the
progressive transfer mechanism of DCKT. The experimen-
tal results and discussion are presented in Section [ and
finally Section [6]concludes this paper.

2. Related Work
2.1. Cross-media Retrieval

The current mainstream of cross-media retrieval is com-
mon representation learning, and the existing methods can
be summarized as two main categories: shallow learning
methods and DNN-based methods. Shallow learning meth-
ods usually take linear projections to convert cross-media
data to common representation. A representative method is
canonical correlation analysis (CCA) [[10]], which is a clas-
sical solution and extended by following works as [33}35].
Besides CCA, there are also many methods which incor-
porate various information to learn projection matrices as
[11,/14120,/44)]. Furthermore, link information can also be
an important source of cross-media correlation, which has
been used for clustering heterogeneous social media ob-
jects [32].

DNN-based cross-media retrieval methods are the cur-
rently active direction [[1,{15,/2527,/41,/42]]. Bimodal deep
autoencoder [25[] is a representative method, which is an
extension of restricted Boltzmann machine (RBM). It can
be seen as two autoencoders sharing the same code layer,
where the common representation is obtained. Deep canon-
ical correlation analysis (DCCA) [1,/42] is a non-linear ex-
tension of CCA, which can learn the complex non-linear
transformations for two modalities. Cross-media multi-
ple deep networks (CMDN) [27] jointly preserve the intra-
media and inter-media information and then hierarchically
combine them for improving the retrieval accuracy.

However, insufficient training data is a common and se-
vere problem for existing methods. Inspired by the common
use of large-scale single-media datasets like ImageNet 18],
we intend to address this problem by exploiting a large-
scale cross-media dataset XMediaNet with general knowl-
edge and transfer knowledge from it. This is useful towards
real-world application where it is usually very hard to col-
lect and label enough cross-media data.
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Figure 2: The overview of proposed deep cross-media knowledge transfer (DCKT) approach.

2.2. Transfer Learning

It is natural that human can adapt the knowledge from
already learned tasks to new tasks. Transfer learning [26]
aims to simulate such mechanism, and relieve the problem
of insufficient training data for a specific task. The focus
of transfer learning is to reduce the domain discrepancy,
which is widely used in DNN-based methods [17,[21}[22]
for relieving the problem of insufficient training data, but
mainly deals with single-media scenario. Besides, some
works are proposed to perform transfer between different
feature spaces and multimedia domains [43]]. Tran-
sitive hashing network is proposed to learn from an
auxiliary cross-media dataset to bridge two separate single-
media datasets. Some works as also propose to ef-
fectively transfer knowledge from text to image. Besides,
Cross-media hybrid transfer network (CHTN) aims to
transfer from a single-media source domain to cross-media
target domain. Different from the above works, this pa-
per aims at transferring from a source domain with large-
scale cross-media dataset to a target domain with small-
scale cross-media dataset, where the label spaces are differ-
ent. It is a challenging task because the intra-media seman-
tic information, inter-media intrinsic correlation and vast
domain discrepancy should be jointly considered.

2.3. Curriculum Learning

The idea of progressive learning in this paper is inspired
by curriculum learning (CL). The motivation of CL is sim-
ple: to first learn from easy samples, and gradually learn
from harder samples [2]], which aims to reduce the negative
effects brought by noisy data in early period of training. It
can be also applied for deciding learning order of tasks [30].
Self-paced learning (SPL) is based on CL, which designs
a weighted loss term on all samples in the learning objec-
tive [19], and can be regarded as CL’s implementation as
indicated in [7]. CL has been applied in many problems
like image classification [[7] and object tracking [13].

This paper adopts the idea of CL to assign samples with
different transfer difficulties by metric of cross-media do-
main consistency. This is an iterative process with adaptive
feedback, which gradually reduces the discrepancy between
cross-media domains to enhance the robustness of model
training, and improve retrieval accuracy on cross-media tar-
get domain.

