
Mesoscopic Facial Geometry Inference Using Deep Neural Networks

Loc Huynh1 Weikai Chen1 Shunsuke Saito1,2,3 Jun Xing1 Koki Nagano3 Andrew Jones1

Paul Debevec1 Hao Li1,2,3

1USC Institute for Creative Technologies 2University of Southern California 3Pinscreen

Figure 1: Given a flat-lit facial input textures and a base mesh, our system can synthesize high-resolution facial geometry.

Abstract

We present a learning-based approach for synthesizing
facial geometry at medium and fine scales from diffusely-lit
facial texture maps. When applied to an image sequence,
the synthesized detail is temporally coherent. Unlike cur-
rent state-of-the-art methods [17, 5], which assume ”dark
is deep”, our model is trained with measured facial de-
tail collected using polarized gradient illumination in a
Light Stage [20]. This enables us to produce plausible
facial detail across the entire face, including where previ-
ous approaches may incorrectly interpret dark features as
concavities such as at moles, hair stubble, and occluded
pores. Instead of directly inferring 3D geometry, we pro-
pose to encode fine details in high-resolution displacement
maps which are learned through a hybrid network adopt-
ing the state-of-the-art image-to-image translation network
[29] and super resolution network [43]. To effectively cap-
ture geometric detail at both mid- and high frequencies, we
factorize the learning into two separate sub-networks, en-
abling the full range of facial detail to be modeled. Re-
sults from our learning-based approach compare favorably
with a high-quality active facial scanhening technique, and
require only a single passive lighting condition without a
complex scanning setup.

1. Introduction

There is a growing demand for realistic, animated human

avatars for interactive digital communication in augmented

and virtual reality, but most real-time computer generated

humans continue to be simplistic and stylized or require a

great deal of effort to construct. An important part of cre-

ating a realistic, relatable human avatar is skin detail, from

the dynamic wrinkles that form around the eyes, mouth, and

forehead that help express emotion, to the fine-scale texture

of fine creases and pores that make the skin surface look

like that of a real human. Constructing such details on a

digital character can take weeks of effort by digital artists,

and often employs specialized and expensive 3D scanning

equipment to measure skin details from real people. And

the problem is made much more complicated by the fact

that such skin details are dynamic: wrinkles form and dis-

appear, skin pores stretch and shear, and every change pro-

vides a cue to the avatar’s expression and their realism.

Scanning the overall shape of a face to an accuracy of

a millimeter or two has been possible since the 1980’s us-

ing commercial laser scanners such as a Cyberware system.

In recent years, advances in multiview stereo algorithms

such as [14, 15] have enabled facial scanning using passive

multiview stereo which can be done with an ordinary setup

of consumer digtital cameras. However, recording submil-

limeter detail at the level of skin pores and fine creases nec-

essary for photorealism remains a challenge. Some of to-

day’s best results are obtained in a professional studio cap-

ture setup with specialized lighting patterns, such as the

polarized gradient photometric stereo process of [34, 20].

Other techniques [25, 22, 24] use high-resolution measure-

ments or statistics of a few skin patches and perform texture

synthesis over the rest of the face to imagine what the high-
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resolution surface detail might be like. Other work uses

a heuristic ”dark is deep” shape-from-shading approach

[5, 17] to infer geometric surface detail from diffuse tex-

ture maps, but can confuse surface albedo variation with

geometric structure.

In this work, we endeavor to efficiently reconstruct dy-

namic medium- and fine-scale geometric facial detail for

static facial scans and dynamic facial performances across

a wide range of expressions, ages, gender, and skin types

without requiring specialized capture hardware. To do this,

we propose the first deep learning based approach to infer

temporally coherent high-fidelity facial geometry down to

the level of skin pore detail directly from a sequence of

diffuse texture maps. To learn this mapping, we leverage

a database of facial scans recorded with a state-of-the-art

active illumination facial scanning system which includes

pairs of diffusely-lit facial texture maps and high-resolution

skin displacement maps. We then train a convolutional

neural network to infer high-resolution displacement maps

from the diffuse texture maps, the latter of which can be

recorded much more easily with a passive multiview stereo

setup. Our hybrid network fuses two components: 1) an

image-to-image translation net that translates input texture

map to displacement map, and 2) a super-resolution net that

generates the high-resolution output given the outcome of

preceding network. Our preliminary experiments demon-

strate that medium scale and pore-level geometries are en-

coded in different dynamic ranges. Therefore, we introduce

two sub-networks in the image translation net to decouple

the learning of middle and high-frequency details. Experi-

mental results indicate our architecture is capable of infer-

ring a full range of detailed geometries with quality that is

on par with state-of-the-art facial scanning data.

