
Fast Spectral Ranking for Similarity Search

Ahmet Iscen1 Yannis Avrithis2 Giorgos Tolias1 Teddy Furon2 Ondřej Chum1

1VRG, FEE, CTU in Prague 2Inria Rennes

{ahmet.iscen,giorgos.tolias,chum}@cmp.felk.cvut.cz

{ioannis.avrithis,teddy.furon}@inria.fr

Abstract

Despite the success of deep learning on representing

images for particular object retrieval, recent studies show

that the learned representations still lie on manifolds in a

high dimensional space. This makes the Euclidean nearest

neighbor search biased for this task. Exploring the mani-

folds online remains expensive even if a nearest neighbor

graph has been computed offline.

This work introduces an explicit embedding reducing

manifold search to Euclidean search followed by dot prod-

uct similarity search. This is equivalent to linear graph fil-

tering of a sparse signal in the frequency domain. To speed

up online search, we compute an approximate Fourier basis

of the graph offline. We improve the state of art on particu-

lar object retrieval datasets including the challenging Instre

dataset containing small objects. At a scale of 105 images,

the offline cost is only a few hours, while query time is com-

parable to standard similarity search.

1. Introduction

Image retrieval based on deep learned features has re-

cently achieved near perfect performance on all standard

datasets [45, 14, 15]. It requires fine-tuning on a prop-

erly designed image matching task involving little or no hu-

man supervision. Yet, retrieving particular small objects is

a common failure case. Representing an image with several

regions rather than a global descriptor is indispensable in

this respect [46, 60]. A recent study [24] uses a particularly

challenging dataset [67] to investigate graph-based query

expansion and re-ranking on regional search.

Query expansion [7] explores the image manifold by re-

cursive Euclidean or similarity search on the nearest neigh-

bors (NN) at increased online cost. Graph-based meth-

ods [44, 53] help reducing this cost by computing a k-

NN graph offline. Given this graph, random walk1 pro-

cesses [39, 70] provide a principled means of ranking. Iscen

1We avoid the term diffusion [11, 24] in this work.

yi

(a) Input signal y

x
i

(b) Output signal x

yi

(c) Input signal y

x
i

(d) Output signal x

Figure 1: The low-pass filtering of an impulse over the real

line (top) and a graph (bottom). In a weighted undirected

graph the information “flows” in all directions, controlled

by edge weights. In retrieval, the impulse in red is the query,

and the output x is its similarity to all samples.

et al. [24] transform the problem into finding a solution x of

a linear systemAx = y for a large sparse dataset-dependent

matrix A and a sparse query-dependent vector y. Such a

solution can be found efficiently on-the-fly with conjugate

gradients (CG). Even for an efficient solver, the query times

are still in the order of one second at large scale.

In this work, we shift more computation offline: we ex-

ploit a low-rank spectral decomposition A ≈ UΛU⊤ and

express the solution in closed form as x = UΛ−1U⊤y. We

thus treat the query as a signal y to be smoothed over the

graph, connecting query expansion to graph signal process-

ing [50]. Figure 1 depicts 1d and graph miniatures of this

interpretation. We then generalize, improve and interpret

this spectral ranking idea on large-scale image retrieval. In

particular, we make the following contributions:

1. We cast image retrieval as linear filtering over a graph,

efficiently performed in the frequency domain.

2. We provide a truly scalable solution to computing an

approximate Fourier basis of the graph offline, accom-

panied by performance bounds.

17632

3. We reduce manifold search to a two-stage similarity

search thanks to an explicit embedding.

4. A rich set of interpretations connects to different fields.

The text is structured as follows. Section 2 describes the

addressed problem while Sections 3 and 4 present a descrip-

tion and an analysis of our method respectively. Section 5

gives a number of interpretations and connections to dif-

ferent fields. Section 6 discusses our contributions against

related work. We report experimental findings in Section 8

and draw conclusions in Section 9.

2. Problem

In this section we state the problem addressed by this

paper in detail. We closely follow the formulation of [24].

