
Local and Global Optimization Techniques in Graph-based Clustering

Daiki Ikami Toshihiko Yamasaki Kiyoharu Aizawa

The University of Tokyo, Japan

{ikami, yamasaki, aizawa}@hal.t.u-tokyo.ac.jp

Abstract

The goal of graph-based clustering is to divide a dataset

into disjoint subsets with members similar to each other

from an affinity (similarity) matrix between data. The most

popular method of solving graph-based clustering is spec-

tral clustering. However, spectral clustering has draw-

backs. Spectral clustering can only be applied to macro-

average-based cost functions, which tend to generate unde-

sirable small clusters. This study first introduces a novel

cost function based on micro-average. We propose a local

optimization method, which is widely applicable to graph-

based clustering cost functions. We also propose an initial-

guess-free algorithm to avoid its initialization dependency.

Moreover, we present two global optimization techniques.

The experimental results exhibit significant clustering per-

formances from our proposed methods, including 100%

clustering accuracy in the COIL-20 dataset.

1. Introduction

Clustering is an important technique with many applica-

tions in computer vision and machine learning, such as im-

age segmentation [19] and motion segmentation [6]. This

study focuses on graph-based clustering, which is the opti-

mization problem maximizing the following objective func-

tion:

E(Z) =

k
∑

j=1

z
⊤
j Azj

fj(Z)
, (1)

where A ∈ R
n×n is the affinity matrix of n data points, and

Z = [z1, · · · , zk] ∈ Z ,Z = {Z ∈ {0, 1}n×k|Z1 = 1} is

an assignment matrix, in which k is the number of clusters

and 1 is the all-one vector. f(Z) denotes the functions de-

fined by each cost function described in Section 1.1. In con-

trast to representative-based clustering (e.g., k-means clus-

tering and Gaussian mixture model clustering), graph-based

clustering enables clustering on associations between data,

such as by the k-nearest neighbor (k-NN) graph for A, and

shows a good clustering performance.

Clustering performances are mainly determined by three

primary factors in graph-based clustering: construction of

the affinity matrix A, the objective function, and optimiza-

tion method. We briefly review the related works regarding

these three subjects.

Notation: In this study, bold uppercase letters (e.g. X),
bold lowercase letters (e.g. x), and plain lowercase letters

(e.g. x) denote matrices, column vectors, and scalars, re-

spectively. 0, 1, and In are the all-zero vector, all-one vec-

tor, and n × n identity matrix, respectively. X[S, T] is a

submatrix in X with row subset S and column subset T .

1.1. Related Work

Affinity matrix: The choice of an affinity matrix is im-

portant in graph-based clustering. The most simple ap-

proaches are distance-based, such as k-NN graph or the

Gaussian kernel of Euclidean distances [24, 26]. Other

methods are learning an affinity matrix from the data,

such as based on sparse [6, 25] or low-rank [13, 23] self-

representation. In these methods, an affinity matrix is rep-

resented by a coefficient matrix of linear combinations of

data. Some recent studies integrated the two problems of

learning affinity and clustering into one optimization prob-

lem [17, 12].

Objective function: If fj(Z) is a constant and aij ≥ 0
for all i, j, we can easily find that the global optimal so-

lution is obtained by assigning all data points to a single

cluster. fj(Z) is designed to avoid this trivial solution and

encourage the cluster size not to be too large. For exam-

ple, fj(Z) = 1
⊤
zj is used in a macro-average association,

while fj(Z) = 1
⊤
Azj is used in a normalized cut [19].

Please refer to [20, 5] for more details. These objective

functions are based on macro average (ı.e., lth cluster’s en-

ergy z
⊤
j Azj is divided by the lth cluster size). Optimizing

such macro-average-based cost functions tends to yield un-

desirable small clusters.

Accordingly, Chen et al. proposed a objective function

to balance the cluster sizes [3], which in this study we call

balanced association (BA), to overcome undesirable small

clusters problem. The objective function of BA is
k
∑

j=1

z
⊤
j Azj + λ‖Z⊤

Z‖2F =

k
∑

j=1

z
⊤
j

(

A− λ11⊤
)

zj . (2)

13456

Table 1: Cost functions and their optimization methods.

DLO and GIA are our proposed methods.

Name E(Z) Opt. method

macro-AA
∑k

j=1

z
⊤

j Azj

1⊤zj
BO, SC, DLO

NC
∑k

j=1

z
⊤

j Azj

1⊤Azj
BO, SC, DLO

BA
∑k

j=1 z
⊤
j

(

A− λ11⊤
)

zj ADMM, DLO

micro-AA

(proposed)
1∑

k
j=1

(z⊤

j
1)p

∑k

j=1 z
⊤
j Azj DLO, GIA

Parameter λ controls the cluster sizes. The cluster sizes are

more uniform with the larger λ. Note that we can transform

Eq. (2) into Eq. (1) by A
′ = A− λ11⊤ and fj(Z) = 1 for

all l. Chen et al. also proposed a self-tuning method of λ.

Table 1 summarizes the objective functions.

