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Abstract

Grounding textual phrases in visual content with stan-

dalone image-sentence pairs is a challenging task. When

we consider grounding in instructional videos, this prob-

lem becomes profoundly more complex: the latent temporal

structure of instructional videos breaks independence as-

sumptions and necessitates contextual understanding for

resolving ambiguous visual-linguistic cues. Furthermore,

dense annotations and video data scale mean supervised

approaches are prohibitively costly. In this work, we pro-

pose to tackle this new task with a weakly-supervised frame-

work for reference-aware visual grounding in instructional

videos, where only the temporal alignment between the tran-

scription and the video segment are available for supervi-

sion. We introduce the visually grounded action graph, a

structured representation capturing the latent dependency

between grounding and references in video. For optimiza-

tion, we propose a new reference-aware multiple instance

learning (RA-MIL) objective for weak supervision of ground-

ing in videos. We evaluate our approach over unconstrained

videos from YouCookII and RoboWatch, augmented with new

reference-grounding test set annotations. We demonstrate

that our jointly optimized, reference-aware approach simul-

taneously improves visual grounding, reference-resolution,

and generalization to unseen instructional video categories.

1. Introduction

Connecting vision and language has emerged as a promi-

nent multi-disciplinary research problem [11]. The visual

grounding problem of connecting natural language descrip-

tions with spatial localization in images has proved to be a

critical link in solving these multi-modal tasks [19, 28, 43].

While there have been numerous studies from both natural

language and vision communities that aim to address visual

grounding [13, 15, 20, 25, 43, 51], both the sentences and

images are obtained in a relatively controlled setting with
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Figure 1: What is “it” in the video frame above? (a) Captions for

visual grounding in standalone images offer fully-specified nouns

or descriptors. (b) In contrast, instructional video captions often

offer only pronouns and partially-specified descriptors, since hu-

mans can resolve the ambiguities with contextual understanding.

Furthermore, structured annotations for references and groundings

remain prohibitive. (c) To address these challenges, this work pro-

poses a new weakly-supervised, reference-aware visual grounding

approach that explicitly resolves the visual-linguistic meaning of

referring expressions (e.g. “it” refers to the “greens”).

standalone image-sentence pairs. In this work, we aim to ex-

pand this scope by studying visual grounding in instructional

videos, where both the language transcription and the visual

appearance are unconstrained as in real-world situations.

Visual grounding in instructional video poses two unique

challenges compared to standalone image-based visual

grounding: (1) Step descriptions rely heavily on pronouns

and referring expressions to provide implicit links to crucial

visual and linguistic context. In other words, the referring

expressions (e.g. “it” in Fig. 1) no longer fully specify the

visual appearance of entities. (2) Annotations linking the

grounding and contextual references remains prohibitively

5948



costly in unconstrained videos. This is due to the dense

nature of the graph-based annotations and the sheer scale of

instructional video data [47]. While these challenges have

been tackled separately, including situated language under-

standing in natural language processing [6, 8, 21, 26, 33] and

weakly-supervised object localization [9, 13, 35, 36, 40, 46]

in computer vision, simultaneously solving both for uncon-

strained videos remains an unsolved challenge.

To our knowledge, this is the first work to examine the

challenging task of visual grounding in instructional videos.

Thus, our first contribution is to formulate this key visual

understanding task for the video domain. We introduce the

visually grounded action graph as a structured representa-

tion to explicitly capture the latent dependencies between

reference and grounding variables, and formulate grounding

in videos as optimization of this graph.

Next, we address the two key technical challenges in-

troduced by instructional video, namely context-dependent

ambiguity and the prohibitive cost of labels for supervised

approaches. The second contribution of this work is to

present a novel visual grounding model that is both reference-

aware and weakly-supervised. Our joint model is reference-

aware as it explicitly resolves the situated and context-

dependent meaning of referring expressions and goes be-

yond previous visual grounding works designed for inde-

pendent image/sentence pairs. Our approach is also weakly-

supervised in that it requires no explicit grounding supervi-

sion and only uses temporally aligned transcription and video

input as supervision. The latent structure of instructional

videos fundamentally breaks the independence assumption

of prior standalone image-based approaches. Thus, we in-

troduce the first reference-aware multiple instance learning

(RA-MIL) framework to more effectively leverage predicted

references to improve visual grounding optimization.