3. Network Architecture of DCKT

This section will introduce the network architecture of
DCKT in Figure The training process of progressive
transfer, including the domain consistency metric and sam-
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ple selection, will be further introduced in SectionE}

This paper focuses on the scenarios where source and
target domains both have two media types (i.e., image and
text), but DCKT can be simply extended to more than two
media types by adding pathways. The end-to-end archi-
tecture of DCKT can be seen as two levels: media-level
transfer and correlation-level transfer. We denote the source
domain as Src= {(if,tf),yf};’:l, where (i¥,1%) is the p-th
image/text pair with label y¢. Similarly, the target domain
includes training set Tar; = {(i?’,tf),y,q}qQ:l and testing set
Tar,= {(il", t;”)},”,f:l. The aim of DCKT is to exploit both
Src and Tar, to train the model for generating common
representation of Tar,,, which is ¢,(I)" and ¢,(T)" for each
image and text. After this, the cross-media retrieval can be
performed by distance computing with common represen-
tation.

3.1. Level 1: Media-level Transfer

As the two domains both have two media types, the
domain discrepancy can come from two aspects: (1)
Media-level discrepancy, which means the intra-media
semantic information in two domains has discrepancy;
(2) Correlation-level discrepancy, which means the inter-
media correlation information in two domains has discrep-
ancy. Media-level transfer aims to address the media-level
discrepancy by feature adaptation of the same media type
between two domains.

For each domain, we have two pathways for image and
text respectively, and the two domains have the same archi-
tecture. For image pathway, we take widely-used VGG19
[37] as basic model. We keep all the layers of VGG19 ex-
cept the last fully-connected layer, and each input image is
converted to 4,096-d representations via fc6—1I,/fc7—1, for
source domain, and fc6 — I,/fc7 — I, for target domain. For
text pathway, we first embed each word into a vector via
Word2Vec model [24], and then generate the 300-d input
feature vector of each text with Word CNN [16]. Similar
to image pathway, the input text feature will pass through
two fully connected layers, namely fc6 — T/fc7 — T, and
fc6=T,/fcT—T,.

Between the two domains, we achieve media-level trans-
fer by feature adaptation [21]] via minimizing the maximum
mean discrepancy (MMD) [8] of the same media type. Tak-
ing image as an example, we use I; = {i;} and I; = {i;} to
denote the distributions of images in Src and Tary,. ui(a)
denotes the mean embedding of a in reproducing kernel Hi-
bert space (RKHS) H;, and E,_, f(x) = ( S ), u(@))gy, for
f € Hi. So the squared MMD mz(ls, 1)) is denoted as fol-
lows:

(1) 2 ||E (96, 6,)] - B loG 0], (D

where ¢ denotes a network layer’s output, and 6, denotes
the network parameters for each pathway. For example, 6;,

means parameters of Image pathway in source domain, and
6;, means those of Image pathway in target domain.

MMD is computed in a layer-wise style, which is be-
tween the corresponding layers of two domains, i.e., fc6 —
I/fc6—1,, fcT—1y/fcT—1, forimage, and fc6—T,/fc6—T,,
fcT-=T,/fcT—-T, for text. By minimizing MMD, the media-
level domain discrepancy can be reduced, which can align
the single-media representation of two domains for knowl-
edge transfer. The MMD loss functions of image and text
can be defined as:

[
Lossymp, = Z mi(I, 1) 2)
I=ls
L
Lossyup, = Z mp (T, Ty) 3)
1=l

where Lossyyp, and Lossyyp, mean MMD loss functions
for two media types.

