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Abstract

Despite the great success of face recognition techniques,

recognizing persons under unconstrained settings remains

challenging. Issues like profile views, unfavorable lighting,

and occlusions can cause substantial difficulties. Previous

works have attempted to tackle this problem by exploiting

the context, e.g. clothes and social relations. While showing

promising improvement, they are usually limited in two im-

portant aspects, relying on simple heuristics to combine dif-

ferent cues and separating the construction of context from

people identities. In this work, we aim to move beyond such

limitations and propose a new framework to leverage con-

text for person recognition. In particular, we propose a Re-

gion Attention Network, which is learned to adaptively com-

bine visual cues with instance-dependent weights. We also

develop a unified formulation, where the social contexts are

learned along with the reasoning of people identities. These

models substantially improve the robustness when working

with the complex contextual relations in unconstrained en-

vironments. On two large datasets, PIPA [27] and Cast In

Movies (CIM), a new dataset proposed in this work, our

method consistently achieves state-of-the-art performance

under multiple evaluation policies.

1. Introduction

Person recognition is a key task in computer vision

and has been extensively studied over the past decades.

Thanks to the advances in deep learning, recent years have

witnessed remarkable progress in face recognition tech-

niques [22, 19, 21, 17]. On LFW [10], a challenging

public benchmark, the accuracy has been pushed to over

99.8% [17]. Nonetheless, the success on benchmarks does

not mean that the problem has been well solved. Recent

studies [27, 11, 13, 15] have shown that recognizing per-

sons under an unconstrained setting remains very challeng-

ing. Substantial difficulties arise in unfavorable conditions,

e.g. when the faces are in a non-frontal position, subject to

extreme lighting, or too far away from the camera. Such

conditions are very common in practice.
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Figure 1: Person recognition under unconstrained settings re-

mains a very challenging problem. Inference purely by face recog-

nition techniques would fail in many cases. We propose a frame-

work to tackle this problem, which combines visual context with

adaptive weights and unifies person recognition with social con-

text learning.

The difficulties above are essentially due to the fact that

facial appearance is highly sensitive to environmental con-

ditions. To tackle this problem, a natural idea is to leverage

another important source of information, namely the con-

text. It is our common experience that we can easily rec-

ognize a familiar person by looking at the wearing, the sur-

rounding environment, or the people who are nearby. On the

other hand, cognitive neuroscience studies [6, 1, 12] have

shown that context plays a crucial role when we, as human

beings, recognize a person or an object. A familiar context

often allows much greater accuracy in recognition.

Exploiting context to help recognition is not a new story

in computer vision. Previous efforts mainly follow two

lines. The first line of research [2, 8, 27, 11] attempts to in-

corporate additional visual cues, e.g. clothes and hairstyles,

as additional channels of features. The other line, instead,

focuses on social relationships, e.g. group priors [7, 20] or

people co-occurrence [4, 23]. There are also studies that try

to integrate both visual cues and social relations [15, 13].

Whereas previous works have shown the utility of con-

text in person recognition, especially in unconstrained en-
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vironments, a key question remains open, that is, how to

discover and leverage contexts robustly. Specifically, exist-

ing methods usually rely on simple heuristics, e.g. feature-

based clustering, to establish contextual priors, and hand-

crafted rules to combine contextual cues from different

channels. Moreover, the construction of the context model

is typically done separately and before person identifica-

tion. The limitations of such approaches lie in two impor-

tant aspects: (1) Heuristics designed manually are difficult

to capture the diversity and complexity in unconstrained

context modeling. (2) The identities of the people in a scene

are also an important part of the context. Constructing the

context separately would lose this significant connection.

In this work, we aim to explore more effective ways to

leverage the context in person recognition (see Figure 1).

Inspired by previous efforts, we consider two kinds of con-

texts, namely the visual context, e.g. additional visual cues,

and the social context, e.g. the events that a person often

attends. But, we move beyond the limitations of exist-

ing methods, by considering context learning and person

identification as a unified process and solving both jointly.

Driven by this idea, we propose novel methods for lever-

aging visual and social contexts respectively. Particularly,

we develop a Region Attention Network, which is learned

end-to-end to combine various visual cues adaptively with

instance-dependent weights. We also develop a unified for-

mulation, where the social context model is learned online

jointly with the reasoning of people identities. As a by-

product, the solution to this problem also comes with a set

of “events” discovered from the given photo collection – an

event not only share similar scenes but also a consistent set

of attendants.