Compared with conventional methods, our proposed ap-

proach provides much faster reconstruction of fine-scale fa-

cial geometry thanks to the deep learning framework. In

addition, our model is free from certain artifacts which can

be introduced using a ”dark is deep” prior to infer gemoetric

facial detail. Since our model is trained with high-resolution

surface measurements from the active illumination scanning

system, the network learns the relationship between facial

texture maps and geometric detail which is not a simple

function of local surface color variation.

The contributions of this work include:

• We present the first deep learning framework that re-

constructs high resolution dynamic displacement com-

parable to active illumination scanning systems en-

tirely from a passive multiview imagery.

• We show how it is possible to learn such inference

from sparse but high-resolution geometry data using a

two-level image translation network with a conditional

GAN combined with a patch-based super resolution

network.

• We provide robust reconstruction of both medium and

high frequency structures including moles and stubble

hair, correctly distinguishing surface pigmentation and

the actual surface bumps, outperforming other meth-

ods based on high-frequency hallucination or simula-

tion methods.

2. Related Work

Facial Geometry and Appearance Capture. The foun-

dational work of Blanz and Vetter [8] showed that a mor-

phable principal components model built from 3D facial

scans can be used to reconstruct a wide variety of facial

shapes and overall skin coloration. However, the scans used

in their work did not include submillimeter-resolution skin

surface geometry, and the nonlinear nature of skin texture

deformation would be difficult to embody using such a lin-

ear model. For the skin detail synthesis, Saito et al. [40]

presented a photorealistic texture inference technique us-

ing a deep neural network-based feature correlation analy-

sis. The learned skin texture details can be used to enhance

the fidelity of personalized avatars [26]. While the method

learns to synthesize mesoscopic facial albedo details, the

same approach cannot be trivially extended to the geome-

try inference since the feature correlation analysis requires

a number of geometry scans.

Mesoscopic Facial Detail Capture. There are many

techniques for deriving 3D models of faces, and some are

able to measure high-resolution skin detail to a tenth of a

millimeter, the level of resolution we address in this work.

Some of the best results are derived by scanning facial casts

from a molding process [27, 1], but the process is time con-

suming and impossible to apply to a dynamic facial per-

formance. Multi-view stereo provides the basic geome-

try estimation technique for many facial scanning systems

[14, 15, 5, 9, 6, 47, 16, 17]. However, stereo alone typically

recovers limited surface detail due to the semi-translucent

nature of the skin.

Inferring local surface detail from shape from shading

is a well established technique for unconstrained geome-

try capture [32, 21, 4], and has been employed in digitizing

human faces [31, 18, 42, 44, 33, 28, 19]. However, the fi-

delity of the inferred detail is limited due to the input image

captured under unconstrained setting. Beeler et al. [5, 6]

applied shape from shading to emboss high-frequency skin

shading as hallucinated mesoscopic geometric details for

skin pores and creases. While the result is visually plausi-

ble, some convexities on the surface can be misclassified as

geometric concavities, producing incorrect surface details.

More recent work [17] extended this scheme to employ rel-

ative shading change (“darker is deeper” heuristics) to miti-

gate the ambiguity between the dark skin pigmentation and

the actual geometric details.
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Figure 2: System pipeline. From the multi-view captured images, we calculate the texture map and base mesh. The texture (1K resolution) is first feed

into our trained Texture2Disp network to produce a 1K-high and 1K-middle frequency displacement maps, followed by up-sampling them to 4K resolution

using our trained SuperRes Network and bicubic interpolation, respectively. The combined 4K displacement map can be embossed to the base mesh to

produce the final high detailed mesh.

Active photometric stereo based from specular reflec-

tions has been used to measuring detailed surface geometry

in devices such as a light stage [12, 34, 24, 20] which can

be used to create photoreal digital humans [2, 48, 45]. A

variant of the system has been introduced by Weyrich et al.