Besides, in two domains, each pair of image and text as
(i%,17) and (i?, 17) exists together to represent closely rele-
vant semantic, which is an important coexistence cue for
cross-media retrieval. We preserve such pairwise constraint
during transfer process via reducing the representation dif-
ference of each pair, which is a commonly-used criterion in
cross-media retrieval [5|[12]. Specifically, we use Euclidean
distance as measurement, denoted as:

@010 = |62, 6,) - o2 0| )
2,1 = |0, 6,) - 62, 01| ®)

Similar to what we have in Equation (I} 8, denotes the net-
work parameters for each pathway. Then we get the pair-
wise constraint loss for two domains as:

[7 P

Losspair, = » Y d*(@,10) (©6)
=l p=1
L Q

Losspar, = Y | d*(il, 1) (7

1=l q=1

where Losspgir, and Lossp,;y, mean pairwise constraint loss
for two domains, which are also computed in a layer-wise
style between corresponding layers fc6—1I,/fc6 T, fcT—
I/ fcT — T, for source domain, and fc6 —I,/fc6 — T}, fc7 —
I,/fcT — T, for target domain. By minimizing the MMD
loss and pairwise constraint loss, we can transfer the intra-
media semantic information from source domain to target
domain, as well as avoiding damaging the data-coexistence
relationship.

3.2. Level 2: Correlation-level Transfer

Cross-media domain discrepancy not only lies in the
difference within each media type, but also in the corre-
lation patterns for them to be correlated with each other.
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Correlation-level transfer aims to align the inter-media cor-
relation of the two domains. For capturing the cross-media
correlation in each domain, we adopt the strategy of shared
layers to generate the common representation for different
media types as [[12].

In the two domains, both image and text pathways will
share two fully-connected layers. So the parameters of
shared layers can fit the semantic learning of both two me-
dia types, which has the ability to capture inter-media cor-
relation. We add MMD loss function between the shared
layers for correlation-level transfer. Similar to media-level
transfer, we compute the MMD loss function as follows:

ly
Lossump, =y, mi(Cy, C)) ®)
I=lg

where /3,9 means the corresponding shared layers in two do-
mains, i.e., fc8—C,/fc8—C;and fc9—-C,/fc9—C; in Figure
[l and C, and C; mean the output of shared layers of two
domains. By minimizing Lossyup,., the correlation-level
domain discrepancy can be reduced, which aligns the inter-
media correlation of two domains for knowledge transfer.

Besides, we should preserve the semantic information to
maintain the semantically discriminative ability of common
representation. This is intuitively achieved by semantic con-
straints with semantic loss functions as follows:

P
Lossse, = ) (funli%,3%.00) + fin(.3%,6c) ()
p=1

Q
Lossse, = ) (funils 3, 0¢) + fn(tl3%,60¢)  (10)
g=1

where 6¢, and 6, are the network parameters for pathways
of source and target domains, and f;,, is the softmax loss
function.

The architecture of DCKT is end-to-end, so the two lev-
els of transfer can be jointly performed to mutually boost.
It comprehensively allows the knowledge from cross-media
source domain to be propagated to target domain. In
this way, DCKT can enrich the training information with
supplementary information of both intra-media semantic
and inter-media correlation knowledge, thus promoting the
model training performance and improve retrieval accuracy.

4. Progressive Transfer Mechanism

All the introduced loss functions are able to be mini-
mized by Stochastic Gradient Descent (SGD), so DCKT can
be simply trained by simultaneously optimizing all of them
with all data in Src and Tar,, as input. However, because
the discrepancy of two cross-media domains is usually quite
vast with different label spaces, it may bring much noise and
mislead the model training, especially for “empty” models.

Step 1: Domain consistency metric

" Modeliter-1) H

Step 2: Training sample selection

Cross-media retrieval
accuracy computing

Target

domain

Sample Selection Probability assignment

| Model(iter-1) |

| Model(iter) |

Source — .

domain | |

Step 3: Model update

Figure 3: Process in each iteration of progressive transfer.

So we propose a progressive transfer mechanism to gradu-
ally reduce the cross-media domain discrepancy.