On PIPA [27], a large public benchmark for person

recognition, our proposed method consistently outperform

existing methods, under all evaluation policies. Particularly,

in the most challenging day split, our method raised the

state-of-the-art performance from 59.77% to 67.16%. To

assess our method in more diverse settings and to promote

future research on this topic, we construct another large

dataset, Cast In Movies (CIM), by annotating the charac-

ters in 192 movies. This dataset contains more than 150K
person instances and 1218 labeled identities. Our approach

also demonstrated its effectiveness on CIM.

Our contributions mainly lie in three aspects: (1) For vi-

sual context, we propose a Region Attention Network, which

combines visual cues with instance-dependent weights. (2)

For social context, We propose a unified formulation that

couples context learning with people identification. It

also discovers events from photo collections automatically.

These two techniques together result in remarkable perfor-

mance gains over the state-of-the-art. (3) We construct Cast

In Movies (CIM), a large and diverse dataset for person

recognition research.

2. Related Work

Early efforts. The significance of context in person

recognition has long been recognized by the vision com-

munity. Early methods mainly tried to use additional visual

cues, such as clothing [2, 8], or additional metadata [7]. Yet,

the improvement was limited. Later, more sophisticated

frameworks [20, 2, 16] that integrate multiple cues (cloth-

ing, timestamps, scenes, etc) have been developed. Some of

these works [2, 16] formulated the task as a joint inference

process over a Markov random field and obtained further

performance gains. Note that these MRF-based methods

assume the same set of people and social relations in both

training and testing, and thus the learned models are diffi-

cult to generalize to new collections.

Recent efforts. The rise of deep learning has led to new

innovations on this topic. Zhang et al. [27] proposed a Pose

Invariant Person Recognition method (PIPER), which com-

bines three types of visual recognizers based on ConvNets,

respectively on face, full body, and poselet-level cues. The

PIPA dataset published in [27] has been widely adopted as

a standard benchmark to evaluate person recognition meth-

ods. Oh et al. [11] evaluated the effectiveness of differ-

ent body regions, and used a weighted combination of the

scores obtained from different regions for recognition.

Recently, Li et al. [13] proposed a multi-level contex-

tual model, which integrates person-level, photo-level and

group-level contexts. Although this framework also con-

siders the combination of visual cues and social context, it

differs from ours essentially in two key aspects: (1) The

visual cues are combined with a simple heuristic rule, in-

stead of a learned network. (2) The groups are identified by

spectral clustering of scene features before person recogni-

tion, as a separate step. Our framework, instead, formulates

event discovery and people identification as a unified opti-

mization problem and solves both jointly.

Another way of integrating both visual cues and social

relations was proposed in [15]. This work formulates the

recognition of multiple people into a sequence prediction

problem and tries to capture the relational cues with a re-

current network. As there is no inherent order among the

people in a scene, it is unclear how a sequential model can

capture their relations. Note that we compared the proposed

method with all of the four methods above in our exper-

iments on PIPA. As we shall see in Section 5, our method

consistently outperforms them under all evaluation policies.

Person Re-identification. Another relevant task is person

re-identification [18, 28, 14], which is to match pedestrian

images from different cameras, within a relatively short pe-

riod. This task is essentially different, where visual cues

are likely to remain consistent and social context is weak.

General person recognition, instead, requires recognizing

across events, where visual cues may vary significantly and

thus the social context can be crucial.
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Figure 2: Our whole framework. We propose a Region Attention Network to get instance-dependent weights for visual context fusion and

develop a unified formulation that join social context learning, including event-person relations and person-person relations, with person

recognition.

3. Methodology

In general, the task of person recognition in a photo col-

lection can be formalized as follows. Consider a collection

of photos I1, . . . , IM , where Im contains Nm person in-

stances. All person instances are divided into two disjoint

subsets, the gallery set, in which the instances are all la-

beled (i.e. their identities are provided). and the query set,

in which the instances are unlabeled. The task is to predict

the identities for those instances in the query set.

As discussed, person recognition in an unconstrained

setting is very challenging. In this work, we leverage two

kinds of contexts, the visual context and the social context.