2.1. Representation

A set of n descriptor vectors V = {v1, . . . ,vn}, with

each vi associated to vertex vi of a weighted undirected

graph G is given as an input. The graph G with n vertices

V = {v1, . . . , vn} and ℓ edges is represented by its n ×
n symmetric nonnegative adjacency matrix W . Graph G
contains no self-loops, i.e.W has zero diagonal. We assume

W is sparse with 2ℓ≪ n(n− 1) nonzero elements.

We define the n × n degree matrix D : = diag(W1)
where 1 is the all-ones vector, and the symmetrically nor-

malized adjacency matrix W : = D−1/2WD−1/2 with

the convention 0/0 = 0. We also define the Laplacian

and normalized Laplacian of G as L : = D − W and

L : = D−1/2LD−1/2 = I −W , respectively. Both are sin-

gular and positive-semidefinite; the eigenvalues of L are in

the interval [0, 2] [8]. Hence, if λ1, . . . , λn are the eigenval-

ues of W , its spectral radius ̺(W) : = maxi |λi| is 1. Each

eigenvector u of L associated to eigenvalue 0 is constant

within connected components (e.g., L1 = D1−W1 = 0),

while the corresponding eigenvector of L is D1/2u.

2.2. Transfer function

We define the n×n matrices Lα : = β−1(D−αW) and

Lα : = D−1/2LαD
−1/2 = β−1(I−αW), where α ∈ [0, 1)

and β := 1−α. Both are positive-definite. Given the n× 1
sparse observation vector y online, [24] computes the n×1
ranking vector x as the solution of the linear system

Lαx = y. (1)

We can write the solution as hα(W)y, where

hα(W) : = (1− α)(I − αW)−1 (2)

for a matrix W such that I − αW is nonsingular; indeed,

L−1
α = hα(W). Here we generalize this problem by con-

sidering any given transfer function h : S → S , where S is

the set of real symmetric matrices including scalars, R. The

general problem is then to compute

x∗ : = h(W)y (3)

efficiently, in the sense that h(W) is never explicitly com-

puted or stored: W is given in advance and we are allowed

to pre-process it offline, while both y and h are given online.

For hα in particular, we look for a more efficient solution

than solving linear system (1).

2.3. Retrieval application

The descriptors V are generated by extracting image de-

scriptors from either whole images, or from multiple sam-

pled rectangular image regions, which can be optionally re-

duced by a Gaussian mixture model as in [24]. Note that the

global descriptor is a special case of the regional one, using

a single region per image. In the paper, we use CNN-based

descriptors [45].

The undirected graph G is a k-NN similarity graph con-

structed as follows. Given two descriptors v, z in R
d, their

similarity is measured as s(v, z) = [v⊤z]γ+, where expo-

nent γ > 0 is a parameter. We denote by s(vi|z) the

similarity s(vi, z) if vi is a k-NN of z in V and zero oth-

erwise. The symmetric adjacency matrix W is defined

as wij : = min(s(vi|vj), s(vj |vi)), representing mutual

neighborhoods. Online, given a query image represented

by descriptors {q1, . . . ,qm} ⊂ R
d, the observation vector

y ∈ R
n is formed with elements yi : =

∑m
j=1 s(vi|qj) by

pooling over query regions. We make y sparse by keeping

the k largest entries and dropping the rest.

3. Method

This section presents our fast spectral ranking (FSR) al-

gorithm in abstract form first, then with concrete choices.

3.1. Algorithm

We describe our algorithm given an arbitrary n × n
matrix A ∈ S instead of W . Our solution is based on

a sparse low-rank approximation of A computed offline

such that online, x ≈ h(A)y is reduced to a sequence of

sparse matrix-vector multiplications. The approximation

is based on a randomized algorithm [47] that is similar to

Nyström sampling [12] but comes with performance guar-

antees [18, 68]. In the following, r ≪ n, p < r, q and τ are

given parameters, and r̂ = r + p.

1. (Offline) Using simultaneous iteration [62, §28], com-

pute an n× r̂ matrix Q with orthonormal columns that

represents an approximate basis for the range of A, i.e.

QQ⊤A ≈ A. In particular, this is done as follows [18,

§4.5]: randomly draw an n× r̂ standard Gaussian ma-

trix B(0) and repeat for t = 0, . . . , q − 1:

7633

(a) Compute QR factorization Q(t)R(t) = B(t).