[49] for statistical photorealistic reflectance capture. Ghosh

et al. [20] employed multi-view polarized spherical gradient

illumination to estimate sub-milimeter accurate mesoscopic

displacements. Static [24] and dynamic [36] microstruc-

tures can be recorded using a similar photometric system or

a contact based method [25, 30]. Photometric stereo tech-

niques have been extended to video performance capture

[35, 50, 23]. However, these require high-speed imaging

equipment and synchronized active illumination to record

the data.

Geometric Detail Inference. Previous work has success-

fully employed data-driven approaches for inferring facial

geometric details. Skin detail can be synthesized using data-

driven texture synthesis [25] or statistical skin detail models

[22]. Dynamic facial details can be inferred from sparse

deformation using polynomial texture maps[35] or radial

basis functions [7]. However, these methods can require

significant effort to apply to a new person. More recently

Cao et al [10] proposed to locally regress medium-scale de-

tails (e.g. expression wrinkles) from high-resolution cap-

ture data. While generalizing to new test data after training,

their approach cannot capture pore-level details.

A neural network-based approach has been introduced

for predicting image-domain pixel-wise transformation

with a conditional GAN [29] and inference of surface nor-

mals for general objects [3, 11]. For facial geometry infer-

ence, Trigeorgis et al. [46] employed fully convolutional

networks to infer a coarse face geometry through surface

normal estimation. More recently, Richardson et al. [38]

and Sela et al. [41] presented a learning-based approach

to reconstruct detailed facial geometry from a single im-

age. However, none of the previous works has addressed

the inference of mesoscopic facial geometry, perhaps due

the limited availability of high fidelity geometric data.

3. Overview

Figure 2 illustrates the pipeline of our system. In the

pre-processing, we first reconstruct a base face mesh and a

1K-resolution UV texture map from input multi-view im-

ages of a variety of subjects and expressions by fitting a

template model with consistent topology using the state of

the art dynamic facial reconstruction [17]. The texture map

is captured under an uniformly lit environment to mimic

the natural lighting. Our learning framework takes a texture

map as an input and generates a high-quality 4K-resolution

displacement map that encodes a full range of geometric de-

tails. In particular, it consists of two major components: a

two-level image-to-image translation network that synthe-

sizes 1K resolution medium and high frequency displace-

ment maps from the input facial textures, and a patch-based

super resolution network that enhances the high frequency

displacement map to 4K resolution, introducing sub-pore

level details. The medium frequency displacement map is

upsampled using a naive bicubic upsampling, which turns

out to be sufficient in our experiments. The final dis-

placement is obtained by combining individually inferred

medium and high frequency displacement maps. Finally

the inferred displacement is applied on the given base mesh

to get the final geometry with fine-scale details.

4. Geometry Detail Separation

A key to the success of our method is carefully pro-

cessed geometric data and its representation. While recent

research has directly trained neural networks with 3D ver-

tex positions [37], these approaches can be memory inten-

sive. While unstructured representation is suitable for gen-
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Figure 3: The histogram of the medium and high frequency
pixel count shows that the majority of the high frequency
details lie within a very narrow band of displacement values
compared to the medium frequency values spreading over a
broader dynamic range.

eral objects, it can be suboptimal for human faces, which

assumes many common parts. In this work, we encode

our facial mesoscopic geometry details in a high resolution

displacement map parameterized in a common 2D texture

space. The main advantages to use such a representation

is two-fold. First, a displacement map is a commonly used

[35, 24, 36] and lightweight representation than full 3D co-

ordinates, requiring only a single channel to encode surface

details. In particular, human faces deform to develop sim-

ilar skin texture patterns across different individuals. Gra-

ham et al. [24] showed that cross-subject transfer of high

frequency geometry details is possible among similar ages

and genders. With the displacement data parameterized in

a common UV space encoding the same facial regions of

different individuals, this helps the network to encapsulate

the geometric characteristics of each facial region from a

limited number of facial scans. While our method assumes

fixed topology, existing methods can also be used to convert

between different UV coordinate systems. Secondly, from

a learning point of view, 2D geometric representation can

take advantage of recent advances in convolutional neural

networks that could serve for our purpose.

Our displacement data encodes high resolution geome-

try details that are beyond the resolution of a few tens of

thousands vertices in our base mesh. Thus it contains rel-

atively large tens of milimeter forehead wrinkles to sub-

milimeter fine details. Figure 3 shows the histogram of the

displacement pixel count shown in a log scale with respect

to the value of the displacement. As shown here, there is

a spike in the histogram within a very small displacement

value, implying that there are distinctive geometry features

at different scales. Special care must be taken to prop-

erly learn such multi-scale nature of facial geometry details.