To start from a “safe” point, we first pre-train the model
for each domain separately, removing all the MMD loss
linking the two domains. For convenience, we denote the
networks for two domains as Model; and Model,. Then we
progressively transfer the knowledge from source domain to
target domain, which is an iterative process shown as Figure
Because source domain is relatively large-scale and reli-
able, we take Model as reference model to perform sample
selection in target domain. The motivation is intuitive: In
early period of training, we choose “easy” samples in Tar,
whose cross-media correlation can be successful molded by
Model,, which are of high consistency with source domain.
For example, although the label spaces are different, some
categories such as “sport” and “football” have strong con-
sistency. In late period of training when the model is stable,
we can incorporate “harder” samples with low domain con-
sistency to further adapt to target domain.

In each iteration iter, we generate common repre-
sentation (class probability vector) for Tar, as C; by
Model(iter), including Cy(I) and C4(T). Next, we per-
form bi-directional cross-media retrieval and evaluate do-
main consistency according to the accuracy, which is
Image—Text and Text—Image. Taking Image—Text as an
example, we compute the cosine distance between each im-
age c,(1)? and every text in C4(T), and then rank them to get
the AP score of c4(1)? as:

Q

AP(I)! =

R
waezk (11)

k=1

x| =

where R is the number of text with the same label of ¢ (1),
Ry is the number of relevant text in top-k results. rely indi-
cates whether c,(/)? and k-th result have the same label.

A high AP(I)? means Model(iter) successfully captures
the cross-media correlation of i;’, i.e., the source domain
contains closely relevant knowledge of i, so it can be re-
garded as an “easy” transfer sample. Similarly we have
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Algorithm 1 : Progressive Transfer

Require: Training data Src and Tar,,, maximal iteration number
M1, and epoch number in each iteration Ep.
1: Pre-train Model; and Model, separately, denoted as
Modely(0) and Model,(0). Set iter = 1.
2: repeat
3:  Generate the common representation for Tar, with
Model(iter — 1) as Cy(I) and C(T).
Compute AP(I)? and AP(T) for all (i, ¢!) € Tar,,.
Compute AP? via Equation[I2]
Estimate Prob(q) via Equation[13] and select training sam-
ple set Tar(iter).
7. Train model for Ep epochs with S rc and Tar,,(iter), to get
Model(iter) and Model,(iter).
8:  iter =iter + 1.
9: until iter = M1.
10: return Model (M) and Model,(MI).

AN

AP(T)? and obtain:
AP? = AP(D)? + AP(T)? (12)

where AP? can be used to estimate domain consistency of
a pair (if,#7). During the training process, Model; is also
iteratively updated, so AP? should be computed in each it-
eration. A high AP? means g-th pair is proper to be a bridge
of the two domains. We assign the probability to be selected
for each pair as:

max(AP) — AP?

Prob(q) = a[1 —log,( max(AP) X iter + 1)] (13)
where max(AP) is the maximal value of APY, and a € (0, 1]
is the upper bound of Prob(q). « prevents the “easiest”
samples from always being selected, which leads to the
risk of overfitting. When iter increases, the value of item
(max(AP) — AP?)/(max(AP) X iter) will turn small, which
means the selection will gradually become random sam-
pling. The above process can be summarized as Algorithm
m

After training, each testing data can be converted as com-
mon representation (actually class probability vector), and
then the cross-media retrieval can be performed by distance
metric. Note that in testing stage, the image and text data
can be input separately, whose labels and pairwise correla-
tion are not used at all. This setting is widely adopted in
cross-media retrieval as [[12,[41]).

5. Experiments

5.1. Details of Implementation

The architecture of DCKT is easy to implement, and the
parts of two domains share the same architecture. For im-
age we use VGG19 [37] as basic model to generate con-
volutional feature maps of poolS, which is pre-trained by

ImageNet [[18]] of ImageNet large-scale visual recognition
challenge (ILSVRC) 2012. For text we first embed each
word into a vector via Word2Vec model [24]], and then gen-
erate 300-d text feature following [[16]. The classification
layers fc10 — Cs and fcl10 — C, are fully-connected lay-
ers of the same unit number with the semantic categories in
each domain. All the other layers are fully-connected layers
of 4,096 units, including fc6 — Iy, fcT — Ly, fc6 — Ty,
fc1=Ty;, fc8—Cyyy, and fc9—Cyyr. The pairwise constraint
loss functions are implemented by contrastive loss layers
from Caffeﬂ The MMD loss functions are implemented fol-
lowing [21]], by which the knowledge transfer of the two
domains is actually performed. As for network parameters,
we set the initial learning rates as 0.01, and the weight de-
cay 0.0005. In the mechanism of progressive training in
Algorithmﬂl, we set @ as 0.2, Ep as 1, and M1 as 10. These
parameters will be further analyzed in Section[5.5.3]