(b) Define the n× r̂ matrix B(t+1) : = AQ(t).

Finally, set Q : = Q(q−1), B : = B(q) = AQ.

2. (Offline–Fourier basis) Compute a rank-r eigenvalue

decomposition UΛU⊤ ≈ A, where n× r matrix U has

orthonormal columns and r × r matrix Λ is diagonal.

In particular, roughly following [18, §5.3]:

(a) Form the r̂ × r̂ matrix C : = Q⊤B = Q⊤AQ.

(b) Compute its eigendecomposition V̂ Λ̂V̂⊤ = C.

(c) Form (V,Λ) by keeping from (V̂ , Λ̂) the slices

(rows/columns) corresponding to the r largest

eigenvalues.

(d) Define the matrix U : = QV .

3. (Offline) MakeU sparse by keeping its τ largest entries

and dropping the rest.

4. (Online) Given y and h, compute

x : = Uh(Λ)U⊤y. (4)

Observe that U⊤ projects y onto R
r. With Λ being diag-

onal, h(Λ) is computed element-wise. Finally, multiplying

byU and ranking x amounts to dot product similarity search

in R
r. The online stage is very fast, provided U only con-

tains few leading eigenvectors and y is sparse. We consider

the following variants:

• FSR.SPARSE: This is the complete algorithm.

• FSR.APPROX: Drop sparsification stage 3.

• FSR.RANK-r: Drop approximation stage 1 and sparsi-

fication stage 3. Set r̂ = n, Q = I , B = A in stage 2.

• FSR.EXACT: same as FSR.RANK-r for r = n.

To see why FSR.EXACT works, consider the case of

hα(W). Let W ≃ UΛU⊤. It follows that hα(W)/β =
(I − αW)−1 ≃ U(I − αΛ)−1U⊤, where (I − αΛ)−1 is

computed element-wise. Then, x∗ ≃ βU(I − αΛ)−1U⊤y.

The general case is discussed in section 4.

3.2. Retrieval application

Returning to the retrieval problem, we compute the rank-

ing vector x ∈ R
n by (4), containing the ranking score

xi of each dataset region vi. To obtain a score per image,

we perform a linear pooling operation [24] represented as

x : = Σx where Σ is a sparse N × n pooling matrix. The

N × r matrix U : = ΣU is indeed computed offline so that

we directly compute x = Uh(Λ)U⊤y online.

Computing y involves Euclidean search in R
d, which

happens to be dot product because vectors are ℓ2-

normalized. Applying U and ranking x amounts to a dot

product similarity search in R
r. We thus reduce manifold

search to Euclidean followed by dot product search. The

number of nonzero elements of y and rows of U , whence

the cost, are the same for global or regional search.

4. Analysis

We derive the asymptotic space and time complexity of

different algorithm variants and derive necessary condition

for correctness and error bounds of approximate variants.

4.1. Complexity

The offline complexity is mainly determined by the num-

ber of columns r̂ of matrix Q: Stage 1 reduces the size of

the problem from n2 down to nr̂. The online complexity is

determined by the number of nonzero entries in matrix U .

A straightforward analysis leads to the following:

• FSR.APPROX: The offline complexity is O(qn(k +
r̂)r̂) time and O(nr̂) space; its online (time and space)

complexity is O(nr).

• FSR.SPARSE: The offline complexity is O(qn(k +
r̂)r̂ + τ log τ) time and O(nr̂) space; its online com-

plexity is O(τ).

Stage 1 is “embarrassingly parallelizable” meaning that

it is dramatically accelerated on parallel and distributed

platforms. Since the online stage 4 amounts to NN search,

any approximate method applies, making it sublinear in n.

4.2. Correctness

We derive here the conditions on h and A under

which our algorithm is correct under no truncation, i.e.,

FSR.EXACT(y|A, h) = h(A)y. We also show, that hα and

W satisfy these conditions, which is an alternative proof of

correctness to the one in Section 3.1.