Because this is a new task for video understanding, our

third contribution is to provide reference-grounding test

set annotations for two main instructional video benchmarks,

namely YouCookII [56] and RoboWatch [45]. We evaluate

our new approach for weakly-supervised, reference-aware

visual grounding in instructional videos by optimizing on

over two thousand unconstrained YouTube cooking videos of

the YouCookII dataset. We show that our joint approach im-

proves grounding by explicitly modeling the latent references

between sentences. We “close the loop” by further demon-

strating that our learned visual grounding representations

can in turn improve reference resolution within our joint

framework. Finally, we demonstrate that our approach im-

proves model generalizability to unseen instructional video

categories by evaluation on RoboWatch.

2. Related Work

Weakly-Supervised Localization and Visual Grounding.

Our task for visual grounding in videos builds from prior

work on visual grounding with stand-alone image-sentence

pairs, which aims to match entities in the caption to bounding

boxes within the image. This is related to weakly-supervised

object localization [9, 10, 13, 35, 36, 40, 46]. We generalize

this notion to context-dependent referring expression local-

ization, which adds another dimension of complexity from

language understanding to our grounding problem. Recent

works also aim to ground expressions in phrases beyond

object categories [15, 20, 32, 34, 39, 43, 49, 54]. How-

ever, most assume the availability of ground truth annota-

tion [15, 39, 49, 53], and all assume standalone independent

image-sentence pairs [43, 18]. In this work, we jointly ad-

dress the challenges from weak supervision and situated

language in the instructional video domain.

Multiple Instance Learning (MIL) in Vision. MIL has

been a effective framework for weakly-supervised learning

in several applications, including image classification [50],

object localization [13], tracking [5], and instance segmenta-

tion [37]. In this work, we extend the MIL approach of visual

grounding in images [19] to instructional video and propose

Reference-Aware MIL (RA-MIL) to effectively learn the

situated referring expression in instructional video.

Learning from Instructional Video. In this work, we

use the transcription in the instructional video for weakly-

supervised visual grounding. This use of transcription as

supervision has been utilized in several contexts, such as

action detection [55], object state discovery [2], entity refer-

ence [16], and procedural knowledge discovery [1, 29, 45].

The most related to our work is the visual-linguistic refer-

ence resolution (VLRR) by [16], which focuses on learning

entity references in the instructional video. Our work goes

a step further and leverages references to solve the weakly-

supervised visual grounding in instructional video.

Reference Resolution for Visual Tasks. We utilize refer-

ence resolution to improve visual grounding in instructional

video. Recent work has used reference for improving visual

tasks, such as image and 3D scene understanding [14, 24],

and actor recognition [41, 44]. Here, we demonstrate that ref-

erence resolution is mutually beneficial for the challenging

task of visual grounding for video understanding.

Situated Language Understanding. Situated language is a

term in the natural language processing community capturing

the notion that our own understanding of language is learned

from situations and entities within them [21]. Our modeling

of situated referring expression in the transcription is related

to procedural text understanding in NLP [3, 6, 8, 21, 26, 30,

33]. Our work goes a step further and studies the situated

language in the transcription jointly with the aligned video.

3. Technical Approach

Our goal is weakly-supervised visual grounding in in-

structional video. This is challenging since (1) the desired

grounding output is latent at training, and (2) the entities
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Figure 2: A visually grounded action graph (G) is an ac-

tion graph with object box nodes bik and the corresponding

grounding edges dij to model the visual grounding of the

entities eij . This graph serves as the joint representation

between the visual grounding within actions ai and refer-

ence resolution rij between them. This reformulates visual

grounding and reference resolution as finding the best set of

edges (D,R) in the graph given the nodes. See Section 3.1.

within the transcriptions can be highly context-dependent,

with references that are also latent. We address this by for-

mulating it as a joint optimization of a visually grounded

action graph that explicitly captures the latent dependen-

cies between grounding and reference (Sec. 3.1). We pro-

pose a joint framework for reference-aware visual grounding

to effectively infer this graph from input video and tran-

scription (Sec. 3.2 and 3.4). Because such dense graph

annotations incur prohibitive cost in videos, we propose a

new reference-aware multiple instance learning (RA-MIL)

method for weakly-supervised learning (Sec. 3.3).