5.2. Datasets
5.2.1 Source Domain

To serve as the source domain, the dataset should be large-
scale, high-quality, and of general knowledge like ImageNet
[18]] and Google News corpus [23]], so that the knowledge
is proper to be adapted to other domains.

XMediaNet [28] dataset is adopted to serve as the source
domain. It is a large-scale dataset with 5 media types,
which has more than 100,000 media instances of text, im-
age, audio, video and 3D model. All the instances are man-
ually collected and labeled from famous websites such as
Wikipedia, Flickr, Youtube, Findsounds, Freesound, and
Yobi3D. It includes 200 distinct semantic categories based
on wordNet hierarchy to avoid semantic confusion, includ-
ing 47 animal species like “dog” and 153 artifact species
like “airplane”. In this paper, we focus on the scenario of
image and text, so we choose the training set of image and
text data from XMediaNet with 32,000 pairs.

5.2.2 Target Domain

For target domain, we adopt 3 widely-used datasets to con-
duct cross-media retrieval, namely Wikipedia, NUS-WIDE-
10k and Pascal Sentences. They all have two media types
image and text. The dataset split is strictly according to
[5L[12L27]l, shown as Table[l]

Dataset — Spht —
Training | Testing | Validation
Wikipedia [35] 2,173 462 231
NUS-WIDE-10k [4}5] 8,000 1,000 1,000
Pascal Sentences [34] 800 100 100

Table 1: The size and split of each dataset as target domain.

Uhttp://caffe berkeleyvision.org
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5.3. Compared Methods

We compare our proposed DCKT approach with to-
tally 12 state-of-the-art methods with source codes from the
authors of original papers, namely CCA [10], CFA [20],
KCCA (with Gaussian kernel) [9], Corr-AE [5[], JRL [44]],
LGCFL [14], DCCA [42], CMDN [27]] Deep-SM [41]],
CHTN [12], ACMR [40], and CCL [29].

Due to the wide range of comparison methods, their
original papers adopt different input settings. For exam-
ple, CHTN and Deep-SM are based on AlexNet and take
original image pixels as input, while others like CCL take
feature vectors as input. For fair comparison, we replace
the AlexNet of CHTN and Deep-SM with VGG19, and use
the 4,096-d VGG19 image feature for methods which need
feature vector as input. As for text, we use the same 300-d
Word CNN text features for all the methods, which is the
same with our DCKT.

5.4. Evaluation Metrics

We conduct cross-media retrieval task with two direc-
tions: Image—Text and Text—Image. Taking Image— Text
as an example, the retrieval process is conducted as follows:
(1) Get the common representation for all images and texts
in testing set. (2) Take one image as query, and compute
the cosine distance between the common representation of
query image and all texts. (3) Rank all the texts in testing
set with similarities according to the distances.

The metric adopted for evaluating the retrieval results is
mean average precision (MAP) score, which is the mean
value of average precision (AP) scores of all queries. AP
is computed as Equation All retrieval results will be
considered for the computation of MAP score following
[[12L29,/41]], instead of top-50 results as [5,40].