Optimization methods: Eq. (1) is an NP-hard combi-

national optimization problem; thus, global optimization

is difficult. For macro-AA and NC, spectral clustering

(SC) [19, 24] that uses spectral relaxation to solve Eq. (1)

is the most widely used method to solve Eq. (1). For ex-

ample, we can rewrite the problem of the macro-AA cost as

follows:

E(Z)=tr(Y⊤
AY), where Y=

[

z1

‖z1‖2
,···,

zk

‖zk‖2

]

. (3)

We consider a relaxed constraint Z ∈ Z ′,Z ′ = {Z ∈
R

n×k|Z⊤
Z = Ik} instead of the constraint Z ∈ Z . We

can then solve Eq. (3) on Z by k large eigenvectors of A.

k-means clustering is performed on row-vectors of relaxed

Z to satisfy Z ∈ Z . SC is widely used because of its

easiness and effectiveness. However, SC has some draw-

backs. First, SC does an approximation, which causes per-

formance degradation. Second, SC can only be applied to

macro-average-based cost functions. Third, SC usually has

a computational complexity of O(n3) because of eigen de-

composition.

The other method is the bound optimization (BO)

method [4, 5, 20], which is also known as the kernel k-

means algorithm. BO repeats the construction of an upper

bound function and minimization of the upper bound func-

tion:

Z
(t+1) = arg max

Z

Et(Z)

Et(Z) =

k
∑

j=1

z
⊤
j

(

z
(t)
j

)⊤

Kz
(t)
j

(

w⊤z
(t)
j

)2 w −
2Kz

(t)
j

w⊤z
(t)
j

, (4)

where K = A + δIn,w = 1 in macro-AA and K =
A + δ diag(S1),w = A1 in NC. To satisfy that Eq. (4)

is strictly a bound function, sufficiently large δ is required

such that K is a positive semi-definite matrix. However, a

solution often does not move in a strict bound function, as

described in Section 5. Dhillon et al. proposed a two-step

process for clustering: first, perform SC for an initial solu-

tion, then apply BO [4].

For BA, Chen et al. proposed the alternating direction

method of multipliers (ADMM) to solve Eq. (2) [3]. Eq. (2)

can be transformed into the following equivalent problem:

min
Z∈Z,Y=Z

tr(Z⊤
ÂY) (5)

where Â = λ11⊤ −A. The augmented Lagrangian func-

tion of Eq. (2) is presented as follows:

L(Z,Y,L) = tr(Z⊤
ÂY)+〈L,Z−Y〉+

µ

2
‖Z−Y‖2F (6)

where L is the Lagrange multipliers, and 〈·, ·〉 is the sum of

the element product. The optimization is performed by an

alternating update of Z,Y, and L with increasing µ.

1.2. Contributions

The existing optimization methods are only applicable to

limited cost functions and do not achieve global optimiza-

tion. We propose herein a local optimization method, called

the direct local optimization (DLO), for a general graph-

clustering cost function Eq. (1) without approximation. We

also propose techniques to achieve global optimization and

summarize our contributions as follows:

1. We introduce a novel cost function, called the micro

average association (micro-AA). In contrast to macro-

average-based costs, micro-AA can prevent generating

undesirable small clusters.

2. We propose DLO, which is a local optimization

method for Eq. (1) without approximation. DLO is

guaranteed to increase the objective value, and can be

applied to wide graph-based clustering cost functions

as in Table 1. DLO requires a good initial solution to

achieve good clustering. We also propose an initial-

guess-free algorithm to solve this problem.

3. Our proposed methods may be trapped into a bad lo-

cal optimum. To overcome this problem, We introduce

two global optimization techniques for graph cluster-

ing.

4. We evaluate the performances with different objective

functions, initializations, and local optimization meth-

ods with various datasets. Our experiments demon-

strate that the proposed optimization method achieves

a significant improvement in most datasets (ı.e., 100%

clustering accuracy in the COIL-20 dataset).

2. Micro-average association

As described in Section 1.1, macro-average-based cost

functions, such as NC, tend to overestimate small clusters

as in Fig. 1(a). In this section, we propose an objective

function based on micro average association:

E(Z) =
1

∑k

j=1

(

z⊤j 1
)p

k
∑

j=1

z
⊤
j Azj , (7)

3457

(a) Optimal clustering based on NC (b) Optimal clustering based on

micro-AA

Fig 1: Different clustering results optimized by NC and

micro-AA. We construct the affinity matrix by k-NN graph

with k = 5. The objective values of Fig. 1(a) and Fig. 1(b)

are 3.000 and 2.996 in NC and 0.1386 and 0.1664 in micro-

AA, respectively.

This is equivalent to Eq. (1) by fk(Z) =
∑K

j=1

(

z
⊤
j 1
)p

for

all k = 1, · · · ,K. Parameter p controls the cluster sizes.
∑k

j=1

(

z
⊤
j 1
)p

is equal to constant value n if p = 1, and we

obtain the clustering result that all data belong to a single

cluster. A large p encourages the cluster sizes to be uniform.

Especially all clusters have the same size at p → ∞. We

call this cost function Eq. (7) the micro average association

(micro-AA) cost.

The main advantage of micro-AA is the avoidance of un-

desirable small clustering results (Fig. 1(b)) as with BA.

Compared with BA, micro-AA experimentally achieves

better clustering performances, as described in Section 5.