3.1. Visual Grounding Task in Videos

Goal. Since both the groundings and references are latent

and interdependent, there is a clear need to model them in a

unified manner. Inspired by the “action graph” for reference

resolution in natural language text [16, 21], we propose

a new visually grounded action graph that encompasses

the latent information for both the visual grounding and

reference resolution in a single explicit data structure (Figure

2). We introduce new nodes for object bounding boxes

in the video frames, and new edges between each entity

node and its corresponding object bounding box for visual

grounding. Thus, visual grounding in instructional videos is

reformulated as determining the correct “grounding edges”

between entity nodes and object box nodes in the graph.

Furthermore, we seek to learn references between

grounded entities and prior actions. Intuitively, this captures

directed paths from starting components to final composite

products. Unlike prior work [16, 21], we endeavor to learn

entity-action references with the added constraint of visual

grounding for entity nodes. We demonstrate that jointly

resolving the latent reference is key to improving visual

grounding and visual grounding also improves reference.

Visually Grounded Action Graphs. More formally, a vi-

sually grounded action graph G = (E,A,B,R,D) has

E = {eij}, a set of entity nodes eij , A = {ai}, a set

of action nodes ai grouping the entity nodes with their predi-

cates predi,B = {bik}, a set of object box nodes bik aligned

to each ai, R = {rij}, a set of edges for the reference rij of

eij , and D = {dij}, a set of edges for the visual grounding

dij of eij . The sub-index j distinguishes multiple entities

within the same action ai (e.g. “mix salt, pepper, and oil”).

We illustrate a portion of a graph in Figure 2. Here, each

action node ai contains entity nodes eij , each edge dij from

an entity node to a object box bik is a grounding, and each

edge rij from an entity node to an action node is a reference.

Note that G encompasses the information for both visual

grounding (D) and reference resolution (R), where visual

grounding is identical to recovering the grounding edges

D in the graph. Further, recovering D depends on R, so

effective visual grounding needs to be reference-aware.

Joint Approach. Figure 3 shows our model overview. The

input is the instructional video with its time-aligned tran-

scription, and the output is the full visually grounded action

graph for the video. Graph nodes are generated by (1) pars-

ing the transcription into entity nodes E and action nodes

A, and (2) obtaining object proposals on video frames for

object box nodes B. In this work, we assume the nodes

of the graph are provided to our joint model, and focus the

task on recovering the grounding and reference edges. Such

recovery is equivalent to argmaxD,R P (D,R|E,A,B). We

take an E-M like approach for joint optimization by al-

ternating between optimizing the visual grounding model

(argmaxD P (D|E,A,B,R), in Section 3.2) and optimizing

the reference resolution model (argmaxR P (R|E,A,B,D),
in Section 3.4).

3.2. Reference­Aware Visual Grounding: Model

In the previous section, we formulated reference-aware
visual grounding as optimizing the grounding edges D in the
visually grounded action graph G. We now define how we
parameterize our model for the probability of a grounding,
P (D|E,A,B,R). We decompose the full grounding model
P (D|E,A,B,R) into the aggregation of edge probabili-
ties

∏
d∈D P (d|E,A,B,R). Crucially, while instructional

videos break standard independence assumptions, we can
observe conditional independence given E,A,B nodes and
the references R in the graph, which we also learn to in-
fer (see Section 3.4). For P (d|E,A,B,R), we model the
probability of grounding an entity eij to an object box blk.
Formally, the grounding model is:

P (dij = (l, k)|E,A,B,R) = sigmoid(ψ(blk)
T
φ
R
e (eij)), (1)

where φRe (eij) is a reference-aware entity embedding that

incorporates the information of R and A when embedding

eij , and ψ(blk) is an end-to-end trainable visual embedding.

5950



Grounding Model (Reference-Aware)Input

…

? ?

…

Video

Next, take it
First, mix

the greens

Transcription

……

Graph Embeddings

RA-MIL

Output

…

…

Visually 

Grounded 

Action GraphParsing

Proposals Visual Embedding

Reference-Aware
Entity Embedding

greensmix ittake

Reference-Resolution Model

(Grounding-Aware)

?