Starting from the fact a real symmetric matrix A is di-

agonalizable, there exists an exact eigenvalue decompo-

sition UΛU⊤ = A, where U is orthogonal. Accord-

ing to [1, §9.14,9.2], we have h(A) = Uh(Λ)U⊤ =
U diag(h(λ1), . . . , h(λn))U

⊤ if and only if there exists a

series expansion of h converging for this specific A:

h(A) =
∞
∑

t=0

ctA
t. (5)

This holds in particular for hα admitting the geometric pro-

gression expansion

hα(A) : = β(I − αA)−1 = β

∞
∑

t=0

(αA)t, (6)

which converges absolutely if ̺(αA) < 1 [1, §9.6,9.19].

This holds for A = W because α < 1 and ̺(W) = 1.

4.3. Error bound

We present main ideas for bounding the approximation

error of FSR.RANK-r and FSR.APPROX coming from lit-

erature, and we derive another condition on h under which

7634

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

hα(x) =
1− α

1− αx

1− x

h
α
(x
)

α = 0.99
α = 0.9
α = 0.7

Figure 2: Function hα (2) is a ‘low-pass filter’; 1−x repre-

sents eigenvalues of L, where 0 is the DC component.

our algorithm is valid under truncation. The approxima-

tion QQ⊤A ≈ A of stage 1 is studied in [18, §9.3,10.4]: an

average-case bound on
∥

∥A−QQ⊤A
∥

∥ decays exponentially

fast in the number of iterations q to |λr+1|. Stage 2 yields

an approximate eigenvalue decomposition of A: Since A is

symmetric, A ≈ QQ⊤AQQ⊤ = QCQ⊤ ≈ QV ΛV⊤Q⊤ =
UΛU⊤. The latter approximation C ≈ V ΛV⊤ is essen-

tially a best rank-r approximation of C = Q⊤AQ. This

is also studied in [18, §9.4] for the truncated SVD case of

a non-symmetric matrix. It involves an additional term of

|λr+1| in the error.

We are actually approximating h(A) by Uh(Λ)U⊤, so

that |h(λr+1)| governs the error instead of |λr+1|. A sim-

ilar situation appears in [61, §3.3]. Therefore, our method

makes sense only when the restriction of h to scalars is non-

decreasing. This is the case for hα.

5. Interpretation

Our work is connected to studies in different fields with a

long history. Here we give a number of interpretations both

in general and in the particular case h = hα.

5.1. Graph signal processing

In signal processing [38], a discrete-time signal of pe-

riod n is a vector s ∈ R
n where indices are represented by

integers modulo n, that is, sī : = s(i mod n)+1 for i ∈ Z.

A shift (or translation, or delay) of s by one sample is the

mapping sī 7→ si−1. If we define the n × n circulant ma-

trix Cn : = (e2 e3 . . . en e1)
2, a shift can be represented by

s 7→ Cns [50]. A linear, time (or shift) invariant filter is

the mapping s 7→ Hs where H is an n × n matrix with a

series representation H : = h(Cn) =
∑∞

t=0 htC
t
n. Matrix

Cn has the eigenvalue decomposition UΛU⊤ where U⊤ is

the n× n discrete Fourier transform matrix F . If the series

h(Cn) converges, filtering s 7→ Hs is written as

s 7→ F−1h(Λ)Fs. (7)

That is, s is mapped to the frequency domain, scaled

element-wise, and mapped back to the time domain.

2Observe that Cn is the adjacency matrix of the directed graph of

Figure 1 after adding an edge from the rightmost to the leftmost vertex.

Graph signal processing [50, 54] generalizes the above

concepts to graphs by replacing Cn by W , an appropri-

ately normalized adjacency matrix of an arbitrary graph. If

UΛU⊤ is the eigenvalue decomposition of W , we realize

that (4) treats y as a (sparse) signal and filters it in the fre-

quency domain via transfer function h to obtain x. Function

hα in particular is a low-pass filter, as illustrated in Fig-

ure 2. By varying α from 0 to 1, the frequency response

varies from all-pass to sharp low-pass.