However, micro-AA is an NP hard combinational opti-

mization as with other graph-based clustering cost func-

tions. Moreover, the existing techniques to solve graph-

based clustering, such as spectral relaxation, cannot be ap-

plied to micro-AA. In this paper we propose an optimiza-

tion method that can solve general graph-based clustering

problems, including micro-AA.

3. Optimization methods for graph clustering

We first propose the direct local optimization (DLO)

method, which is an iterative optimization method guar-

anteed to increase the objective value Eq. (1). DLO re-

quires a good initial solution to achieve good clustering.

We also propose the greedy incremental algorithm (GIA),

which does not require an initial solution. GIA starts from

all empty clusters and repeats assigning an element to a

cluster.

Without loss of generality, we assume the symmetric

affinity matrix A = A
⊤ because Eq. (1) with a non-

symmetric matrix A is equivalent to that with (A+A
⊤)/2.

We denote a column vector and a row vector of Z by z•,i

and zi,•, respectively. That is to say, Z = [z•,1, · · · , z•,k] =

Algorithm 1 Direct Local optimization

Input: Affinity matrix A ∈ R
n×n, initial solution Z

(1)

Initialize: t = 1
1: Compute F (1)(l, c) for all l and c
2: while not converged do

3: l∗, c∗ = arg max
l,c

F (t)(l, c)

4: Update Z
(t+1) by Eq. (9)

5: Update F (t+1) by Eq. (12)

6: t← t+ 1
7: end while

Output: Z

[z1,•, · · · , zn,•]
⊤.

3.1. Direct local optimization (DLO)

We propose the iterative local optimization method for

Eq. (1), which is guaranteed to increase the objective value

at each iteration. Our algorithm is a kind of coordinate de-

scent method: given a solution Z
(t) at iteration t, we op-

timize a single row vector zl,• on the other fixed zi,• for

{i|1 ≤ i ≤ n, i 6= l}:

z
∗=arg max

z

E(z
(t)
1,•, · · · ,z

(t)
l−1,•,z,z

(t)
l+1,•, · · · ,z

(t)
n,•) (8)

We then update the solution by

z
(t+1)
i,• =

{

z
(t)
i,• (i 6= l)

z
∗ (i = l)

(9)

Eq. (8) can be solved by computing all possible k ob-

jective values. Given the current solution Z
(t), we define

F (t)(l, c) as follows:

F (t)(l, c) = E(Z′), where z′ij =

z
(t)
ij if i 6= l

1 if i = l and j = c

0 otherwise

.

(10)

F (t)(l, c) is the energy of changing lth element to belong

to cluster c. Given l, we can compute F (t)(l, c) for all c.
Therefore, we can solve Eq. (8) as follows:

c∗ = arg max
c

F (t)(l, c), z
∗ = onehot(c∗), (11)

where onehot(c) is a one-hot vector, whose cth element is 1,

and the others are 0. The update rule of Eq. (9) and Eq. (11)

always increases the objective value of Eq. (1) at each iter-

ation.

We summarize the algorithm in Algorithm 1 and de-

scribe how to choose coordinate l and compute F (t)(l, c)
in the followings.

Coordinate selection: Coordinate selection methods are

categorized into three types in coordinate descent meth-

ods [16, 18]. The randomized coordinate descent randomly

chooses l from the set of {1, · · · , n}. The cyclic coordinate

descent chooses l in a cyclic order. Meanwhile, the greedy

coordinate descent selects the best coordinate to improve

3458

the objective function value.

The greedy coordinate descent is generally time consum-

ing because of the overhead computation of selecting the

best coordinate, but it achieves better performances than

the random coordinate descent in problems with a small

overhead computation for choosing the best coordinate. We

adopted the greedy coordinate selection because we can ef-

ficiently choose the best coordinate as described below:

Efficient computation for F (t)(l, c): Although a naive

computation for F (t)(l, c) is time consuming, we can effi-

ciently compute F (t)(l, c) by computation results at itera-

tion t − 1. Let ĉ be the cluster to which the lth element

belongs at iteration t. We can rewrite F (t)(l, c) as follows:

F (t)(l, c) =

k
∑

j=1

(

z
(t)
•,l

)⊤

Az
(t)
•,l

fj(Z
′)

−

2a⊤l z•,ĉ
fĉ(Z

′)
+

2a⊤l z•,c
fc(Z

′)

=

k
∑

j=1

(

G
(t)
l

fj(Z
′)

)

−
2H(t)(l, ĉ)

fĉ(Z
′)

+
2H(t)(l, c)

fc(Z
′)

(12)

where

G
(t)
j =

(

z
(t)
•,j

)⊤

Az
(t)
•,j , H(t)(l, j) = a

⊤
l z

(t)
•,j (13)

The naive computational complexities of G
(t)
k and H

(t)
l,c

are O(n2) and O(n), respectively. However, we can effi-

ciently compute G
(t)
k and H

(t)
l,c by

G
(t+1)
j =

G
(t)
j (j 6=ĉ and j 6=c)

G
(t)
j −2H

(t)
l,ĉ (j=ĉ)

G
(t)
j +2H

(t)
l,c (j=c)

, (14)

H(t+1)(l, j)=

H(t)(l, j) (j 6=ĉ and j 6=c)

H(t)(l, j)−al,l∗ (j=ĉ)

H(t)(l, j)+al,l∗ (j=c)

. (15)

By these update rules, both computational complexities of

G
(t)
k and H

(t)
l,c are O(1). We can also compute fk(Z

′) in

O(1) for all the objective functions in Table 1. Therefore,

the computational cost of F (t)(l, c) for all l, c is O(kn2) at

the first iteration and O(kn) at the other iterations.