Our experiment shows that, if we naively train our texture-

to-displacement network using the unfiltered displacement,

(a) no separation, 1K (b) separation, 1K (c) separation, 4K

Figure 4: By separating the displacement map into high and
middle frequencies, the network could learn both the dom-
inant structure and subtle details (a and b), and the details
could be further enhanced via super-resolution (b and c).

the medium-scale geometry dominates the dynamic range

of pixel value and leaves the high frequency details triv-

ial, making the network unable to learn high frequency ge-

ometric details. Inspired by previous work [35], we factor

the displacement into the medium and high frequency com-

ponents, and learn them individually via two subnetworks.

In particular, during training, we decouple the ground truth

displacement map D into two component maps – DL and

DH , which capture the medium and high frequency geom-

etry respectively. The resulting data is fed into the cor-

responding subnetworks of the Image-to-Image translation

network.

We show in Figure 4 that the geometry detail separa-

tion is the key to achieve faithful reconstruction that cap-

ture multi-scale facial details (Figure 4b), while a naive ap-

proach without decoupling tends to lose all high frequency

details, introducing artifacts (Figure 4a).

5. Texture-to-Displacement Network
Human skin texture provides a great deal of percep-

tual depth information through skin shading, and previous

work has leveraged the apparent surface shading to reveal

the underlying surface geometry from a variant of models

and heuristics. The inference of the truthful surface details

is non-trivial due to the complex light transport in human

skin and non-linear nature of skin deformation. To mitigate

some of these challenges, we employ uniformly lit texture

as an input to our system. Since we employ the input texture

and the displacement maps registered at a common pixel

coordinate, our inference problem can be posed as image-

space translation problem. In this paper, we propose to di-

rectly learn this image-to-image translation by leveraging

the pairs of input texture maps and corresponding geometry
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encoded in the displacement map. To our knowledge, we

are the first to solve pore-level geometry inference from an

input texture as image-to-image translation problem.

We adopt the state-of-the-art image-to-image translation

network using a conditional GAN and U-net architecture

with skip connections [29]. The advantage of the proposed

network is three-fold. First, the adversarial training facili-

tates the learning of the input modality manifold and pro-

duces sharp results, which is essential for high frequency

geometry inference. On the other hand, naive pixel-wise re-

construction loss in L2 or L1 norm often generates a blurry

output, as demonstrated in [29]. Furthermore, a patch-

based discriminator, which makes real/fake decision in lo-

cal patches using a fully convolutional network, captures

local structures in each receptive field. As the discrimina-

tor in each patch shares the weights, the network can ef-

fectively learn variations of skin details even if the large

amount of data is not available. Last but not least, the U-

net architecture with skip connections utilizes local details

and global features to make inference [39]. Combining a lo-

cal feature analysis and global reasoning greatly improves

the faithful reconstruction especially when underlying skin

albedo ambiguates the translation (e.g. skin pigmentation,

moles). Our texture-to-displacement network consists of

two branches, each fulfilled by the image-to-image trans-

lation network. The two subnetworks infer the medium and

high frequency displacement maps from the same input tex-

ture, respectively.

6. Super-Resolution Network
The effective texture resolution is determined by the ra-

tio of the target face size and the final target resolution (in

our work submilimeter details). In our setting, we find that

no smaller than a 4K resolution displacement is detailed

enough to resolve the pore-level geometry details we want

to produce photorealistic rendering. However, in practice

applying an image-to-image translation network to a texture

more than 1K resolution pixel is computationally demand-

ing and can be beyond the capacity of the modern GPU

hardware. To overcome the limitation in the resolution, we

propose to further upsample the resulting displacement map

using a patch-based super-resolution network. We build

our super-resolution network based upon the state-of-the-

art super resolution network using sub-pixel convolution

[43]. During the training, we downsample the 4K ground-

truth displacement maps {Dhr} to obtain its corresponding

1K-resolution training set {Dlr}. We then randomly pick

pairs of a 64 × 64 patch from Dlr and their corresponding

256 × 256 patch from Dhr, which are fed into the network

for training. At test time, we first divide the input image

into a regular grid, with each of the block forming a 64×64

patch image. We then upsample each patch to 256 × 256

resolution using the super-resolution network. Finally, to

ensure consistency between patch boundaries, we stitch the

resulting upsampled patches using image quilting [13] to

produce a 4K displacement.

