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Abstract

Multispectral images contain many clues of surface

characteristics of the objects, thus can be used in many

computer vision tasks, e.g., recolorization and segmenta-

tion. However, due to the complex geometry structure of

natural scenes, the spectra curves of the same surface can

look very different under different illuminations and from

different angles. In this paper, a new Multispectral Image

Intrinsic Decomposition model (MIID) is presented to de-

compose the shading and reflectance from a single mul-

tispectral image. We extend the Retinex model, which is

proposed for RGB image intrinsic decomposition, for mul-

tispectral domain. Based on this, a subspace constraint

is introduced to both the shading and reflectance spectral

space to reduce the ill-posedness of the problem and make

the problem solvable. A dataset of 22 scenes is given with

the ground truth of shadings and reflectance to facilitate

objective evaluations. The experiments demonstrate the ef-

fectiveness of the proposed method.

1. Introduction

The observed spectrum of a single pixel is determined

by illumination, reflectance and geometry. Shading image

contains illumination condition and geometry information,

while reflectance image contains the material reflectance

property, which is invariant to light condition and shadow

effect. The decomposition problem has been a long stand-

ing problem in both computer graphics and computer vi-

sion applications. For instance, shape-from-shading algo-

rithms could benefit from an image with only shading ef-

fects, while image segmentation would be easier in a world

without cast shadows.

Obviously, intrinsic image decomposition is an ill-posed

problem, since there are more unknowns than observations.

In order to solve this problem, many works [30, 31, 12] fo-

cus on sparse representation spatially, but this does not hold

for images in general. This paper addressed the problem

of the recovery of reflectance and shading from a single

multispectral image, namely, the Intrinsic Image Decom-

position problem of a whole multispectral image captured

under general spectral illumination, hereafter referred to as

the IID problem. This problem is worth exploring since ge-

ometry and reflectance information are useful under certain

circumstances, but one of them always interferes the detec-

tion of the other one. Unfortunately, growing dimensions of

data make this problem harder to cope with.

The subspace constraint that we propose is based on the

assumption that the reflectance and shading vectors both

live in a low dimensional subspace along the spectral do-

main. According to the inherent nature of the multispectral

image, we derive shading basis on the knowledge of illumi-

nation condition and derive the reflectance subspace basis

by means of principle component analysis (PCA). Assum-

ing that the Retinex theory [23] would continue to take ef-

fect in multispectral domain, we propose a subspace-based

model so that deriving reflectance and shading from a mul-

tispectral image can be modelled as an convex optimization

problem. In a significant departure from the conventional

approaches which operate in the logarithmic domain, we

directly operate on the image domain. The flowchart of our

proposed MIID algorithm is shown in Fig. 1.

To overcome the lack of ground truth data of shading

and reflectance, we provide a ground-truth dataset for multi-

spectral intrinsic images to enable quantitative evaluation of

various intrinsic decomposition methods. Quantitative and

qualitative experiments on our dataset have demonstrated

that the performance of the MIID method is better than prior

work for multispectral images. Our work can bring merits

to multiple applications, such as recolorization, relighting,

scene reconstruction and image segmentation.

Our major contribution can be summarized as follows:
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Figure 1. The flowchart of proposed MIID algorithm. Note that multispectral images in this and other figures are rendered in RGB color.

(1) we extend the Retinex model to multispectral image in-

trinsic decomposition, and propose a subspace constraint to

handle the ill-posedness of the problem; (2) we provide a

ground-truth dataset that contains the ground truth shad-

ing and reflectance images associated with captured mul-

tispectral images, which can facilitate future evaluation and

comparison of multispectral image intrinsic decomposition

algorithms; (3) the proposed method achieves promising

results on various images both quantitatively and qualita-

tively.

2. Related Work

RGB Intrinsic Image Decomposition. The problem of

Intrinsic Image Decomposition (IID) was first introduced

by Barrow et al. [4]. The reflectance describes illumination-

invariant albedo of the surface, while the shading contains

surface geometric and illuminative information.

Some prior methods take advantage of additional infor-

mation, including images sequences [34, 22, 24] to avoid

shadow effect in poor lighting condition. With the improve-

ment of sensing devices like kinect, depth cue [2, 11, 24] or

surface normal [28] have been applied to infer the shading.