Relation to existing algorithms: Our algorithm is sim-

ilar to Hartigan’s algorithm [10, 21] in k-means clustering.

Especially, the objective function is equivalent to that of k-

means clustering if we use the negative squared Euclidean

distance for A and fk(Z) = 1
⊤
zk in Eq. (1), and in this

case DLO with the random coordinate selection is com-

pletely equivalent to Hartigan’s algorithm.

The other local optimization method used in graph clus-

tering is BO. BO has the parameter, which controls the

strictness of the upper bound function, as described in Sec-

tion 1.1. Although BO requires a proper determination of

this parameter to achieve good optimization performances,

our algorithm is parameter-free and guaranteed to increase

Algorithm 2 Greedy incremental algorithm (GIA).

Input: Affinity matrix A ∈ R
n×n

Initialize: Z
(1) = 0, T = {1, · · · , n}, F (1)(l, c) = sl,l ∀c

1: for t = 1 to n do

2: l∗, c∗ = arg max
l∈T,c

F (t)(l, c)

3: Update Z
(t+1)

4: Update F (t+1)(l, c)
5: T ← T \ l∗

6: DLO for S[T̄ , T̄]
7: end for

Output: Z

the objective value. Moreover, our algorithm can be applied

for the objective functions in Table 1, while BO is only ap-

plicable to macro-AA and NC in Table 1.

3.2. Greedy incremental algorithm (GIA)

DLO is a local optimization method; thus, a good ini-

tial solution is required for global optimization. SC is a

method of obtaining an initial solution. However, SC does

not work in some cases described in Section 5. In this sec-

tion, we propose an initial solution-free algorithm, namely

the greedy incremental algorithm (GIA).

All clusters are initially set to be empty. At each itera-

tion, a single element is assigned to a cluster by a greedy

strategy. We first initialize Z
(0) = 0 and F0(l, c) = sl,l

for all l and c, respectively. We also initialize unassigned

elements set as T = {1, · · · , n}. As in the same manner

in Section 3.1, we can compute F (t)(l, c), which is the cost

to assign the lth element into the cth cluster. The assign-

ment that maximizes the objective value is then obtained by

l∗, c∗ = arg max
l∈T,c

F (t)(l, c)1. Z(t) and T are then updated.

We summarize the GIA algorithm in Algorithm 2. We

perform DLO for already assigned elements for each iter-

ation. This DLO process improves the optimization per-

formance. The total computational complexity of GIA is

O(n2k + lnk), where l is the total number of iterations of

DLO. Note that we do not need to compute F (t)(l, c) from

scratch in the DLO process because it is computed in GIA.

Moreover, l is generally smaller than n, at least in our ex-

periments.

GIA works well in solving micro-AA. However, unfor-

tunately, we found that GIA often failed into a poor local

optimum in solving macro-AA, NC, and BA. In solving

macro-AA and NC, assigning an element to the largest clus-

ter is best because small clusters are overestimated from the

terms 1/1⊤
zk and 1/1⊤

Azk, respectively. Therefore, GIA

tends to generate small clusters with a single large cluster.

We show the results in Fig. 2. In solving macro-AA by GIA,

1One of the solutions is randomly chosen if multiple solutions exist.

For example of t = 1, F (1)(l, c) = 0 for all l, c. Therefore, l, c are

uniformly selected from {1, n} and {1, · · · , k}, respectively.

3459

(a) Input A. (b) Ground truth. (c) Solved on NC. (d) Solved on BA.

Fig 2: Clustering results solved by GIA. The global opti-

mum clustering on both the NC and BA costs is shown in

(b). GIA fails to obtain the best clustering, as in (c) and (d).

Algorithm 3 Graduated optimization.

Input: Affinity matrix A ∈ R
n×n

1: Obtain Z
(g) by solve Eq. (1) on A

g

2: for t = 1 to g − 1 do

3: Obtain Z
(g−t) by DLO on A

g−t from Z
(g)

4: end for

Output: Z
(1)

assigning an element to the largest cluster is the best assign-

ment because of the term z
⊤
k Azk. Therefore, GIA tends to

generate larger clusters than the optimum clustering.

4. Global optimization techniques for graph

clustering

Most graph-clustering optimization methods, including

our proposals, are often trapped into a poor local minimum

because of the nonconvexity of the problem Eq. (1). There-

fore, global optimization techniques are required. Running

the algorithm multiple times and choosing the best results

is a popular method. In this study, we introduce two global

optimization techniques for graph clustering.