7. Implementation Details
It is important that the training data covers a wide range

of ethnic, age, genders, and skin tones. We collected 328

corresponded Light Stage facial scans [20] as ground truth

photometric stereo to train the network. This includes 19

unique subjects, between the ages of 11 and 56, with mul-

tiple expressions per subject to capture wrinkle and pore

dynamics. 6 additional subjects were used to test system

performance. For each collected displacement, we apply

a Gaussian filter to remove all high frequency data, ob-

taining the medium frequency displacement map DL. The

high-frequency displacement map can be calculated by sub-

traction DH = D − DL. Given the histogram of the dis-

placement maps, we iteratively optimize the filter size of

the Gaussian filter so that DH covers only high frequency

data. We find that the filter size of 29 at 4K resolution gives

the best results most of examples. We apply a ×64 scale

to the high frequency values to distribute the values well

over the limited pixel intensity to facilitate the convergence

during learning. For the medium frequency data, which usu-

ally exhibits higher displacement range, we apply a sigmoid

function so that all the values fit well into the pixel range

without clipping. This step takes less than a second for a

1K displacement map.

We train our network with pairs of texture and displace-

ment maps at 1K resolution. The training time on a single

NVidia Titan X GPU with 12GB memory is around 8 hours.

For the super resolution network, we feed in displacement

maps at 4k resolution to train. It takes less than 2 hours to

train with the same GPU. At test time, it takes one second

to get both 1K resolution displacement maps from a 1K in-

put texture map. Then these maps are up-sampled using our

super resolution network. We get the final 4K displacement

map after 5 seconds.

8. Experimental Results
We evaluate the effectiveness of our approach on differ-

ent input textures with a variety of subjects and expressions.

In Figure 5, we show the synthesized geometries embossed

by (c) only medium-scale details, (d) 1K and (e) 4K com-

bined multi-scale (both medium and high frequency) dis-

placement maps, with the the input textures and base mesh

shown in the first and second column, respectively. As seen

from the results, our method can faithfully capture both

the medium and fine scale geometries. The final geometry

synthesized using the 4K displacement map exhibits meso-

scale geometry on par with active facial scanning. None of

these subjects are used in training the network, and show the

the robustness of our method to a variety of texture quali-

ties, expressions, gender, and ages.

We validate the effectiveness of geometry detail separa-

tion by comparing with an alternative solution which does
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(a) Input texture (b) Base mesh (c) Med-frequency (d) 1K multi-scale (e) 4K multi-scale

Figure 5: Synthesis results given different input textures with variations in subject identity and expression. From (a) to (e), we
show the input texture, base mesh, the output geometry with the medium, 1K multi-scale (both medium and high frequency)
and 4K multi-scale frequency displacement map. The closeup is shown under each result.
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(a) Beeler et al.[6] (b) Ground truth [20] (c) our method

Figure 6: Inferred detail comparison.

not decouple middle and high frequencies. As illustrated

in Figure 4a, the displacement map learned from the al-

ternative method fails to capture almost all the high fre-

quency details while introducing artifacts in middle fre-

quencies, which is manifested in the embossed geometry.

Our method, on the other hand, faithfully replicates both

medium and fine scale details in the resulting displacement

map (Figure 4b).

We also assess the effectiveness of the proposed super-

resolution network in our framework. Figure 4c and Fig-

ure 4b show the results with and without the super-solution

network, respectively. The reconstructed result using super-

solution network outperforms its opponent significantly in

faithfully replicating mesocopic facial structures.

Comparisons. We compare the reconstruction quality of

our method with Beeler et al. [5] and the ground truth by

Ghosh et al. [20]. As demonstrated in Figure 6, our re-

construction (right) generally agrees with the ground truth

(middle) in capturing the roughness variation between the

tip of the nose and the cheek region, and the mole by the

upper lip. The “dark is deep” heuristic [5] (left), on the

other hand, fails to capture these geometric differences. In

Figure 7, we provide the quantitative evaluation comparing

with Beeler et al. [5]. We measure the reconstruction error

using the L1 metric between ours and the ground truth dis-

placement map provided by Ghosh et al. [20]. The resulting

error map is visualized in false color with red and blue indi-

cating the absolute max difference 1 mm to 0 mm, respec-

tively. As manifested in Figure 7, Beeler et al. [5] is prone

to introduce larger reconstruction error particularly for re-

gions with stubble hair and eyebrows. Our model, trained

with photometric scans, achieves superior accuracy and ro-

bust inference without being confused too much by the local

skin albedo variations.