More recently, Bousseau et al. [8] proposed a user-assisted

method to further improve the result of separation.

Many prior methods have been proposed for the separa-

tion task from a single color image. Bell et al. [6] developed

a dense conditional random field (CRF) based intrinsic im-

age algorithm for images in the wild. Barron et al. [3] in-

troduced shape, illumination and reflectance from shading

model which performs well on images of segmented ob-

jects. Sai et al. [7] proposed L1 Image Transform model for

scene-level intrinsic decomposition. Entropy method [13]

raised by Finlayson et al. offered us a new viewpoint to

understand this problem. With the abundance and availabil-

ity of datasets and the development of computational equip-

ment, training-based models [5, 33, 32, 38] have been built

to derive reflectance and shading from RGB color images.

An especially well-known and widely employed model

called Retinex [23] makes an assumption that when there is

large change in chrominance, shading is usually constant,

and vice versa. With Retinex theory, we are able to pinpoint

where the reflectance changes in local area. Horn et al. [16]

analyzed local derivatives for distinguishing between image

variations that are due to shading or reflectance.

To overcome the drawbacks of ambiguity in local analy-

sis, lots of research have been done to reduce the ambiguity

of both reflectance and shading. Shen et al. [30] proposed a

global optimization algorithm which combines Retinex the-

ory and non-texture constraint to obtain global consistency

of image structures. Shen [31] further applied sparse repre-

sentation of reflectance as global constraint of their obser-

vation. Material cues [27] has also been introduced. But

these works are only confined to RGB color images.

Trials in Multispectral Domain. Researchers have also

extended trichromatic color constancy models to decom-

pose multispectral images. A lot of trials have been made to

explore this area. For example, Ikari et al. [18] showed us

the possibility of separating illumination and surface spec-

tral from multiple color signals. Huynh et al. [17] as-

sumed that the scene could be segmented into several ho-

mogeneous surface patches, and were able to estimate the

illumination and reflectance spectra under the dichromatic

reflectance model. In remote sensing area, Kang et al. [20]

fit multispectral data into trichromatic model to extract fea-

tures. These works bring us new thoughts about intrinsic

decomposition problems.

As for multispectral image intrinsic decomposition,

Chen et al. [12] used super-pixel to cut down the number

of unknown parameters in this underdetermined problem.

Unlike the approaches above, we assume that both shad-

ing and reflectance spectral vectors live in low dimensional

subspace. The subspace of shading is widely acknowledged

and exploited in prior work [16], and the low-dimensional
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subspace model of reflectance is introduced by [26, 29, 37].

With ground truth reflectance and illumination spectra, we

can derive their subspace basis vectors and solve the sub-

space approximations of the true reflectance and shading

images effectively.

Dataset. To establish ground-truth for intrinsic images,

Tappen et al. [33] created small sets of both computer-

generated and real intrinsic images with three color compo-

nents. The computer-generated images consisted of shaded

ellipsoids with piecewise-constant reflectance. The real

images were created using green marker on crumpled pa-

pers [32]. Grosse et al. [15] provided a large dataset with

three color components which is widely used in following

analysis. Bell et al. [6] also introduced Intrinsic Images in

the Wild, a large scale, public dataset of color images for

evaluating intrinsic image decompositions of indoor scenes.

Going beyond the three color components, [35, 10] pro-

vided a set of multispectral images of various objects with-

out ground truth of reflectance images, and Chen et al. [12]

built a dataset with low spectral resolution and limited di-

versity in image content. To the best of our knowledge,

there are no other public multispectral image datasets with

ground truth for multispectral image intrinsic decomposi-

tion.

3. Our Model

We assume the object surface as Lambertian and hence

has diffuse reflection. In most prior work on intrinsic im-

age decomposition, the captured luminance spectrum at ev-

ery point lp is modelled as the element-wise product of

Lambertian reflectance spectrum rp and shading spectrum

sp, where sp is used to characterize the combined effect

of object geometry, illumination, occlusion and shadowing.

Mathematically, this model can be expressed as

lp = sp. ∗ rp (1)

where lp, rp and sp are all vectors with dimensions equal to

the number of spectral bands, K, of the captured image, .∗
denotes element-wise multiplication. The problem is to de-

rive sp and rp from observed multispectral luminance vec-

tor lp. At first, we will focus on recovering the reflectance

spectrum using this model. Once rp is determined, the shad-

ing image can be derived by point-wise division.