4.1. Graduated optimization (GO)

We find that GIA tends to be trapped into a bad local

minimum if A is a high-sparse matrix. We overcome this

problem by applying graduated optimization (GO) [1] to

solve graph clustering. In solving a nonconvex function

f(x), GO first solves a smoothed function fs(x), which

(is expected to) has less minima, then gradually transforms

fs(x) into f(x) with updating a solution. We construct a

smoothed function in graph clustering by a smoothed affin-

ity matrix of Ag . For example of g = 2, the (i, j) element

of A2 is presented as follows:
(

A
2
)

ij
=
∑

l

ailalj . (16)

Eq. (16) means that (A2)ij > 0 if there exists k such that

aikakj > 0 although aij = 0. We show the examples in

Fig. 3.

According to the manner of GO, we first use a large g to

smooth the objective function to distinct poor local optima,

then gradually decrease g to 1 to solve the original objective

(a) A (original) (b) A2 (c) A4 (d) A8

Fig 3: Examples of the matrices Ag used in GO.

(a) Θ1 (b) Θ2 (c) Θ3 (d) Θ4 (e) Θen

Fig 4: Clustering ensemble. (a)–(d) are local optimal solu-

tions. (e) is co-association matrix.

function. We summarize the algorithm in Algorithm 3.

4.2. Clustering ensemble (CE)

Although the solution obtained by GIA is often a poor

local minimum, it tends to be partially well clustered as in

Fig. 4. In this case, the clustering ensemble [22] is a good

approach of achieving a high clustering performance.

We compute the co-association matrix [7] Θen =
1/n

∑n

i=1 Z
⊤
i Zi from n solutions Z1, · · · ,Zn. Θen has

continuous values. Hence, we need to transform Θen to

Θ = Z
⊤
Z, where Z ∈ Z , to obtain clustering. We can

achieve this transformation by solving Eq. (1) on A = Θen.

Our motivation is to perform global optimization on graph-

based clustering. Therefore, we finally perform DLO on

original A from the solution obtained on Θen.

5. Experiments

We evaluated the performance of our proposed method.

All the experiments were run on an Intel Core i7-6500U

CPU (2.50 GHz) with 8 GB RAM and implemented in

MATLAB.

5.1. Experimental detalis

We used three objective functions, namely NC, BA, and

micro-AA, and three initialization methods, namely random

initialization, SC, and GIA. Spectral relaxation can only be

applied to NC; hence, SC was applied to NC for all the three

objective functions. GIA was applied to the micro-AA cost

for all the three objective functions because GIA works only

on micro-AA, as described in Section 3.2.

We used a fixed value or a linearly increasing value for

parameter δ in BO. For example, δ = [0.0, 0.2] means that

we used δ = 0.0 at the first iteration and δ = 0.2 at the

last iteration. We used λ = λ′
∑

i,j Aij/n
2 in BA. For the

parameters µ in ADMM, we used the update rule of µ = ρµ
at each iteration with ρ = 1.02 for all experiments. All

3460

Table 2: Optimization performances for the NC cost on synthetic data. We report normalized objective values, such that the

maximum value becomes one. The best and second-best values are emphasized in bold and italic, respectively.

Input

Random initialization SC initialization GIA initialization

DLO
BO

DLO
BO

DLO
BO

δ = [0.0, 0.2] δ = 0 δ = [0.0, 0.2] δ = 0 δ = [0.0, 0.2] δ = 0

Sdiag 0.921 0.943 0.917 0.967 0.973 0.966 1.000 1.000 0.999

Srand 0.899 0.880 0.472 0.999 1.000 0.990 0.990 0.998 0.990

Table 3: Optimization performances for the BA cost on synthetic data. We report normalized objective values, such that the

maximum value becomes one. The best and second-best values are emphasized in bold and italic, respectively.

Input

Random initialization SC initialization GIA initialization

DLO
ADMM

DLO
ADMM

DLO
ADMM

µ = 0.2 µ = 0.6 µ = 1.0 µ = 0.2 µ = 0.6 µ = 1 µ = 0.2 µ = 0.6 µ = 1

Sdiag 0.886 0.938 0.959 0.908 0.927 0.933 0.958 0.928 1.000 0.998 1.000 1.000

Srand 0.864 0.936 0.901 0.74748 1.000 0.933 0.995 0.982 0.832 0.903 0.869 0.721

(a) Adiag (q = 8) (b) Arand (p = 0.2)

Fig 5: Examples of Adiag and Arand.

methods were run from 20 initial solutions for each matrix.

The results with the best objective value are reported.

5.2. Experiments on synthetic data

We generated a synthetic affinity matrix A as follows:

A
′ = blockdiag(B1, · · · ,Bk) +N ∈ R

mk×mk, (17)

where N is a random sparse matrix with density 0.01. We

constructed two types of Bi ∈ R
m×m: q-th diagonal ma-

trix (Adiag) and random sparse matrix with density pm2

(Arand). All non-zero elements of matrices N and Bi for

all i = 1, · · · , k were uniformly sampled from [0, 1]. We fi-

nally computed A = (A′ + (A′)⊤)/2 and set the diagonal

element of A as 0. Fig. 5 shows the examples of Adiag and

Arand with m = 20, k = 3.

Comparing GIA with SC and random initialization:

Table 2 and Table 3 present the objective values of NC and

BA by each optimization method, respectively. The ran-

dom initialization is worst in most cases. GIA outperformed

SC in Adiag . Conversely, SC initialization worked well in

Arand. We can conclude that which initialization was bet-

ter between SC and GIA depended on the affinity matrix

characteristics.