Particularly, the visual context involves different regions of

the person instances, including face, head, upper body, and

whole body. These regions often convey complementary

cues for visual matching. The social context, instead, cap-

tures the social behavior of people, e.g. the events they usu-

ally attend or the people whom they often stay with. It is

worth noting that unlike visual cues, the social relations are

reflected collectively by multiple photos and can not be re-

liably derived from a single photo in isolation.

3.1. Framework Overview

We devise a framework that incorporates both the visual

context and the social context for person recognition. As

shown in Figure 2, the framework recognizes the identities

for all instances in the query set jointly, in two stages.

1. Visual matching. This stage computes a matching score

for each pair of instances. For this, a Region Attention

Network is learned to adaptively combine the visual cues

from different regions, with instance-dependent weights.

2. Joint optimization. This is the key stage of our frame-

work. In this stage, the social context model, which cap-

tures both event-people and people-people relations, will

be jointly learned along with the identification of query

instances, by solving a unified optimization problem.

3.2. Visual Matching

We combine the visual observations from different re-

gions to compute the matching score between two instances.

Particularly, we consider four regions: face, head, upper

body, and whole body. These regions are often complemen-

tary to each other. This strategy has also been shown to be

effective in previous work [27, 11, 13, 15].

However, existing methods mostly adopt uniform

weighting schemes, where each region is assigned a fixed

weight that is shared by all instances. Let s(i, j) be the over-

all matching score between instances i and j, and sr(i, j) be

the matching score based on the r-th region. Then, such a

scheme can generally be expressed as

s(i, j) =

R∑

r=1

wrsr(i, j), (1)

where R is the number of distinct regions. The weights

{wr} are often decided by empirical rules [13] or optimized

over a validation set [27, 11, 15].

The uniform schemes as described above are limited in

two aspects, as illustrated in Figure 3. (1) Some regions

may be invisible for an instance. The missing of such re-

gions may be due to various reasons, e.g. limited scope of

the camera and occlusion. With a uniform scheme, one

would be forced to locate the missing parts with rigid rules

and compute matching scores for them, which often leads to

inaccurate results. (2) The contributions of different parts

vary significantly across instances. For example, the fa-

cial features play a key role when the frontal face is visible.

However, when we can only see one’s back, we will have to

resort to the clothing in the body region. A uniform scheme

can not effectively handle such variations.

We propose to tackle this problem using instance-

dependent weights, where the weight of a region is deter-

mined by whether it is visible and how much it contributes.

Specifically, given an instance, we get the bounding boxes
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Figure 3: Here are examples to show the necessity of instance-

dependent weights for recognition. (a) shows that some of the

regions may be out of scope, like “body” of the first instance and

“face” of the second instance. (b) shows that the contributions of

parts vary across instances. The contribution of “face” for the first

man is obviously more significant than that for the second one.

of the regions by either the annotation of the dataset or de-

tectors, then resize each region to a standard size, and apply

region-specific CNNs to extract their features.

To combine these features adaptively, we devise a Region

Attention Network (RANet) as shown in Figure 2 to com-

pute the fusion weights. Here, the RANet is a small neu-

ral network that takes the stacked features from all regions

as input, feeds them through a convolution layer, a fully-

connected layer, and a sigmoid layer, and finally yields four

positive coefficients as the region weights. Then the com-

bined matching score is given by

s(i, j) =

R∑

r=1

wr
iw

r
js

r(i, j). (2)

Here, wr
i and wr

j are instance-dependent weights of the r-th

region respectively for instances i and j; sr(i, j) is the co-

sine similarity between the corresponding features. We use

the product wr
iw

r
j to weight a region score, which reflects

the rationale that a region type should be active only when

it is clearly visible in both instances. All region-specific

CNNs together with the RANet are jointly trained in an end-

to-end manner with the cross-entropy loss.

3.3. Unified Formulation with Social Context

In an unconstrained environment, certain instances are

very difficult to recognize purely based on their appearance.

For such cases, one can leverage the social context to help.

Specifically, the social context refers to a set of social rela-

tions. We consider two types of social relations:

1. Event-person relations. Generally, an event can be con-

ceptually understood as an activity that occurs at a cer-

tain place with a certain set of attendants [25]. Over a

large photo collection, an event may involve just a small

fraction of the people. Hence, an event can provide a

strong prior for recognition if we can infer the event that

(a) (b)

Figure 4: Some instances (with red boxes) are very difficult to

recognize purely by their appearance. But we can leverage the so-

cial context to help. (a) If we know that the photo belongs to the

event – “People cry for help after Titanic sunk”, then the probabil-

ity to recognize them as Leonardo and Kate will become higher.