Different from the conventional approaches which op-

erate in the logarithmic domain, we directly formulate the

problem in the image domain, and this can overcome nu-

merical problems caused by the logarithmic transformation

of the image values, where noise in pixels with low inten-

sity values can lead to large variations. Besides, although

there have been substantial evidence of the subspace of the

reflectance, it is not clear whether the logarithmically trans-

formed reflectance still lives in a subspace. This makes it

hard to incorporate the subspace prior in formulations based

on log-transformed images.

3.1. Estimate Reflectance or Shading Independently

The Retinex model makes following two important ob-

servations:

1) When there is significant reflectance change between

two adjacent pixels p and q, the shading is typically con-

stant. This leads to the relation lp./lq = rp./rq , where ./
denotes element-wise division;

2) When the expected reflectance difference between two

pixels is small, the recovered reflectance difference be-

tween the two pixels should be small.

Noting that the ratio relationship in observation 1), the

ratio relationship can be written as lp. ∗ rq = lq. ∗ rp, or

Lprq = Lqrp where Lp is a diagonal matrix consisting of

spectral elements in lp, we can formulate the problem of

recovering the reflectance image as minimizing a weighted

sum of the two energy functions:

Erefl =
∑

p,q∈Nsc

‖wp,q(Lprq−Lqrp)‖
d
d+λ

∑

p,q∈Nrc

‖vp,q(rp−rq)‖
d
d (2)

where Nsc denotes shading neighborhood pair sets, Nrc de-

notes reflectance neighborhood pair sets and wp,q and vp,q
denote weights. wp,q should be large but vp,q be small when

the expected reflectance difference between two adjacent

pixels p and q is large, and vice verse. To make the for-

mulation general, we use d to indicate the error norm.

If we directly solve for rp, the above energy function can

be written as the sum of K terms, one for each spectral com-

ponent and each term can be separately minimized. With a

little exercise, it can be shown that the minimal is achieved

exactly when rp = lp; This is due to the inherent ambiguity

of the problem, when no other constraints are imposed on

rp. We reduce the ambiguity by exploiting the fact that the

reflectance spectra of typical object surfaces live in a low

dimensional subspace of RK , so that any reflectance vec-

tor can be written as a linear combination of Jr basis, with

Jr < K.

Let Br represent the K×Jr basis matrix for representing

the reflectance vector, rp can be written as rp = Br r̃p. The

energy function in Eq.(2) now becomes:

Erefl =
∑

p,q∈Nsc

‖wp,q(LpBr r̃q−LqBr r̃p)‖
d
d+λ

∑

p,q∈Nrc

‖vp,q(Br r̃p−Br r̃q)‖
d
d

(3)

The combined energy can be represented in a matrix

form as:

Erefl = ‖WL,Br R̃‖dd + λ‖VBr R̃‖dd (4)

where R̃ consists of r̃p for all pixels in a vector. The ma-

trix WL,Br
depends on the neighborhood Nsc considered,
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the weight wp,q , the reflectance basis Br used, and impor-

tantly the luminance data lp; whereas the matrix VBr
de-

pends on the neighborhood Nrc considered, the weight vp,q
and the reflectance basis Br used. Therefore, with this non-

logarithmic formulation, we encode the constraint due to

the measured luminance data in the matrix WL,Br
.

The ambiguity with the scaling factor is inherent in all in-

trinsic image decomposition problems since only the prod-

uct of reflectance and shading is known. To circumvent

the ambiguity about the scaling factor, we further assume

that the reflectance have small deviation from the input im-

age and add a scale constraint along the entire image as

MBr
R̃ = Cr, and augment the original energy function

to enforce this constraint:

Erefl = ‖WL,Br R̃‖dd + λ1‖VBr R̃‖dd + λ2‖MBr R̃− Cr‖
d
d (5)

where MBr
is a block-diagonal matrix depending on Br,

and Cr is a long vector consisting of luminance coefficient

vectors of all lp.