5.2. Random walks

Consider the iterating process: for t = 1, 2, . . .

x(t) : = αAx(t−1) + (1− α)y. (8)

If A is a stochastic transition matrix and x(0),y are dis-

tributions over vertices, this specifies a random walk on

a (directed) graph: at each iteration a particle moves to a

neighboring vertex with probability α or jumps to a vertex

according to distribution y with probability 1 − α. This

is called a Markov chain with restart [2] or random walk

with restart [40]. State x(t) converges to x∗ = hα(A)y as

t → ∞ provided ̺(αA) < 1 [69]. In fact, (8) is equivalent

to Jacobi solver [17] on linear system (1) [24].

If y = ei, the i-th canonical vector, then x∗ is used to

rank the vertices of G, expressing a measure of “similarity”

to vi [70]. Parameter α controls how much x∗ is affected by

boundary condition y [64]: x∗ equals y for α = 0, while in

the limit α → 1, x∗ tends to a dominant eigenvector of A.

Indeed, for α = 1, (8) becomes a power iteration.

5.3. Random fields

Given a positive-definite n × n precision matrix A ∈ S
and a mean vector µ ∈ R

n, a Gaussian Markov ran-

dom field (GMRF) [49] with respect to an undirected

graph G is a random vector x ∈ R
n with normal density

p(x) : = N (x|µ, A−1) iff A has the same nonzero off-

diagonal entries as the adjacency matrix of G. Its canonical

parametrization p(x) ∝ e−E(x|b,A) where E(x|b, A) : =
1
2x

⊤Ax − b⊤x is a quadratic energy. Its expectation µ =
A−1b is the minimizer of this energy. Now, x∗ = L−1

α y (1)

is the expectation of a GMRF with energy

fα(x) : = E(x|y,Lα) =
1

2
x⊤Lαx− y⊤x. (9)

A mean field method on this GMRF is equivalent to Jacobi

or Gauss-Seidel solvers on (1) [66]. Yet, conjugate gradi-

ents (CG) [37] is minimizing fα(x) more efficiently [24, 5].

If we expand fα(x) using βLα = αL + (1 − α)I , we

find that it has the same minimizer as

α
∑

i,j

wij ‖x̂i − x̂j‖
2
+ (1− α) ‖x− y‖2 , (10)

7635

where x̂ : = D−1/2x. The pairwise smoothness term en-

courages x to vary little across edges with large weight

whereas the unary fitness term to stay close to observation

y [69]. Again, α controls the trade-off: x∗ equals y for

α = 0, while for α → 1, x∗ tends to be constant over con-

nected components like dominant eigenvectors of W .

5.4. Regularization and kernels

The first term of (9) is interpreted as a regularization op-

erator related to a kernel K = L−1
α [58, 57, 31]. In a finite

graph, a kernel can be seen either as an n × n matrix K
or a function κ : V 2 → R operating on pairs of vertices.

More generally, if h(x) > 0 for x ∈ R, which holds for hα,

then K : = h(W) is positive-definite and there is an n × n
matrix Φ such that K = Φ⊤Φ, or κ(vi, vj) = φ(vi)

⊤φ(vj)
where feature map φ : V → R

n is given by φ(vi) : = Φei.
A particular choice for Φ is

Φ := h(Λ)1/2U⊤ (11)

where UΛU⊤ is the eigenvalue decomposition of W . If we

choose a rank-r approximation instead, then Φ is an r × n
matrix and φ is a low-dimensional embedding onto R

r.

The goal of out-of-sample extension is to compute a

“similarity” κ̂(z1, z2) between two unseen vectors z1, z2 ∈
R

d not pertaining to the graph. Here we define

κ̂(z1, z2) : = ψ(z1)
⊤Φ⊤Φψ(z2) (12)

given any mapping ψ : Rd → R
n, e.g. ψ(z)i : = s(vi|z)

discussed in section 2. This extended kernel is also positive-

definite and its embedding φ̂(z) = Φψ(z) is a linear com-

bination of the dataset embeddings. For r ≪ n, our method

allows rapid computation of κ or κ̂ for any given function

h, without any dense n× n matrix involved.