Our system can also generate dynamic displacement

(a) Light Stage (b) our method (c) dark is deep

Figure 7: High frequency details of our method (center)
comparison with ground truth Light Stage data [20] (left)
and “dark is deep” heuristic.[5] (right)

maps for video performances. In the supplemental video,

we demonstrate that our results are stable across frames and

accurately represent changing wrinkles and pores. We also

compare our results against a dynamic sequence with the

state of the art dynamic multi-view face capture of Fyffe et

al. 2017 [17]. Fyffe et al relies on multiview stereo to re-

construct medium frequencies and on inter-frame changes

in shading to infer high-freqency detail. Our method pro-

duces more accurate fine-scale details as it is trained on

photometric stereo and can be computed on each frame in-

dependently.

We also evaluate our technique against similar neural

network synthesis methods. Sela et al [41] use an image-

to-image translation network but to infer a facial depth map

and dense correspondences from a single image. This is

followed by non-rigid registration and shape from shading

similar to Beeler et al. [5]. Their generated image lacks

fine-scale details as these are not encoded in their network

(see Figure 8). Bansal et al. [3] offers the state-of-the-art

performance on estimating surface normal using convolu-
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(a) Sela et al. [41] (b) our method

Figure 8: Compared with Sela et al. [41], our method could
produce more detailed normal map.

tional neural network. We also provide the comparison with

Bansal et al. [3] in terms of normal prediction accuracy in

the supplementary material.

User Study. We assessed the realism of our inferred ge-

ometry by a user study. Users are asked to sort the ren-

derings of 3D face without skin textures from unrealistic

to realistic. We used 6 subjects for rendering using (1)

our synthesized geometry, (2) the Light Stage [20], and (3)

the ”dark is deep” synthesis [5] and randomly sorted them,

aligning in the same head orientation to remove bias. We

collected 58 answers from 25 subjects. 20.7% of users think

our reconstructions are the most realistic, while 67.2% and

12.1% of people find the Light Stage and [5] more realistic.

Although the Light Stage still shows superior performance

in terms of realism, our method is favorably compared with

the geometry synthesis method [5].

9. Discussion and Future Work
Our primary observation is that a high-resolution dif-

fuse texture map contains enough implicit information to

accurately infer useful geometric detail. Secondly, neural

network based synthesis trained on ground truth photomet-

ric stereo data outperforms previous shape from shading

heuristics. Our system can successfully differentiate be-

tween skin pores, stubble, wrinkles, and moles based on

their location on the face, and how their appearance changes

across different subjects and expressions. Our method gen-

erates stable high-resolution displacement maps in only a

few seconds, with realistic dynamics suitable for both static

scans and video performances.

The limitation of our method is that the training data

need to be carefully corresponded. However, our learning

framework does not strictly require dense registration since

there is no meaningful pore-to-pore correspondence across

different identities. We ensure in the training that corre-

spondence is roughly maintained in UV space across differ-

ent subjects so that the generated displacement maintains

the correct skin detail distributions. Though our training

data was captured using flat-lit environment, our method

could be integrated with previous albedo synthesis tech-

niques which compensate for varying illumination and fill

in occluded regions [40] in order to infer facial details of un-

constrained images in the wild. We show additional results

Figure 9: Results with unconstrained images. Left: input
image, texture. Middle: displacement (zoom-in), rendering
(zoom-in). Right: rendering

in Figure 9 to support these claims using a novel topology

obtained from a conventional 3D morphable model. While

our training dataset contains several examples of commonly

applied cosmetics, more pronounced theatrical makeup may

introduce displacement artifacts (see the supplementary ma-

terial for a failure example). We believe our results will

continue to improve with additional training data featuring

unusual moles, blemishes, and scars. We would also like to

incorporate other channels of input. For example, wrinkles

are correlated with low-frequency geometry stress [35, 7]

and local specular highlights can provide additional detail

information.
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