Similarly, the subspace of the shading is also widely ac-

knowledged and exploited in prior work [14]. Shading in-

herently lives in a subspace, because there are usually only

a few lighting sources with different illumination spectra

acting in each captured scene, and the shading effect due

to geometry and shadowing only modifies the spectra by a

location-dependent scalar. If there is a single illumination

source and its spectrum is known or is able to be identified

by method of [37], we will use this spectrum(after normal-

ization) as the only shading basis vector (Js = 1 and Bs

equals to this normalized spectrum). Likewise the problem

of recovering the shading image can be formulate as mini-

mizing

Eshad = ‖WBs S̃‖
d
d + λ1‖VL,Bs S̃‖

d
d + λ2‖MBs S̃ − Cs‖

d
d

(6)

3.2. Simultaneous Recovery

Based on the formulation that solves reflectance and

shading respectively, we propose an optimization algorithm

that simultaneously solves both shading and reflectance. We

assume that the subspace of the shading and reflectance are

known, represented by basis matrices Bs and Br, respec-

tively, so that sp = Bss̃p and rp = Br r̃p. We will use S̃
to denote the long vector consisting of shading coefficient

vectors s̃p at all pixels, and R̃ to denote the long vector con-

sisting of reflectance coefficient vectors r̃p. We propose to

solve s̃p and r̃p, or equivalently S̃ and R̃, by minimizing a

weighted average of the following energy terms.

When shading is expected to be similar in pixels p and

q, we have sp ≈ sq and lp. ∗ rq ≈ lq. ∗ rp, or Lprq =

Lqrp, where Lp is a diagonal matrix consisting of spectral

elements in lp. We formulate the energy functions directly:

Esc =
∑

p,q∈Nsc

(
‖wp,q(Lprq − Lqrp)‖

d
d + ‖wp,q(sp − sq)‖

d
d

)

= ‖WL,Br R̃‖dd + ‖WBs S̃‖
d
d

(7)

When reflectance is expected to be similar in pixels p
and q, we have rp ≈ rq and lp. ∗ sq ≈ lq. ∗ sp, leading to a

regularization energy

Erc =
∑

p,q∈Nrc

(
‖vp,q(Lpsq − Lqsp)‖

d
d + ‖vp,q(rp − rq)‖

d
d

)

= ‖VL,Bs S̃‖
d
d + ‖VBr R̃‖dd

(8)

The inherent data constraint lp = sp.∗rp leads to another

energy function:

Edata =
∑

p

‖sp. ∗ rp − lp‖
d
d = ‖Q

S̃
R̃− L‖dd

= ‖Q
R̃
S̃ − L‖dd

(9)

where Q
S̃

is a block diagonal matrix that depends on the

solution for S̃ and the basis matrices Bs and Br (likewise

Q
R̃

), and L is a diagonal matrix consisting of spectral ele-

ments of all input pixels.

The problem is to find S̃ and R̃ that minimizes a

weighted average of the three energy functions:

E = ‖WL,Br R̃‖dd + ‖WBs S̃‖
d
d + λ1

(
‖VL,Bs S̃‖

d
d + ‖VBr R̃‖dd

)

+ λdata,1‖QS̃
R̃− L‖dd + λdata,2‖QR̃

S̃ − L‖dd
(10)

Direct solution of the above problem solving R̃ and S̃
simultaneously is hard because of the bilinear nature of the

data term. We apply the iterative solution, where we solve

R̃ and S̃ using alternating projection. As the dimension of

the shading subspace is likely to be smaller than the dimen-

sion of the reflectance subspace, we solve the shading S̃
first. Also there are typically more subregions in an image

with similar reflectance, where it is easier to use the con-

stant reflectance constraint to resolve the ambiguity about

shading.

A challenging issue is how to provide initial estimation

of S̃ and R̃ in order to effectuate the data constraint in

Eq.(9). We first obtain an initial estimate of S̃ by minimiz-

ing Eq.(6), based on an assumed Bs. We then add a data

constraint to Eq.(5) and determine R̃ by minimizing:

Erefl = ‖WL,Br R̃‖dd + λ1‖VBr R̃‖dd+

λ2‖MBr R̃− Cr‖
d
d + λdata,1‖QS̃

R̃− L‖dd
(11)

to satisfy the data constraint. Finally, S̃ and R̃ are estimated

iteratively by minimizing Eq.(10).