5.5. Experimental Results
5.5.1 Comparison with State-of-the-art methods

Table [2| shows the retrieval accuracy of DCKT and com-
pared methods. On Wikipedia dataset, DCKT gains the im-
provement from 0.492 to 0.511, compared with the method
with highest MAP score CHTN. Among the compared
methods, we can see that the shallow learning method
JRL achieves comparable accuracy with DNN-based meth-
ods, and even outperforms Corr-AE, Deep-SM, and DCCA.
This is probably because that the small scale of Wikipedia
dataset is insufficient for deep network to get ideal training
performance. On NUS-WIDE-10k and Pascal Sentences
datasets, our DCKT achieves the best MAP scores, too. The
above results show the stable advantage of DCKT compared
with existing methods. This is because the two-level trans-
fer network architecture and progressive transfer mecha-
nism allow the intra-media semantic and inter-media cor-
relation knowledge to be propagated to the target domain,

Task
Dataset Method Image—Text | Text—Image Average
our DCKT 0.537 0.485 0.511
CCL [29] 0.505 0.457 0.481
ACMR [40] 0.468 0.412 0.440
CHTN [12] 0.523 0.460 0.492
Deep-SM [41] 0.478 0.422 0.450
Wikipedia CMDN [27] 0.487 0.427 0.457
dataset DCCA [42] 0.445 0.399 0.422
LGCFL [14] 0.466 0.431 0.449
JRL [44] 0.479 0.428 0.454
Corr-AE [5] 0.442 0.429 0.436
KCCA [9] 0.438 0.389 0.414
CFA [20] 0.319 0.316 0.318
CCA [10] 0.298 0.273 0.286
our DCKT 0.556 0.584 0.570
CCL [29] 0.481 0.520 0.501
ACMR [40] 0.519 0.542 0.531
CHTN [12] 0.537 0.562 0.550
Deep-SM [41] 0.497 0.478 0.488
NUS-WIDE CMDN [27] 0.492 0.542 0.517
-10k DCCA [42] 0.452 0.465 0.459
dataset LGCFL [14] 0.453 0.485 0.469
JRL [44 0.466 0.499 0.483
Corr-AE [5] 0.441 0.494 0.468
KCCA [9] 0.351 0.356 0.354
CFA 20 0.406 0.435 0.421
CCA [10] 0.167 0.181 0.174
our DCKT 0.582 0.587 0.585
CCL [29] 0.576 0.561 0.569
ACMR [40] 0.538 0.544 0.541
CHTN [12] 0.556 0.534 0.545
Deep-SM [41 0.560 0.539 0.550
Pascal CMDN [27] 0.544 0.526 0.535
Sentences DCCA [42] 0.568 0.509 0.539
dataset LGCFL [14] 0.539 0.503 0.521
JRL [44] 0.563 0.505 0.534
Corr-AE [5 0.532 0.521 0.527
KCCA [9] 0.488 0.446 0.467
CFA [20] 0.476 0.470 0.473
CCA [10] 0.203 0.208 0.206

Table 2: MAP scores of our DCKT and compared meth-
ods. All retrieval results are evaluated for comprehensive
comparison, instead of top-50 results as [5,40].

improving training effectiveness on cross-media target do-
main.

It should be noted that CHTN is also a transfer learn-
ing based method, which transfers knowledge from single-
media source domain (ImageNet) to cross-media target do-
main. By comparing the MAP scores of DCKT and CHTN,
it can be seen that it is helpful to transfer from a cross-media
source domain, because the cross-media source domain has
not only media-level knowledge, but also rich correlation-
level knowledge.

5.5.2 Baseline Experiment

To further analyze the performance of DCKT, we conduct
baseline experiments on 3 datasets. The results are shown
in Table 3] Due to the page limitation, we show the aver-
age MAP scores of retrieval in 2 directions. The basic idea
of this paper is knowledge transfer, so the first question is:
Is the knowledge transfer process actually helpful? To ver-
ify this, we perform retrieval with the separately pre-trained
model of each dataset, i.e., Model,(0). We denote the com-
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plete DCKT model as DCKTp,;. By comparing Model,(0)
with DCKTp,y in Table[3] we can see that the transfer pro-
cess achieves inspiring improvement.