Comparing DLO with BO and ADMM: Table 2 shows

that DLO achieved comparable performances with BO.

Note that DLO is a parameter-free algorithm, while BO has

0 0.01 0.02 0.03 0.04

Elapsed time [sec]

4.2

4.3

4.4

4.5

4.6

4.7

O
b

je
ct

iv
e

V
al

u
e

BO (=-0.1)

BO (=0.0)
BO (=0.1)

BO (=0.2)

BO (=[0,0.2])
DLO-Greed

DLO-Random

Fig 6: Objective values of

NC by each method.

0 0.01 0.02 0.03 0.04

Elapsed time [sec]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

O
b

je
ct

iv
e

V
al

u
e

ADMM (
1
=0.6)

ADMM (
1
=0.8)

ADMM (
1
=1)

ADMM (
1
=2)

ADMM (
1
=3)

DLO-Greed

DLO-Random

Fig 7: Objective values of

BA by each method.

a parameter that significantly affects the optimization per-

formances. Fig. 6 illustrates the objective values versus the

elapsed time in one case of our experiments. As shown in

Fig. 6, a large δ (e.g., δ = 0.1 and δ = 0.2) monotonically

increased the objective values. However, an overly large

δ (e.g., δ = 2) achieved a poor optimization performance

because a large δ enforces to not move the solution. In con-

trast, δ = 0 did not converge because Eq. (4) with δ = 0
was not a strict bound function. However, the optimization

performance was better than a large delta (e.g., δ = 0.2
and δ = 0.1). The best method was to increase δ at each

iteration, as in δ = [0.0, 0.2].

Table 3 shows that ADMM with proper µ achieved a

better optimization performances than DLO, except for the

case of the SC initialization for Srand. However, ADMM

was not guaranteed to increase the objective value at each

iteration. An overly small µ1 breaks a good initial solution

(Fig. 7).

Computational cost: We evaluated the computational

costs of GIA with SC and ADMM. We generated different

sizes of Adiag as m = {20, 50, 100, 200, 500}with k = 10.

Fig. 8 shows the computational costs of the three methods.

GIA achieved a comparable computation cost with ADMM

and outperformed SC. These results are in accordance with

the fact that GIA has computational complexities of O(n2),

3461

Table 4: Clustering results on MNIST. We used micro-AA and optimized by GIA and DLO from the SC initialization. We

show the objective values and clustering accuracies (in parentheses).

Affinity
GIA DLO from SC

with CE with GO GO + CE with CE with GO GO + CE

SSC 45.56 (77.0) 47.21 (91.3) 47.44 (93.7) 47.41 (93.1) 47.08 (90.2) 47.12 (90.6) 47.42 (93.2) 47.38 (92.4)

k-NN 35.77 (90.4) 35.89 (93.4) 35.91 (93.91) 35.90 (93.6) 35.48 (86.7) 35.38 (85.9) 35.73 (89.7) 35.38 (84.6)

200 500 1000 2000 5000 10000

n

10-4

10-2

100

102

E
la

p
se

d
 t

im
e

[s
ec

]

GIO

SC

ADMM

Fig 8: Computational costs of the three methods on differ-

ent affinity matrix sizes.

while SC has a complexity of O(n3).

5.3. Experiments on the benchmark datasets

We used two types of affinity matrices in this section.

First is the k-nearest neighbor (k-NN) graph with self-tuned

scale [26]:

aij =

{

exp
(

−
‖xi−xj‖

2

2

σiσj

)

(j ∈ k-NN(i))

0 (otherwise)
(18)

where σi is the distance between point xi and its kth nearest

neighbor. The second type is the sparse self-representation

(SSR) used in sparse subspace clustering [25, 6]. We used

You et al.’s method [25] for MNIST and Elhamifar et al.’s

method [6] for Extended YaleB and Hopkins 155.

MNIST: The MNIST dataset contains images of hand-

written digits from 0 to 9. We followed the pre-process of

[25]. We extracted 3,472-dimensional feature vectors by

scattering convolution network [2], then reduced the dimen-

sion to 500 by PCA. We used k = 10 for the k-NN graph

and the same parameters in [25] for SSR.

Comparing GIA with SC: We randomly selected to-

tally 1,000 images, 100 images for each 10 digits. We run

10 times on different sets and report the average scores. We

compared the performances of GIA and DLO from the SC

initialization with and without graduated optimization (GO)

and clustering ensemble (CE).

Table 4 shows the results. Without GO and CE, we found

that SC performed well on the SSR matrix, whereas GIA

performed well on the k-NN graph. Fig. 9 shows the part of

matrix A in a single digit. The k-NN graph matrix seemed

to have diagonal characteristics, whereas the SSR matrix

is similar to the random matrix. These results indicate that

(a) A by k-NN. (b) A by SSR.

Fig 9: Affinity matrices by k-NN and SSR. We sorted the

rows and columns to maximize the sum of the k-diagonal

elements.

1.1 1.2 1.3

p

0.4

0.5

0.6

0.7

0.8

0.9

1

cl
u

st
er

in
g

 a
cc

u
ra

cy

N
i
=100

N
i
=200

N
i
=300

N
i
=500

(a) Clustering by micro-AA with

different p.