More specifically, the whole recovery algorithm is sum-

marized in Algorithm 1:
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Algorithm 1: MIID algorithm

1 Step 1: Get Bs from the ground-truth illumination and

Br from Munsell colors matt [25].

2 Step 2: Assign constant-shading weights wp,q and

constant-reflectance weights vp,q based on the

observed multispectral images.

3 Step 3: Solve an initial subspace estimate of the

shading vector S̃ by minimizing Eq.(6).

4 Step 4: Solve an initial subspace reflectance vector R̃
by minimizing Eq.(11).

5 repeat

6 Step 5: Solve S̃ by minimizing the energy

function in Eq.(10) with λdata,1 = 0, and using

previously solved R̃.

7 Step 6: Solve R̃ by minimizing the energy

function in Eq.(10) with λdata,2 = 0, and using

previously solved S̃.

8 until maximum number of iterations (100) is reached

or the change in the energy function in Eq.(10) is

below a threshold (0.01);

9 Step 7: Reconstruct S and R.

4. Details

4.1. Weight Choice

Images suffering from poor light condition may con-

tain shadow area, which would in turn bring in unnecessary

edges that confuse the algorithm. Various methods are used

to determined weights wp,q and vp,q , including pixel gradi-

ent [14, 21, 23], hue [36], correlation between vectors [19]

and learning [33]. To set the weight, we assume that the

reflectance of two pixels are similar if their normalized lu-

minances are similar, which can be measured by the correla-

tion of the normalized luminances. Therefore, we proposed

a illumination-robust and compute-friendly distance – nor-

malized cosine distance, to measure the differences between

spectra of two pixels in one neighborhood. This distance

can be formulated as

dp,q∈Nsc = 1−
l′plq

|lp| · |lq|
(12)

dp,q is 0 when pixel p and q have same spectra, and in-

creases when spectra of p and q are different. In order to

derive weight wp,q , we need to further magnify the differ-

ence between homogeneous and heterogeneous pixels and

make it more robust to the noise. In our implementation

wp,q = 1

1+e−α(dp,q−β) vp,q = 1− wp,q (13)

α and β are parameters of sigmoid function. To set α and

β, we sample values of α within [1000, 10000] and values

of β within [10−5, 10−2] and choose the combination that

performs best.

Fig. 2 shows different separation results for different beta

values. If β is too small, shading tends to be more blurred;

when β is too big, reflectance would be blurred.

4.2. Subspace Bases for the Shading and Reflectance
Spectra

An important step in our problem formulation is to de-

rive subspace basis matrices for the shading and reflectance

spectra, respectively. With the help of multispectral imag-

ing systems as PMIS [9] and CASSI [1], we can success-

fully get grouth-truth illumination spectra. Also, there are

plenty of works referring to how to extract illumination

from images. For example, [37] can be applied in multi-

spectral domain and performs well in implementation. In

order not to complicate our method, we assume that the

shading component is dominated by a single illumination

source and we directly determine the shading subspace ma-

trix Bs by using the grouth-truth illumination.

For reflectance, the authors of [26, 29] have found Jr to

be around 8 so as to reach the best trade-off between ex-

pression power and noise resistance in the process of fitting

reflectance spectra. We set Jr to be 8 and perform Principle

Component Analysis (PCA) to derive Br from the Munsell

colors matt measured by Hiltunen [25], which composes the

reflectance spectra of 1269 matt Munsell color chips.

4.3. Initial Estimation

We use L2 norm for all terms, so that solving Eq.(6) or

Eq.(11) is a quadratic programming problem, and can be

solved efficiently using conjugate gradient method. In Al-

gorithm 1, The solution to the unconstrained optimization

problem in Step 3 satisfies the following linear equation:

Hs = WT
Bs

WBs
+ λ1V

T
L,Bs

VL,Bs
+ λ2M

T
Bs

MBs

HsS̃ = λ2M
T
Bs

Cs

(14)

In Step 4, the linear equation can be written as

Hr = WT
L,Br

WL,Br
+ λ1V

T
Br

VBr
+ λ2M

T
Br

MBr
+ λdata,1Q

T

S̃
Q

S̃

HrR̃ = λdata,1Q
T

S̃
L+ λ2M

T
Br

C

(15)

Because the matrix Hs and Hr is self-adjoint and sparse,

we can solve this equation iteratively, which typically con-

verges very fast. Once the parameters are preoptimized in a

given data category, the estimation performance stays sta-

ble. On our dataset, we set λ1 = 100, λ2 = 0.1 and

λdata,1 = 10 empirically.