5.5. Paths on graphs

Many nonlinear dimension reduction methods replace

Euclidean distance with an approximate geodesic distance,

assuming the data lie on a manifold [33]. This involves the

all-pairs shortest path (APSP) problem and Dijkstra’s algo-

rithm is a common choice. Yet, it is instructive to consider

a naı̈ve algorithm [9, §25.1]. We are given a distance ma-

trix where missing edges are represented by ∞ and define

similarity weight wij = e−dij . A path weight is a now a

product of similarities and “shortest” means “of maximum

weight”. Defining matrix power A⊗t as At with + replaced

by max, the algorithm is reduced to computing maxtW
⊗t

(element-wise). Element i, j of W⊗t is the weight of the

shortest path of length t between vi, vj .

Besides their complexity, shortest paths are sensitive to

changes in the graph. An alternative is the sum3 of weights

3In fact, similar to softmax due to the exponential and normalization.

over paths of length t, recovering the ordinary matrix power

Wt, and the weighted sum over all lengths
∑∞

t=0 ctW
t,

where coefficients (ct)t∈N allow for convergence [64], [52,

§9.4]. This justifies (5) and reveals that coefficients control

the contribution of paths depending on length. A common

choice is ct = βαt with β = 1 − α and α ∈ [0, 1) being a

damping factor [64], which justifies function hα (6).

6. Related work

The history of the particular case h = hα is the subject

of the excellent study of spectral ranking [64]. The fun-

damental contributions originate in the social sciences and

include the eigenvector formulation by Seeley [51], damp-

ing by α (6) by Katz [29] and the boundary condition y (1)

by Hubbell [22]. The most well-known follower is PageR-

ank [39]. In machine learning, hα has been referred to as the

von Neumann [27, 52] or regularized Laplacian kernel [57].

Along with the diffusion kernel [32, 31], it has been studied

in connection to regularization [58, 57].

Random fields are routinely used for low-level vision

tasks where one is promoting smoothness while respect-

ing a noisy observation, like in denoising or segmentation,

where both the graph and the observation originate from

a single image [59, 5]. A similar mechanism appears in

semi-supervised learning [69, 73, 71, 6] or interactive seg-

mentation [16, 30] where the observation is composed of

labels over a number of samples or pixels. In our retrieval

scenario, the observation is formed by the neighbors in the

graph of an external query image (or its regions).

The random walk or random walk with restart (RWR)

formulation [70, 69, 40] is an alternative interpretation to

retrieval [11]. Yet, directly solving a linear system is su-

perior [24]. Offline matrix decomposition has been studied

for RWR [61, 13, 26]. All three methods are limited to hα
while sparse LU decomposition [13, 26] assumes an uneven

distribution of vertex degrees [28], which is not the case

for k-NN graphs. In addition, we reduce manifold search

to two-stage Euclidean search via an explicit embedding,

which is data dependent through the kernel K = L−1
α .

In the general case, the spectral formulation (4) has

been known in machine learning [6, 52, 36, 72, 65] and in

graph signal processing [50, 54, 19]. The latter is becom-

ing popular in the form of graph-based convolution in deep

learning [4, 21, 10, 3, 34, 43]. However, with few excep-

tions [4, 21], which rely on an expensive decomposition,

there is nothing spectral when it comes to actual computa-

tion. It is rather preferred to work with finite polynomial

approximations of the graph filter [10, 3] using Chebyshev

polynomials [19, 55] or translation-invariant neighborhood

templates in the spatial domain [34, 43].

We cast retrieval as graph filtering by constructing an

appropriate observation vector. We actually perform the

computation in the frequency domain via a scalable so-

7636

lution. Comparing to other applications, retrieval conve-

niently allows offline computation of the graph Fourier ba-

sis and online reuse to embed query vectors. An alternative

is to use random projections [63, 48]. This roughly corre-

sponds to a single iteration of our step 1. Our solution is

thus more accurate, while h is specified online.

7. Practical considerations

Block diagonal case. Each connected component of G
has a maximal eigenvalue 1. These maxima of small com-

ponents dominate the eigenvalues of the few (or one) “gi-

ant” component that contain the vast majority of data [28].