(b) Sometimes it’s easy for us to get other instances’ identities

(with green boxes) in the same photo. So we can infer the red

ones’ identities by the person-person relation.

a photo is capturing, as illustrated by the photo in Fig-

ure 4a.

2. Person-person relations. It is commonly observed that

certain groups of people often stay together. For such

groups, the presence of a person may indicate the pres-

ence of others in the group, as illustrated by the photo in

Figure 4b. Note that person-person relations are com-

plementary to the event-person relations, as such rela-

tions do not require the match of scene features.

Unified Objective. Taking both the visual context and the

social context into account, we can formulate a unified opti-

mization problem where person identifications are coupled

with event association and contextual relation learning. The

objective function of this problem is given below:

J(X,Y; F̃,P,Q | S,F) = ψv(X|S)

+ α · φep(Y,X; F̃,P|F) + β · φpp(X;Q). (3)

The notations involved here are described below:

1. X ∈ R
L×N captures all people identities, where L is

the number of distinct identities and N is the number of

person instances. Each column of X, denoted by xj , is

the identity indicator vector for the j-th instance.

2. Y ∈ R
K×M is the association matrix between photos

and events, where K is the number of events and M is

the number of photos. The i-th column of Y, denoted

by yi, is the event indicator vector for the i-th photo. In

particular, yki , Y(i, k) ∈ {0, 1} indicates whether the

i-th photo is from the k-th event.

3. S ∈ R
N×N denotes the matrix of pairwise visual match-

ing scores, derived by Eq.(2).

4. F ∈ R
Df×M comprises the scene features of all photos,

where the i-th column fi is a Df -dimensional feature for
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the i-th photo. In this work, we obtained fi for each

photo with a CNN pretrained on Places [29].

5. F̃ ∈ R
Df×K and P ∈ R

L×K are the parameters asso-

ciated with the events. In particular, the k-th column of

F̃, denoted by f̃k, is the prototype scene feature for the

k-th event; and the k-th column of P, denoted by pk,

is a probability vector that captures the person identity

distribution of the k-th event.

6. Q ∈ R
L×L is a matrix that captures the person-person

relations. High value of Q(l, l′) indicates that the iden-

tities l and l′ are likely to co-occur in the same photo.

Among these quantities, the matching scores S and the

scene features F are provided in the visual analysis stage,

while others are jointly solved by optimizing this problem.

Potential Terms. The joint objective in Eq.(3) comprises

three potential terms, which are introduced below.

1. Visual consistency: ψv(X|S) encourages the consis-
tency between person identities and the visual matching
scores, and is formulated as:

ψv(X|S) =
N∑

j=1

s
T
j xj , with sj(l) = max

j′∈Gl

s(j, j′), (4)

where sj ∈ R
L, Gl refers to the set of gallery instances

with label l, and thus sj(l) is the maximum matching

score of the l-th instance to those in Gl.

2. Event consistency: φep(Y,X; F̃,P|F) concerns about

the assignments of photos to events, and encourages

them to be consistent in both scenes and attendants. This

term is formulated as:

φep(Y,X; F̃,P|F) =

M∑

i=1

K∑

k=1

aki y
k
i

with aki =
∑

j∈Ii

log(pk)
Txj − ‖fi − f̃k‖

2, (5)

where, Ii is the set of instance indexes for the i-th
photo. For each assignment of the k-th event to the

i-th photo, this formula evaluates (a) whether the peo-

ple in the photo are frequent attendants of the event (by

pT
k xj) and (b) whether the photo’s scene feature match

the event’s scene prototype (by −‖fi − f̃k‖
2).

3. People cooccurrence: φpp(X;Q) takes into account the

person-person relations, i.e. which identities tend to co-

exist in a photo. This term is formulated as:

φpp(X;Q) =
M∑

i=1

∑

j∈Ii

∑

j′∈Ii:j′ 6=j

xT
j Qxj′ . (6)

This formula considers all pairs of distinct instances in

each image, and sums up their person-person relation

value. In particular, if xj indicates label l and xj′ in-

dicates label l′, then xT
j Qxj′ = Q(l, l′).

To balance the contributions of these potential terms, we

introduce two coefficients α and β, which are decided via

cross validation.