4.4. Iteration Performance

We use alternating projection to get refined shading and

reflectance. Just like what we stated in Step 5 and Step
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(a) 4.64 3e (b) 2.15 4e (c) 1 5e

Figure 2. Estimated Reflectance and shading images using different settings for β. α is set to be 5000. (b) achieves good result while

shading and reflectance overlap clearly in (a) and (c).

6 in Algorithm 1, we update shading first and then the

reflectance. In each round of iteration, gradient descent

method is applied to solve Eq.(10), with either S̃ or R̃
as unknowns. The iteration stops whenever it reaches the

maximum iteration times 100 or when the error gradient

∇E < 0.01.

We use LMSE to measure shading and reflectance im-

ages. Given the true and estimated images I and Î , [15]

defined LMSE as the MSE summed over all local windows

w of size k × k and spaced in steps of k/2:

LMSEk(I, Î) =
∑

w∈W

MSE(Iw, Îw) =
∑

w∈W

‖Iw − α̂Îw‖
2

(16)

where α = argmin
α

‖Iw − α̂Îw‖
2.

Fig. 3 demonstrates the iteration performance of our al-

gorithm. The energy cost function Eq.(10) decreases with

increasing iterations. Before the iteration, the color patches

can still be seen clearly; while the shading image tends to

be more uniform after iteration.

LMSE = 0.008 

LMSE = 0.006 

Iteration Number

E

Figure 3. Iteration Performance. The algorithm converges within

100 times. Two images demonstrate the estimated shading before

and after iteration.

5. Experimental Results

In this section, we provide extensive experimental vali-

dation of the proposed method. For the better visualization,

we show the result in pseudo-rgb and linearly normalized

the image to the range [0, 1]. We first show the perfor-

mance of our algorithm on MIT benchmard database [15].

This is followed by our algorithm on our dataset and com-

parison with [12]. Finally, we test our method on Na-

yar [35] dataset and show visual results. Limited by the

page size, please find more dataset and results at http:

//cite.nju.edu.cn/MIID_dataset.html.

5.1. Experiment on MIT Benchmark Database

In order to facilitate the understanding of IID problem

and illustrate the performance of our proposed method, we

first tested our algorithm on MIT benchmark database [15].

Since RGB images have only 3 bands, the subspace con-

straint would cause significant color shift, thus we do not

include the subspace constraint in this section.

Table 1. LMSE Performance on MIT benchmark database.

CR [15] Ours

Avg. 0.030 0.028

Figure 4. Visual results on MIT benchmark database. First row are

reflectance images and second row are shading images.

Here GT denotes ground truth and CR indicates Color

Retinex algorithm, which performed best among single im-

age based methods in the study of [15]. From Tab. 1 and

Fig. 4, it is clear that our method produces more visually

pleasing decompositions with smaller LMSE.

5.2. Experiments on Proposed Dataset

We provide a benchmark dataset with ground truth for

the performance evaluation of multispectral image intrinsic

decomposition problem. We also compare with [12], the

state-of-the-art IID algorithm in multispectral domain.

A benchmark dataset with ground-truth illumination,

shading, reflectance and specularity was presented in [12]

for performance evaluation of multispectral image intrin-

sic decomposition. Inspired by their ideas, we build up the

newest multispectral intrinsic ground-truth dataset includ-

ing 22 scenes under the similar environment condition, and
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the light source is iodine-tungsten lamp (that interprets why

shading images are a little yellowish). We apply the ad-

vanced spectrometer PMIS [9] to acquire the multispectral

scenes, which could provide higher resolution in spectral

data ranging from 450nm-700nm with 118 spectral chan-

nels. Compared with the dataset provided by [12], ours

has 17 more scenes with higher resolution, more bands and

more details, which enables the dataset to show further and

potential applications in other vision researches.