Figure 3: Overview of our model. We take as input an instructional video and its transcript, which provide us the initial entity,

action, and object box nodes for the visually grounded action graph. The output of our joint model is to infer the edges of the

optimal graph, including reference and grounding. We propose a grounding model that is reference-aware, which matches

different action entities to their corresponding bounding box in the video. We design a training method for this model called

reference-aware multiple instance learning (RA-MIL). Further details in Section 3.1.

Intuitively, we aim to learn the grounding model by learning

a visual-semantic embedding that measures the similarity of

an entity and a object box. We define these two embeddings:

Reference-Aware Entity Embedding φRe (eij). Given an
entity (e.g. “mixture”), our goal is to embed it in a way that
captures the action that it is referring to (e.g. “mix mayo
and parsley”). We thus utilize a recursive definition for our
entity embedding that is able to combine information from
the referring action [16]. Thus, the entity embedding is:

φ
R
e (eij) = wordEmbd(eij) + φ

R
a (ao), (2)

where o = rij and φRa (ao) = RNNθV ([φ
R
e (eop)]p) Here,

wordEmbd(·) is the standard word embedding function (we

use GloVe [38] here), RNNθV is a recurrent neural network

(RNN) embedding function [23] that takes in [φRe (eop)]p, a

list of entity embeddings of entities eop in action ao. Here,

our reference-aware entity embedding also contains the infor-

mation from its referring action. This utilization of reference

information in visual grounding sets our method apart from

grounding models designed only for images. We show that

this is important for correctly grounding entities in instruc-

tional video, where the entity is often context-dependent.

Visual Embedding ψb(blk). We use a deep convolutional

neural network to extract the visual representation of our

object boxes. In addition, an affine layer WV is added to

embed the 4096-dimensional fully-connected layer represen-

tation to the dimension of the entity embedding. Formally,

this can be written as ψb(blk) =WV (CNNθV (blk)).

3.3. Reference­Aware Visual Grounding: RA­MIL

We have described the parameterization of our reference-

aware visual grounding model P (D|E,A,B,R). Now, we

discuss the optimization objective to learn P (D|E,A,B,R)
with only weak supervision from temporal alignments be-

tween transcription and video segments. Inspired by recent

work in visual grounding in images [13, 18], we formulate

weakly-supervised visual grounding in videos as a Multi-

ple Instance Learning (MIL) problem [4]. Herein, the su-

pervision is provided only through the temporal alignment

between the sentence and the video segment: for an entity

elj in step l, it should be grounded to one object box blk
from the set of all object boxes in the corresponding video

segment, and there is no explicit training label for which box

it is. The key challenge of naïvely applying an image-based

framework to the video domain is that sentence-video pairs

no longer follow a strict independence assumption. This is

consequential in two key ways: (1) temporal dependence is

reflected in the transcription language, which may refer to

the current entity implicitly or with pronouns (e.g. “it”), and

(2) visual grounding of the same entity is possible in multiple

instruction steps with relatively high confidence, particularly

in the referring actions. Because segments from the same

video are heavily correlated, image-based strategies [13, 19]

for negative selection can induce errors even for the labels

in standard MIL approaches which assume independence.
RA-MIL. We address both challenges by proposing a new
Reference-Aware Multiple Instance Learning (RA-MIL) ob-
jective to train a model to explicitly represent the dependen-
cies between groundings caused by the references. More
specifically, based on the weak supervision from the align-
ment (i.e. for step l, elj should be grounded to blk for some
k), we first propose the following learning constraints:

max
Dl

P (Dl|Ḡl, Bl) > max
Dl

P (Dl|Ḡl, Bm) and

max
Dl

P (Dl|Ḡl, Bl) > max
Dn

P (Dn|Ḡn, Bl),
(3)

for m,n 6= l, where Bl = {blk} is the set of all object

box nodes in the segment depicting action step l, and Ḡl =
{E1:l, A1:l, R1:l} be the subgraph up to segment l, excluding

the grounding. Intuitively, the first constraint in Eq. (3)

means this sub-graph Ḡl should have a higher probability of

grounding to a box in Bl in the same video segment rather

than the Bm of a different segment. Likewise, we have the
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symmetric constraint for Bl given Ḡn of a different step.
While the model can directly utilize the reference infor-

mation by operating on the subgraph Ḡl and can be trained
with weak-supervision for reference-aware visual grounding
in instructional video, we note that the constraints in Eq.
(3) do not fully utilize the reference information. Consider
Figure 4 as an example: while “it” is indeed grounded to
the blue bounding box in the second step, it is not visually
incorrect to ground it to the the bowl full of greens in the
previous step, since it is the same entity. In this case, the
MIL constraints in Eq. (3) are forcing the model to differen-
tiate objects that are in fact the same with the same penalty
as completely unrelated entities. Based on this intuition,
we propose the following overall training loss to effectively
utilize reference for weakly-supervised visual grounding:

LRA−MIL =
∑

l

[

∑

m

γlm ·max(0, SR
lm − S

R
ll +∆)

+
∑

m

γml ·max(0, S
R
ml − S

R
ll +∆)

]

,

(4)

where SR
lm =

∑
j maxk〈φ

R
e (emj), ψb(blk)〉 refers to the

alignment score for steps l and m analogous to the image-

sentence score in [18], and γlm is a reference-based penalty

with a value of 1.0 if step l is not in the set of inferred entity-

action references in step m. If step l is present the reference

set, then we set 0 < γlm < 1. In this manner, the objective

encourages the action graph to be grounded in the aligned

video, while distinguishing penalties based on the degree to

which the predicted grounding is related to the target entity.

We emphasize that RA-MIL incorporates reference-

awareness in two key aspects: (1) it explicitly imposes the

constraints in Eq. (3) based on the subgraph Ḡl to incor-

porate reference information of a given entity based on the

relevant prior set of actions – this sets our approach apart

from previous standalone image-sentence grounding meth-

ods that operate solely based on the entity expression itself

[13, 19, 43]; (2) we incorporate reference-based relaxation

to improve negative constraints during MIL, as per Eq. (4).

We show in our experiments that both reference aspects of

RA-MIL are key for visual grounding in instructional videos.

3.4. Grounding­Aware Reference Resolution

We have discussed our reference-aware visual grounding
model P (D|E,A,B,R) and our weakly-supervised train-
ing approach (RA-MIL) conditioned on the reference edges
R. Now, we discuss how we update the contextual refer-
ences given the groundings D with P (R|E,A,B,D), as
illustrated in Figure 5. Inspired by recent frameworks using
neural networks for graph optimization [17, 52], we formu-
late the reference edge model by proposing a hierarchical
entity-action pointer network for reference resolution, based
on Ptr-Net [48]. A key difference between our proposed
model and a standard Ptr-Net is that we wish to link entities
with prior action steps, but these exist at different hierar-
chical levels in the graph. Intuitively, this single-mapping

RA-MIL

Take it

incorrect partially incorrect correct

?

✗ ✓

�

Mix greens

(inside reference)

Subgraph (�#$ )

Figure 4: We propose Reference-Aware Multiple Instance

Learning (RA-MIL) for reference-aware visual grounding

in instructional videos by weak supervision. RA-MIL goes

beyond standard MIL by (1) grounding the subgraph Ḡi

to resolve ambiguity of situated referring expressions (e.g.

“it” means “greens”), and (2) reference-based negative se-

lection during MIL (e.g. grounding “it” to the earlier greens

bounding box is not as penalized as grounding to the burger).

Take itMix the greens

Entity-Action Decoder

Mix the greens

Take it

�"

�#

�%(�")

�%(�#)

Hierarchical-RNN Encoder

����" �"" ����# �#"

�#" = 1

…

…

Reference-Resolution Model (Grounding-Aware)

Figure 5: We propose an entity-action pointer network for

reference resolution (Sec. 3.4). A hierarchical RNN en-

codes action nodes from language components. Later, we

decode grounding-aware entity embeddings, where the out-

put “points” to the referring action, if present.

formulation for reference resolution [21] captures the notion
that some entities are causally-linked direct outputs of prior
steps, where full dependency chains are obtained by traversal.
Thus, we first encode the actions ai as action embeddings
φa(ai) using a hierarchical RNN [27]. Reference resolution
occurs during decoding by a content-based attention mecha-
nism: an RNN encodes the entity embeddings φDe (eij) into

hidden state vectors hdij , which are used to “point” back to
the encoder’s action embeddings or the “background action”
(⊗ in Fig. 5) if the entity has no reference. Formally, this is:

P (rij = o|E,A,B,D,Hij) = softmax(uo
ij), (5)

where uoij = φa(ai)
TWatth

d
ij , and Hij represents all the

previous entities that have been processed before eij . We

rely on the RNN to capture the complex dependencies be-

tween rij and Hij . Importantly, we note that the entity em-

bedding φDe (eij) here is grounding-aware as it summarizes

the visual information in the linked object box. To this end,
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DVSA (no reference)Ours (with reference)
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Sprinkle some chat masala [∅]Sprinkle some chat masala [∅]Deep fry the onion rings in 

oil

Add thyme, flour to the pan

Add [∅] to the pan

Add thyme, flour to the pan

Add breadcrumbs and parmesan 

to the top

DVSA (no reference)Ours (with incorrect reference)

(a)

(b)

(c)

(d)

(e)

Correct grounding

Correct reference

Incorrect grounding/reference

[∅] Implicit direct object

Drizzle oil on top Drizzle oil on top

Figure 6: Qualitative results of our reference-aware visual grounding approach with RA-MIL. (a, b, c) Our approach

improves visual grounding by explicitly resolving the meaning of ambiguous context-dependent referring expressions during

optimization. We highlight improvements with (a) expressions that are outputs of prior steps (“pizza”), (b) pronouns (“it”),

and (c) implicit direct objects (denoted as [∅] [16, 21]). (d, e) Since references are also inferred by our joint model, incorrect

reference predictions can lead to lower grounding quality, compared with standalone image approaches (DVSA [18]). Note

that we show portions of the output visually grounded action graph above, and include longer visualizations in the supplement.

we define φDe (eij) = WD
e [wordEmbd(eij);CNN(bidij

)],
whereWD

e is a linear transformation to combine information

from both the entity and the object box into a single embed-

ding. We verify in our experiments that reference resolution

improves grounding in a mutually beneficial manner.

3.5. Learning & Inference

Visual Grounding. As the objective for RA-MIL is fully

differentiable, we are able to use backpropagation to op-

timize the full reference-aware visual grounding model

with weak-supervision. Once the reference-aware ground-

ing edge model in Section 3.2 is trained, the inference for

argmaxD P (D|E,A,B,R) is a greedy score maximization

in the aligned action, since we assume conditional indepen-

dence between grounding edges given inferred references.

Reference Resolution. We follow the hard-EM approach

in [16] for reference resolution. We apply a cross entropy

classification loss over the decoding output in Eq. (5), com-

paring against the current best estimated graph. Inference

can be a single forward pass of our reference resolution

model. We initialize the reference edges R by unsupervised

reference resolution from [16]. We alternate training our

grounding and reference models after initialization.

4. Experiments

Given a referring expression such as “mixture” in the

instructional video, our goal is to visually ground it to the

corresponding object bounding box in the video, while also

resolving its contextual reference. In this section, we discuss

our experiments to evaluate our joint approach for grounding,

reference resolution, and generalizability.1

Dataset and Annotation. For weakly-supervised training,

we use the YouCookII dataset [56], which is a large-scale

dataset of over 2000 unconstrained instructional videos from

90 cooking recipes from YouTube. Each video recipe con-

tains 3 to 15 steps (i.e. actions in our graph), where each step

description is a temporally-aligned imperative sentence pro-

vided by the dataset. Because we are proposing a new task,

for evaluation we provide new annotations for reference-

grounding for a subset containing representative videos. An-

notations and procedure details are provided in our supple-

mentary, as well as discussion of automatic speech recog-

nition (ASR) output as a potential source of instructional

transcription input. We emphasize that none of this new

information is used during training for our reference-aware

visual grounding model for our main experiments.

Furthermore, for our generalizability analysis, we lever-

age the test set of the RoboWatch dataset [45], which con-

tains instructional videos annotated with groundtruth tempo-

ral intervals and step captions. Once again, we annotate extra

ground truth information for reference and grounding in each

video. In total, we provide over 15 hours of video with dense

entity-action node, reference, and grounding annotations

1Please refer to our project website for supplementary material.
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Table 1: Weakly supervised visual grounding results (Top-1

accuracy) on YouCookII. We observe improvement in visual

grounding across simple, medium, and hard graph complex-

ity subsets with our method. See Section 4.1 for details.