3.4. Joint Estimation and Inference

We solve this problem using coordinate ascent. Specif-

ically, our algorithm alternates between the updates of (1)

people identities (X), (2) assignments of events to pho-

tos (Y), and (3) social relation parameters (F̃, P, and Q).

These steps are presented below.

Person Identification. Given both the event assignments

X and the social context parameters, the inference of people

identities can be done separately for each photo, by maxi-

mizing the sub-objective as:

∑

j∈Ii

sTj xj+α
∑

j∈Ii

log(pŷi
)Txj+β

∑

j∈Ii

∑

j′∈Ii:j′ 6=j

xT
j Qxj ,

(7)

where ŷi indicates the assigned event. Note that xj here

is constrained to be an indicator vector, i.e. only one of its

entry is set to one, while others are zeros. When there is

only one person instance, its identity can be readily derived

as

x̂j = argmax
l

sj(l) + αpŷi
(l). (8)

When there are two or more instances, we treat it as an MRF

over their identities and solve them jointly using the max-

product algorithm.

Event Assignment. We found that the granularity of the

events has significant impact on the identification perfor-

mance. If we group the photos into coarse-grained events

such that each event may contain many people or scenes,

then the event-person relations may not be able to provide a

strong prior. However, for fine-grained events, it would be

difficult to estimate their parameters reliably. Hence, it is

advisable to seek a good balance.

In this work, we use two parameters νmin and νmax to

control the granularity, and require that the number of pho-

tos assigned to an event fall in the range [νmin, νmax]. Then

the problem of event assignment can be written as

max

M∑

i=1

K∑

k=1

aki y
k
i , (9)

s.t.

K∑

k=1

yki ≤ 1, ∀i = 1, . . . ,M, (10)

νmin ≤

M∑

i=1

yki ≤ νmax, ∀k = 1, . . . ,K, . (11)
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Here, aki Eq.(9) follows Eq.(5). Eq.(10) enforces the con-

straint that each photo is associated to at most one event;

Eq.(11) enforces the granularity constraint above. This is a

linear programming problem, and can be readily solved by

an LP solver. Also, the optima is guaranteed to be integral.

Context Learning. As mentioned, the social context

model, which is associated with three parameters F̃, P, and

Q, are learned along the inference of people identities and

event assignments. Given X and Y, we can easily derive

the optimal solution of the parameters listed above.

Specifically, for the scene prototypes in F̃, we have the

optimal f̃k (the k-th column of F̃) given by

f̃k = argmin
f

∑

i∈Ek

‖fi − f‖2 =
1

|Ek|

∑

i∈Ek

fi, (12)

where Ek = {i | aki = 1} refers to the set of photos that are

assigned to the k-th event. For the identity distributions P,

we have the optimal pk given (the k-th column of P) given

by

pk = argmax
p∈SL

∑

i∈Ek

∑

j∈Ii

log(p)Txj , (13)

where S is the L-dimensional probability simplex and p ∈
S
L enforces that p be a probability vector. This is a max-

imum likelihood estimation over all people who attend the

k-th event, and its optimal solution is

pk =

(
∑

i∈Ek

|Ii|

)−1 ∑

i∈Ek

∑

j∈Ii

xj . (14)

With both f̃k and pk, we can characterize an event with

both scene features and attendants. For person-person rela-

tions, the optimal Q can be obtained by maximizing Eq.(6)

with X. Here, we enforce a constraint that Q is normalized,

i.e. ‖Q‖F = 1. Then, the optimal solution is

Q = Q′/‖Q′‖F , with Q′ =
M∑

i=1

∑

j∈Ii

∑

j′∈Ii\j

xjx
T
j′ . (15)

It is worth emphasizing that all sub-tasks presented above

are steps in the coordinate ascent procedure to optimize the

unified objective in Eq.(3). We run these steps iteratively,

and it usually takes about 5 iterations to converge.

4. New Dataset: Cast In Movies

In addition to photo albums, the proposed method can

also be applied to other settings with strong contexts,

e.g. recognizing actors in movies. To test our method in

such settings, we constructed the Cast In Movies (CIM)

dataset from 192 movies. We divide each movie into shots

using an existing technique [3], sample one frame from each

Figure 5: Examples from CIM. Here are some instances of Kate

Winslet and Leonardo DiCaprio from different movies in CIM.