Here, we evaluate our algorithm via our proposed dataset

and use LMSE from the ground truth to validate our algo-

rithm quantitatively. Compared with ground-truth, decom-

position results that we achieved are desirable in terms of

both the LMSE and the visual quality of the decomposed

reflectance and shading results.

We display 4 examples from our dataset. The corre-

sponding visualized RGB images for reflectance and shad-

ing are listed in Fig. 6. It is clear that our method could

produce better decomposition results. In [12], superpixel-

based method would lose detail information, while ours is

more piecewise constant. We like to emphasize that we did

all the image processing and metric computations of LMSE

on down-sampled 30 out of 118 spectral channels which

corresponds to the setting in [12].

Table 2. Performance statistics for dataset image

Name SIID [12] Ours Name SIID Ours

box 0.032 0.023 ali 0.018 0.015

cup 0.016 0.012 greenpig 0.013 0.009

car 0.025 0.012 mask 0.005 0.004

bottle1 0.062 0.031 piggy 0.012 0.008

bottle2 0.005 0.008 pumpkin 0.009 0.008

bottle3 0.009 0.009 dinosaur 0.012 0.006

bus 0.030 0.031 horse 0.021 0.012

car2 0.030 0.024 kitty 0.026 0.019

dinosaur2 0.021 0.023 cap 0.027 0.024

minion 0.020 0.018 girl 0.020 0.013

plane 0.024 0.015 train 0.017 0.015

Avg. 0.021 0.015

In table 2, we demonstrate the performance for the entire

dataset. Here SIID denotes latest spectral intrinsic image

decomposition in [12]. Our algorithm outperforms SIID in

19 out of 22 cases, and ours demonstrates a great improve-

ment on average LMSE. Moreover, We note that our method

is faster, more memory-friendly and is able to process larger

images with more spectral bands.

In addition to evaluate the accuracy for reflectance im-

age recovery in all spectral bands, we compare the spectral

curves of selected image points from the ground truth and

our algorithm. we choose patches in some scenes of our

ground truth. In Fig. 5, it is obvious that our reflectance

matches well with the ground truth which means we could

gain accurate spectral reflectance with better performance

in computation.

            (a)                                  (b)                                       (c)

            (d)                                  (e)                                       (f)
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Figure 5. (a)(d) are ground truth reflectance of our dataset, (b)(e)

are reflectance images of our results, and the (c)(f) are spectra

curve of marked area (solid red: ours; dotted black: ground-truth).

5.3. Experiments on Nayar Multispectral Image
Database[35]

To demonstrate the benefit of the subspace constraint, we

compare results with and without it using Nayar Multispec-

tral Image Database [35]. We strengthen the constraints of

the ’without’ one to make it solvable. In Fig. 7, the shading

images with constraint are more uniform, thus reflectance

images are closer to true material reflectance. From the

comparison, we see that the subspace constraint helps solve

the overlap between the shading and reflectance.

6. Conclusion

We have addressed the problem of the recovery of re-

flectance and shading from a single multspectral image cap-

tured under general spectral illumination. We have applied

a subspace constraint to both the reflectance and shading

space to solve the multispectral image intrinsic decompo-

sition problem, which significantly reduce the ambiguity.

Gradient descent has been used to give the initial estima-

tion of reflectance and shading, and alternating projection

method has been applied to solve the bilinear problem. Ex-

periments on multiple datasets demonstrate that the perfor-

mance of our work is better than prior works in multispec-

tral domain.

Our work has left out constraints on global structure.

Retinex theory fails to take effect when both shading and re-

flectance change extensively in local area. Since the high di-

mension of multispectral data would complicate the global

constraint and bring tremendous computation cost than tra-

ditional RGB case, we hope that we will implement the

global constraint with more computational efficiency (e.g.

parallel design) in the near future.
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                         (a)                                                            (b)                                                             (c)
Figure 6. Results on sample images from our dataset. (a) are ground-truth reflectance and shading from our dataset, (b) are results derived

from SIID [12], and (c) are our results. Note that results are rendered in RGB.

(a) (b) (c) (d) (e)
Figure 7. Comparison of decomposition without and with the subspace constraint. (a) Multispectral images (rendered in RGB) Nayar

dataset [35]. (b)-(c) show the reflectance and shading components computed without the subspace constraint. (d)-(e) are with the constraint.
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