0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

cl
u

st
er

in
g

 a
cc

u
ra

cy

N
i
=100

N
i
=200

N
i
=300

N
i
=500

(b) Clustering by BA with different

λ′.

Fig 10: Clustering results on the imbalanced MNIST

dataset. The solid and broken lines represent the cluster-

ing accuracies by DLO from GIA (p = 1.2) and ADMM

from the random initialization, respectively.

GIA works in diagonal matrix and SC works in random ma-

trix as with the synthetic data experiments.

We found that all methods can be improved by GO. CE

also improved the performance in GIA. However, SC with

CE was not effective. SC was assumed to obtain the nar-

row local minima because of the spectral relaxation with

k-means clustering.

Imbalanced MNIST: We showed the performances of

micro-AA and BA on imbalanced data. We randomly se-

lected Ni ∈ 150, 200, 300, 500 images for one digit and

100 images for the other digits. Therefore, a total of 1050,

1100, 1200, and 1400 images were selected.

Fig. 10(a) and 10(b) show the clustering accuracy solved

on micro-AA cost with different p and BA cost with dif-

ferent λ, respectively. Micro-AA with a small p achieved

3462

Table 5: Results on the benchmark datasets. We show the clustering accuracies. Except for spectral clustering (Spect. Clust)

and ADMM, we used DLO from initialization methods of GIA or SC.

dataset
micro-AA (p = 1.2) NC BA (λ′ = 0.8) Spect.

Clust.SC GIA CE (GIA) SC GIA CE (GIA) ADMM SC GIA CE (GIA)

COIL-20 72.78 95.56 100.0 70.83 86.67 100.0 62.71 71.32 95.56 100.0 56.87

COIL-100 63.24 80.82 89.85 60.42 80.74 83.50 50.33 61.51 80.75 80.63 61.49

MNIST-05 67.78 77.65 83.52 67.75 65.46 82.03 65.24 67.81 77.71 83.69 66.87

Umist 68.17 76.87 80.00 73.39 70.78 76.17 64.17 68.70 65.74 79.30 73.04

USPS 77.34 80.95 94.53 83.23 80.92 82.17 51.74 77.34 80.96 96.57 68.35

Extended Yale-B 96.25 95.31 96.25 96.09 95.31 96.25 62.34 96.25 95.31 96.25 96.09

Hopkins 155 90.10 91.51 88.57 94.22 93.20 91.15 85.76 86.84 87.29 87.34 94.24

Table 6: Descriptions of the datasets and used affinity ma-

trix. We show the minimum/maximum number of samples

per class.

Dataset Classes Samples per class A

COIL-20 20 72 k-NN

COIL-100 100 72 k-NN

MNIST-05 10 315-393 k-NN

Umist 20 19-48 k-NN

USPS 10 708-1553 k-NN

Extended Yale-B 10 72 SSR

Hopkins 155 3 33-4432 SSR

good clustering accuracies in imbalanced datasets, such as

p = 1.15 in Ni = 500. Micro-AA with p = 1.1 tended to

generate a large cluster because of the small power of bal-

ancing cluster sizes, as in Ni = 100. For BA, DLO from

GIA (p = 1.2) achieved better performances than ADMM.

BA with a small λ solved by DLO and GIA also achieved a

comparable performance with micro-AA in the imbalanced

datasets.

Experiments on the other benchmark datasets: We

evaluated the clustering methods on seven datasets: COIL-

20 [15], COIL-100 [14] (20 and 100 classes of differ-

ent objects), MNIST-05 3 (handwritten digits sampled

from MNIST), UMIST [9] (face images of 20 individuals),

USPS [11] (handwritten digits), Extended Yale-B [8] (face

images of 38 individuals), and Hopkins 1554 (two or three

motion segmentations). For the Extended Yale-B dataset,

we followed the experimental setting of [6] and reported

the averaging scores from three trials. For the Hopkins 155

dataset, we used 35 out of 155 videos, which contained

three motion segments and reported the average of all 35

results. For the affinity matrices of the k-NN graphs, we

used k = 4 for COIL-20, COIL-100, and Umist, k = 10 for

MNIST-05 and USPS, and the same parameters in [6] for

Extended Yale-B and Hopkins 155. Table 6 summarizes the

descriptions of these seven datasets.

2We show the number with the maximum ratio in one motion data.
3http://www.escience.cn/people/fpnie/index.html
4http://www.vision.jhu.edu/data/hopkins155/

Table 5 shows the clustering accuracies. We used the

random initialization for ADMM. In the five datasets us-

ing the k-NN affinity matrices, GIA outperformed other

optimization methods in most cases of all the three cost

functions. CE improves the clustering accuracies in most

cases, especially 100% clustering accuracy in the COIL-

20 dataset. For the cost functions, micro-AA and BA out-

performed NC, except for Hopkins 155. Hopkins 155 is a

highly imbalanced dataset, which has the maximum ratio

of cluster sizes over 13 (Table 6). Therefore, micro-AA and

BA did not perform well because these cost functions overly

balanced the cluster sizes.

6. Conclusion

In this study, we presented novel objective function

and optimization techniques for graph-based clustering.