Dataset PIPA[27] CIM (ours)

Images 37,107 72,875

Indentities 2,356 1,218

Instances 63,188 150,522

Instances

(except ”others”)
51,751 77,598

Avg/identity 26.82 63.70

Table 1: Statistics of CIM compared with PIPA.

shot, and retain all those that contain persons. This proce-

dure results in a dataset with 72, 875 photos.

We manually annotated all person instances in these pho-

tos with bounding boxes for the body locations. We also

annotated the identities of those instances that correspond

to the 1218 main actors1. In this way, we obtained 77, 598
instances with known identities, while other instances are

labeled as “others”. Figure 5 shows some examples of our

dataset. Table 1 shows the statistics of CIM in comparison

with PIPA [27]. To our best knowledge, CIM is the first

large-scale dataset for person recognition in movies.

5. Experiments

We tested our method on both PIPA [27], a dataset

widely used for person recognition, and CIM, our new

dataset presented above.

5.1. Experiment Setup

Evaluation protocols The PIPA dataset is partitioned into

three disjoint sets: training, validation and test sets. The

test set is further split into two subsets, one as the gallery

set and the other as the query set. To evaluate a method’s

performance, we first use it to predict the identities of the

instances in the query set and compute the prediction ac-

curacy. Then, we switch the gallery and the query set and

compute the accuracy in the same way. The average of both

1The main actors are chosen according to two criteria: 1) ranked top

10 in the cast list of IMDb for the corresponding movie, and 2) occur for

more than 5 times in our sampled frames.
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Split
Existing Methods on PIPA Ours

PIPER [27] Naeil [11] RNN [15] MLC [13] Baseline +RANet +RANet+P +RANet+P+E

original 83.05% 86.78% 84.93% 88.20% 82.79% 87.33% 88.06% 89.73%

album - 78.72% 78.25% 83.02% 75.24% 82.59% 83.21% 85.33%

time - 69.29% 66.43% 77.04% 66.55% 76.52% 77.64% 80.42%

day - 46.61% 43.73% 59.77% 47.09% 65.49% 65.91% 67.16%

Table 2: Comparison of the accuracies of different methods on PIPA, under different splits of the query and gallery sets.

accuracies will be reported as the performance metric.

There are four different ways to split the test set, namely

original, album, time, and day, for evaluating an algorithm

under different application scenarios. In the original setup

of PIPA [27], a query instance may have similar instances

in the gallery. [11] defines the other three splits, which are

more challenging. For example, day split requires that the

query and the gallery instances of the same subject need to

have notable differences in visual appearance. For CIM, we

follow the rule in [27], dividing it into three disjoint subsets

respectively for training, validation, and testing. Also, the

test set is randomly split into a gallery set and a query set.

Implementation Details We use four regions of each in-

stance: face, head, upperbody, and body. PIPA provides the

head locations, while CIM provides the locations of whole

body. Other regions are obtained by simple geometric rules

based on the results from a face detector [26] and Open-

Pose [5]. Note that we only keep those bounding boxes

that lie mostly within the photo. For those regions that are

largely invisible, we simply use a black image to represent

their appearance. We will see that our RANet can learn to

assign such regions with negligible weights in our exper-

iments. We adopt ResNet-50 [9] as our base model and

train the feature extractor with OIM loss [24]. We chose

design parameters empirically on the validation set. The

coefficients α and β in Eq.(3) are set to 0.05 and 0.01. The

number of events K is set to 300 for both PIPA and CIM.

5.2. Results on PIPA

We set up a baseline for comparison, which relies on

a uniformly weighted combination of visual cues from all

regions, where the weights are optimized by grid search.

We tested three configurations of the proposed methods:

(1) +RANet: This config combines region-specific scores

following Eq.(2), using the instance-dependent weights

from the Region Attention Network (see Sec. 3.2). (2)

+RANet+P: In addition to the visual matching score

RANet, it also uses the person-person relations in joint in-

ference. (3) +RANet+P+E: This is the full configuration

of our framework, which takes visual matching, person-

person relations, and person-event relations into account.

Moreover, we also compared with four previous methods:

PIPER [27], Naeil [11], RNN [15], and MLC [13].

Table 2 shows the results under all the four splits,

from which we can see that: (1) RANet, with adaptive

head

face

body

0.0 0.2 0.4 0.6 0.8 1.0

upperbody

Figure 6: Weight distributions of different regions on PIPA.