Then we verify the effectiveness of two key strategies
of DCKT: Two-level transfer and progressive transfer. For
two-level transfer, we design 2 baselines: only with media-
level transfer (Transfer_1 in Table |3) or correlation-level
transfer (Transfer_2 in Table [3)), and keep other parts un-
changed. From Table [3| we can see that the combination of
the two levels can achieve more improvement than either
of them, which shows that the two levels of knowledge are
complementary for cross-media retrieval.

For progressive transfer, we design 2 baselines:
DCKT,; means that in each iteration, we use all data in
Tar,.. DCKTRganaom means that we select samples randomly.
It can be seen that although knowledge transfer is help-
ful, the domain discrepancy is vast in cross-media scenario,
so DCKTyy and DCKTgunaom both achieve lower MAP
scores than DCKTr,;. We also observe that DCKTrundom
is slightly lower than DCKT 4y, which is because that by ar-
bitrary sampling, the model cannot have the whole view in
each iteration, which brings negative effects than DCKTy;.

Besides, there may exist category overlaps between the
source and target domains. Wikipedia has no category over-
lap with XMediaNet dataset (0 of totally 10), while NUS-
WIDE-10k has minor overlap (3 of 10), and Pascal Sen-
tences has large overlap (12 of 20). DCKT, overiap means
that we remove the overlap categories in XMediaNet dataset
with NUS-WIDE-10k and Pascal Sentences datasets, re-
spectively. The results are not sensitive to overlap, which
shows our DCKT is robust for different label spaces.

Method Dataset
Wikipedia | NUS-WIDE-10k | Pascal Sentences
DCKTpyy 0.511 0.570 0.585
Model,(0) 0.459 0.527 0.529
Transfer_1 0.491 0.555 0.565
Transfer_2 0.487 0.553 0.569
DCKTay 0.498 0.560 0.574
DCKTgandom 0.494 0.553 0.573
‘ DCKTy, overlap ‘ - ‘ 0.566 ‘ 0.579 ‘

Table 3: Average MAP scores of baseline experiments.

5.5.3 Parameter Analysis

In this section we analyze the settings of parameters M1,
Ep, and @ in Algorithm E} In our experiment, because the
sizes of Src and Tar, are different, for ensuring in each
iteration Src can be processed throughout, we set Ep =
1 for it. Correspondingly, for Tar, the epoch number is
P/Q. As for MI, we set it as 10 in our experiment, and
the performance will tend to be stable. They can also be
intuitively adjusted according to validation set.

Figure 4: Impact of @ on MAP score of Wikipedia dataset.

Next, o determines how many samples we can select in
an iteration of progressive transfer. For investigating the
impact of @, we conduct DCKT with different o values. The
impact is shown as Figure d] We can see that although we
perform transfer based on pre-trained model Model,(0), the
performance is seriously damaged with very small @. When
a increases, the MAP score will increase apparently until
0.2. Then the MAP scores are generally stable but tend to be
lower. This shows that a large @ means the “easy” samples
are always selected, which can lead to the risk of overfitting.

6. Conclusion

This paper has proposed deep cross-media knowledge
transfer (DCKT) approach, which transfers knowledge from
a large labeled cross-media dataset as source domain to pro-
mote the performance of model training on target domain.
DCKT is a two-level transfer network to allow the intra-
media and inter-media knowledge to be propagated to the
target domain, which can enrich the training information
and boost the retrieval accuracy on target domain. For ad-
dressing the vast domain gap, we propose progressive trans-
fer mechanism to iteratively select training samples with
ascending transfer difficulties in target domain, which can
drive the cross-media transfer process to gradually reduce
the vast cross-media domain discrepancy, and enhance the
robustness. In the experiments, we take the large-scale
dataset XMediaNet as source domain, and 3 widely-used
datasets as target domain for cross-media retrieval. Exper-
imental results show that DCKT achieves promising im-
provement on retrieval accuracy. For the future work, we in-
tend to propose more effective strategy for sample selection,
and extend DCKT for unsupervised transfer scenario, i.e,
the semantic labels of target domain are unknown, which
will further save the human labor of labeling data.
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