Method YC-S YC-M YC-H YC-All

Proposal Upper Bnd. 67.4% 65.1% 64.1% 65.5%

Random 6.5% 10.2% 8.7% 8.4%

DVSA [18] 17.9% 22.5% 18.2% 20.7%

Ours w/o Relaxation 26.6% 25.5% 23.6% 25.2%

Ours Full (RA-MIL) 28.6% 27.7% 24.0% 26.7%

Figure 7: Reference resolution results (Sec. 4.2) on

YouCookII subset. Our proposed entity-action pointer net-

work model outperforms the VLRR [16] baseline, and we

observe visual grounding can improve reference resolution.

across 2 distinct instructional video datasets.

Implementation Details. We parse the step description by

the Stanford CoreNLP parser [31] into actions and entities.

For each video, we subsample five frames per video segment

for both training and testing. For each frame, we use the

RPN from Faster R-CNN [42] for proposing the object boxes

in the frames. For comparison to prior work [18], we use

the top-20 proposal detections in a frame. Since YouCookII

does not have parsed entity/action annotations, we leverage

automatic parsing for training only, and provide corrected

entity and action nodes as input during inference. We use

Adam [22] for optimization and a learning rate 0.001. We

clip gradients elementwise at 5 and use 0.3 dropout for regu-

larization. Additional implementation details are included

as part of supplementary material.

4.1. Evaluating Visual Grounding

Experimental Setup. First, we learn our model by opti-

mizing on all the instructional videos in the YouCookII

dataset [56] with only weak supervision from transcription-

video temporal alignment. Parsed action A, entity E and

generated object box B nodes are provided as input, as

per Section 3.1. Inference on reference resolution and vi-

sual grounding follows Section 3.5. We follow prior work

[12, 43] and compute accuracy as the ratio of phrases for

which the grounded bounding box overlaps with the ground-

Table 2: Generalizability to unseen instructional video

classes (RoboWatch). We observe stronger generalization

performance with our reference-aware visual grounding

method. See Section 4.3 for details.

Method RW-Cook RW-Misc RW-All

Proposal Upper Bnd. 63.0% 48.4% 56.3%

Random 10.4% 6.2% 9.0%

DVSA [18] 22.4% 12.6% 17.5%

Ours w/o Relaxation 23.8% 10.4% 18.0%

Ours Full (RA-MIL) 26.8% 14.3% 19.8%

truth by more than 0.5 Intersection-over-Union (IoU).

Grounding Approaches. We compare to the following

models and variations of our model for visual grounding:

- Deep Visual-Semantic Alignment (DVSA) [18]. This is a

standard weakly-supervised image-based visual grounding

method without the reference information, which leverages

standard multiple-instance learning. Notably, we compare to

this standalone image approach since it can most directly be

considered an ablation of our method without reference.

- Ours w/o Relaxation. This method uses the loss in Eq. (4),

but does not utilize the reference information in negative

selection (γ). Importantly, it still grounds the full subgraph

Ḡl, which means it does incorporate reference information.

This baseline is an ablation of our method indicating the

need for both reference-aware aspects of RA-MIL.

- Our full approach (RA-MIL). This is our full joint model

leveraging the full RA-MIL formulation, as in Section 3.

Limitations. Since grounding is highly dependent on the

input bounding box nodes, we also report the upper bound

performance if the best matching proposals were chosen by

some method. We observe that this is approximately 65%,

which is less than upper bounds of 78% reported on stan-

dalone image datasets for visual grounding like Flickr30K

[43] and may reflect difficulties introduced by noisy images

in unconstrained instructional video. We discuss additional

limitations due to the multiple-instance learning paradigm

and parsing errors during training in the supplementary.

Results. The results of these weakly-supervised visual

grounding models on YouCookII are shown in Table 1. Our

full method outperforms the baseline and ablation meth-

ods, including DVSA [18] which is not reference-aware.

We observe that grounding the subgraph Ḡl containing the

reference information to resolve the meaning of referring

expressions, rather than the raw entity itself is important.