Figure 7: Example events automatically discovered from PIPA by

joint inference. Images in each row belong to the same “event”.

weights, significantly outperforms the baseline with uni-

form weights. On the most challenging day split, it remark-

ably raises the accuracy from 47.09% to 65.49%. (2) With

our proposed joint inference method, the use of social con-

texts leads to consistent improvement across all splits. (3)

Our method also outperforms all previous works, including

the state-of-the-art MLC [13], by a considerable margin on

all splits. Particularly, the performance gain is especially

remarkable on the most challenging day split (67.16% with

ours vs. 59.77% with MLC).

Analysis on RANet Table 2 clearly shows the effective-

ness of the Region Attention Network (RANet). To learn

more about the RANet, we study the distributions of region-
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Query Face Recognition RANet Fusion Full Model

Figure 8: Example photos and recognition results. For each

photo, the mark at the top left corner indicates whether the cor-

responding method predicts correctly for the highlighted instance.

specific weights on the test set of PIPA, and show them in

Figure 6. This study reveals some interesting characteris-

tics of RANet: (1) For each of the following region types,

face, body, and upper body, there exist a fraction of in-

stances with very low weights because the particular regions

of them are out of scope. (2) The average weight of faces is

the highest among all region types. This is not surprising,

as faces are often the strongest indicators of identities when

they are visible. (3) A small portion of instances have very

high weights assigned to the head regions, because for such

instances all other parts are largely invisible.

Analysis on Event Events are automatically discovered

during joint inference and they play an important role in

person recognition. Figure 7 shows some example events

with their associated photos. We can see that our method

can discover events in a reasonable way, and they can pro-

vide strong prior in a considerable portion of cases. More

examples will be provided in the supplemental materials.

Case Study Figure 8 shows some photos and associated

recognition results. We can see that 1) For an instance with

frontal and clear face (1st row), all methods predict cor-

rectly. 2) When the face is not clearly visible (2nd row), our

method with RANet can still correctly recognize the per-

son with other visual cues, e.g. the head or upper body. 3)

For the most challenging case where all visual cues fail (3rd

row), our full model can still make a correct prediction by

exploiting the social context.

5.3. Results on CIM

Table 3 shows the results on CIM, which again demon-

strates the effectiveness of our approach. Only with RANet,

it already outperforms the baseline (with uniform weight-

ing) by over 4%. The whole framework, with social con-

Baseline +RANet +RANet+P +RANet+P+E

68.12% 71.93% 72.56% 74.40%

Table 3: Performance on CIM

text taken into account, further improves the accuracy (6.3%
higher than the baseline). Recognition results on example

photos will be provided in the supplemental materials. It is

also worth noting that the accuracies we obtained on CIM

are generally lower than those on PIPA, implying that this

is a more challenging dataset which can help to drive the

progress on this task.

5.4. Computational Cost Analysis

Our method obtains the improvement on recognition ac-

curacy with substantially lower computing cost compared

to some previous works. Note that PIPER [27] uses more

than 100 deep CNNs and Naeil [11] uses 17 deep CNNs

for feature extraction. While our model uses only 4 CNNs

and a fusion module whose computing cost is negligible.

Although MLC [13] uses just 3 deep CNNs for feature ex-

traction, it additionally requires to train thousands of group-

specific SVMs, which is also a costly procedure.

Compared with the CNN-based feature extraction com-

ponents, the cost of the joint estimation and inference proce-

dure is insignificant. Particularly, it takes about 30 minutes

to perform inference over the whole test set of PIPA, with

one single 2.2 GHz CPU, while the feature extractors take

over 40 hours to detect regions and compute CNN features

for all test photos, with a Titan X GPU.

6. Conclusions

We presented a new framework for person recognition,

which integrates a Region Attention Network to adaptively

combine visual cues and a model that unifies person iden-

tification and context learning in joint inference. We con-

ducted experiments on both PIPA and a new dataset CIM

constructed from movies. On PIPA, our method consis-

tently outperformed previous state-of-the-art methods by a

notable margin, under all splits. On CIM, the new compo-

nents developed in this work also demonstrated strong ef-

fectiveness in raising the recognition accuracy. Both quan-

titative and qualitative studies showed that adaptive combi-

nation of visual cues is important in a generic context and

that the social context often conveys useful information es-

pecially when the visual appearance causes ambiguities.
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