First, we introduced micro-AA, which was based on micro-

average, to avoid undesirable small clusters. For optimiza-

tion, we proposed DLO, which is guaranteed to monotoni-

cally increase the objective value for general objective func-

tions used in graph-based clustering. We also proposed

GIA, which was an initialization-free optimization method

with a computational complexity of O(n2) and global op-

timization techniques (i.e., GO and CE). Our experiments

showed that the proposed techniques significantly improved

the clustering performances and provided guidelines on

when each method works well.

Although we investigated the relation between the op-

timization methods and the affinity matrix structures, we

did not strongly focus on how to construct an affinity ma-

trix. As a future work, we will try to apply our optimization

techniques for the joint formulation of affinity matrix con-

struction and graph-based clustering.

Acknowledgements. This research is partially supported

by CREST (JPMJCR1686).

3463

References

[1] A. Blake and A. Zisserman. Visual reconstruction. 1987. 5

[2] J. Bruna and S. Mallat. Invariant scattering convolution net-

works. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1872–1886, 2013. 7

[3] X. Chen, J. Zhexue Haung, F. Nie, R. Chen, and Q. Wu. A

self-balanced min-cut algorithm for image clustering. In The

IEEE International Conference on Computer Vision (ICCV),

Oct 2017. 1, 2

[4] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spec-

tral clustering and normalized cuts. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 551–556. ACM, 2004. 2

[5] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts

without eigenvectors a multilevel approach. IEEE transac-

tions on pattern analysis and machine intelligence, 29(11),

2007. 1, 2

[6] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-

gorithm, theory, and applications. IEEE transactions on pat-

tern analysis and machine intelligence, 35(11):2765–2781,

2013. 1, 7, 8

[7] A. L. Fred and A. K. Jain. Combining multiple clusterings

using evidence accumulation. IEEE transactions on pattern

analysis and machine intelligence, 27(6):835–850, 2005. 5

[8] A. Georghiades, P. Belhumeur, and D. Kriegman. From few

to many: Illumination cone models for face recognition un-

der variable lighting and pose. IEEE Trans. Pattern Anal.

Mach. Intelligence, 23(6):643–660, 2001. 8

[9] D. GRAHAM and N. ALLINSON. Characterising virtual

eigensignatures for general purpose face recognition. NATO

ASI series. Series F: computer and system sciences, pages

446–456, 1998. 8

[10] J. A. Hartigan. Clustering algorithms (probability & mathe-

matical statistics), 1975. 4

[11] J. J. Hull. A database for handwritten text recognition re-

search. IEEE Transactions on pattern analysis and machine

intelligence, 16(5):550–554, 1994. 8

[12] C.-G. Li, C. You, and R. Vidal. Structured sparse subspace

clustering: A joint affinity learning and subspace cluster-

ing framework. IEEE Transactions on Image Processing,

26(6):2988–3001, 2017. 1

[13] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust

recovery of subspace structures by low-rank representation.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 35(1):171–184, 2013. 1

[14] S. A. Nene, S. K. Nayar, and H. Murase. Columbia ob-

ject image library (coil 100). Department of Comp. Science,

Columbia University, Tech. Rep. CUCS-006-96, 1996. 8

[15] S. A. Nene, S. K. Nayar, and H. Murase. Columbia object

image library (coil-20). 1996. 8

[16] Y. Nesterov. Efficiency of coordinate descent methods on

huge-scale optimization problems. SIAM Journal on Opti-

mization, 22(2):341–362, 2012. 3

[17] F. Nie, X. Wang, M. I. Jordan, and H. Huang. The con-

strained laplacian rank algorithm for graph-based clustering.

In Proceedings of the Thirtieth AAAI Conference on Artifi-

cial Intelligence, pages 1969–1976. AAAI Press, 2016. 1

[18] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and

H. Koepke. Coordinate descent converges faster with the

gauss-southwell rule than random selection. In International

Conference on Machine Learning, pages 1632–1641, 2015.

3

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on pattern analysis and machine

intelligence, 22(8):888–905, 2000. 1, 2

[20] M. Tang, D. Marin, I. B. Ayed, and Y. Boykov. Kernel Cuts:

MRF meets kernel & spectral clustering. arXiv preprint

arXiv:1506.07439, 2015. 1, 2

[21] M. Telgarsky and A. Vattani. Hartigan’s method: k-means

clustering without voronoi. In International Conference on

Artificial Intelligence and Statistics, pages 820–827, 2010. 4

[22] S. Vega-Pons and J. Ruiz-Shulcloper. A survey of clus-

tering ensemble algorithms. International Journal of Pat-

tern Recognition and Artificial Intelligence, 25(03):337–372,

2011. 5

[23] R. Vidal and P. Favaro. Low rank subspace clustering (lrsc).

Pattern Recognition Letters, 43:47–61, 2014. 1

[24] U. Von Luxburg. A tutorial on spectral clustering. Statistics

and computing, 17(4):395–416, 2007. 1, 2

[25] C. You, D. Robinson, and R. Vidal. Scalable sparse sub-

space clustering by orthogonal matching pursuit. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3918–3927, 2016. 1, 7

[26] L. Zelnik-Manor and P. Perona. Self-tuning spectral cluster-

ing. In Advances in neural information processing systems,

pages 1601–1608, 2005. 1, 7

3464