Qualitative results are shown in Figure 6. We observe the re-

solved meaning of the referring expression indeed improves

the grounding performance, though overall it remains lim-

ited by constraints of weak supervision and dependency on

input bounding boxes. By grounding Ḡl, RA-MIL links

referring actions with the visual appearance of the entity in

the current and contextual frames. We include longer-form

graph visualizations and additional discussion in our supple-

mentary. While reference can help visual grounding in the
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DVSA (no reference)Ours (with reference)

Blow [∅] with fanBlow [∅] with fanPut [∅] on the oven 

tray

Wrap [∅] around the backWrap [∅] around the backThread  it

(a)

(c)

(b) Run the machineRun the machinePour solution [∅]

Correct grounding

Correct reference

Incorrect grounding/reference

[∅] Implicit direct object

Figure 8: Qualitative results for generalization experiments,

as described in Section 4.3. We evaluate our model trained

on cooking tasks from YouCookII on (a) unseen recipes (e.g.

making beef jerky), and (b, c) unseen instructional video

categories (e.g. cleaning a coffee machine, tying a tie).

instructional video, incorrect reference predictions can lead

to incorrect grounding predictions as shown in Figure 6(d,e).

4.2. Visual Grounding for Reference Resolution

In this section, we examine both (1) the proposed entity-

action pointer network as a reference resolution architecture,

and (2) the impact of grounding on reference resolution.

For this self-contained experiment, we compare against

the prior Visual-Linguistic Reference Resolution approach

(VLRR) in [16], and report the F1 measure as defined in

[21] over different supervision levels. We benchmark perfor-

mance on a subset of YouCookII, performing multiple 2:1

train-test splits of the 90 recipes and varying the ratio of the

provided graphs for training. Full experiment details and dis-

cussion of grounding impact during our weakly-supervised

reference training is included in the supplement. The results

are shown in Figure 7. Here, ratio 0.0 means no input graphs

are used for training, and ratio 1.0 means that all 60 training

graphs are used. Understandably, the unsupervised VLRR

baseline has slightly higher performance with no labels in

the training set. This is likely due to strong constraints in-

herent to the unsupervised VLRR model design, which are

not present in our weakly-supervised pointer network archi-

tecture. However, we observe that our entity-action pointer

network quickly outperforms the VLRR baseline even with

a few additional labels. Furthermore, as the training set in-

creases to sufficient size, visual grounding ultimately proves

effective for improving reference resolution. We empha-

size that the overall number of graphs at ratio 1.0 is still far

smaller than the overall training set, which is used in the

main reference-aware visual grounding experiments.

4.3. Generalizability

We further evaluate the ability of our model to generalize

to unseen classes of instructional video in the RoboWatch

dataset [45], which includes 20 classes that each correspond

to a top “How to” web query. We draw inspiration from prior

work in action localization [7] for our experiment design.

Here, we train the models on YouCookII as before, but run

inference on the RoboWatch test set, augmented with new

reference and visual grounding groundtruth annotations. We

also examine performance on subsets with cooking-specific

(containing unseen recipes) and miscellaneous videos, which

includes classes such as “How to Unclog Bathroom Drain”

and “How to Clean a Coffee Maker”. In all cases, we ensure

that there is no recipe or video overlap with YouCookII.

We report generalization performance in Table 2, and

include qualitative visualizations in Figure 8. We observe

that our full approach with RA-MIL outperforms the other

methods at generalization. For cooking-specific videos, we

observe stronger generalization to visual grounding for un-

seen recipes. Interestingly, we also show some improved

generalization to the “Misc” subset as well, despite the do-

main gap between the cooking videos in YouCookII and the

other instruction categories present here. The decrease in the

proposal upper bound for miscellaneous tasks indicates that

generalizability of these models is also limited by the visual

encoder and proposals method. This suggests that improv-

ing proposals, particularly for the noisy images present in

unconstrained videos, may be critical for general application

of this technique for practical purposes.

5. Conclusion

We propose a new reference-aware approach for weakly-

supervised visual grounding in instructional video. We intro-

duce the visually grounded action graph and formulate the

task as optimization for both reference and grounding edges.

Our proposed Reference-Aware MIL (RA-MIL) effectively

leverages references for visual grounding in a unified frame-

work. We provide new annotations over two main instruc-

tional video datasets for visually-grounded action graphs.

Our experiments verify that resolving the meaning of situ-

ated and context-dependent referring expression is important

for visual grounding in instructional video, and that visual

grounding can further improve reference resolution. Finally,

we show that our joint reference-aware approach improves

generalizability to unseen instructional video categories.
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