For this reason we find the connected components with the

union-find algorithm [9] and reorder vertices such that A is

block diagonal: A = diag(A1, . . . , Ac). For each nl × nl

matrix Al, we apply offline stages 1-3 to obtain an approxi-

mate rank-rl eigenvalue decomposition ÛlΛ̂lÛ
⊤
l ≈ Al with

rl = max(ρ, ⌈rnl/n⌉) if nl > ρ, otherwise we compute

an exact decomposition. Integer ρ is a given parameter.

We form (Ul,Λl) by keeping up to ρ slices from each pair

(Ûl, Λ̂l) and complete with up to r slices in total, associated

to the largest eigenvalues of the entire set diag(Λ̂1, . . . , Λ̂c).
Online, we partition (y1; . . . ;yc) = y, compute each xl

from yl by (4) and form back vector x = (x1; . . . ;xc).

Sparse neighborhoods. Denote by ηi the ℓ2-norm of the

i-th row of U . FSR.EXACT yields η = 1 but this is not

the case for FSR.RANK-r. Larger (smaller) values appear

to correspond to densely (sparsely) populated parts of the

graph. For small rank r, norms ηi are more severely affected

for uncommon vectors in the dataset. We propose replacing

each element xi of (4) by

x′i = xi + (1− ηi)v
⊤
i q, (13)

for global descriptors, with a straightforward extension for

regional ones. This is referred to as FSRw and is a weighted

combination of manifold search and Euclidean search. It

approaches the former for common elements and to the lat-

ter for uncommon ones. Our experiments show that this is

essential at large scale.

8. Experiments

This section introduces our experimental setup, investi-

gates the performance and behavior of the proposed method

and its application to large-scale image retrieval.

8.1. Experimental Setup

Datasets. We use three image retrieval benchmarks: Ox-

ford Buildings (Oxford5k) [41], Paris (Paris6k) [42] and In-

stre [67], with the evaluation protocol introduced in [24] for

the latter. We conduct large-scale experiments by following

a standard protocol of adding 100k distractor images from

Flickr [41] to Oxford5k and Paris6k, forming the so called

Oxford105k and Paris106k. Mean average precision (mAP)

evaluates the retrieval performance in all datasets.

Image Descriptors. We apply our method on the same

global and regional image descriptors as in [24]. In par-

ticular, we work with d-dimensional vectors extracted from

VGG [56] (d = 512) and ResNet101 [20] (d = 2, 048) net-

works fine-tuned specifically for image retrieval [45, 15].

Global description is R-MAC with 3 different scales [60],

including the full image as a separate region. Regional de-

scriptors consist of the same regions as those involved in

R-MAC but without sum pooling, resulting in 21 vectors

per image on average. Global and regional descriptors are

processed by supervised whitening [45].

Implementation. We adopt the same parameters for graph

construction and search as in [24]. The pairwise descrip-

tor similarity is defined as s(v, z) = [v⊤z]3+. We use

α = 0.99, and keep the top k = 50 and k = 200 mu-

tual neighbors in the graph for global and regional vec-

tors, respectively. These choices make our experiments di-

rectly comparable to prior results on manifold search for

image retrieval with CNN-based descriptors [24]. In all our

FSR.APPROX experiments, we limit the algorithm within

the largest connected component only, while each element

xi for vertex vi in any other component is just copied from

yi. This choice works well because the largest component

holds nearly all data in practice. Following [24], general-

ized max-pooling [35, 23] is used to pool regional diffusion

scores per image. Reported search times exclude the con-

struction of the observation vector y, since this task is com-

mon to all baseline and our methods. Time measurements

are reported with a 4-core Intel Xeon 2.00GHz CPU.

8.2. Retrieval Performance

Rank-r. We evaluate the performance of FSR.RANK-r for

varying rank r, which affects the quality of the approxima-

tion and defines the dimensionality of the embedding space.

As shown in Figure 4, the effect of r depends on the dataset.

In all cases the optimal performance is already reached at

r = 1k. On Paris6k in particular, this happens as soon

as r = 100. Compared to FSR.EXACT as implemented

in [24], it achieves the same mAP but 150 times faster on

Oxford5k and Paris6k and 300 times faster on Instre. Global

search demonstrates a similar behavior.

We achieve 97.0 mAP on Paris6k, which is near-perfect.

Figure 3 shows the two queries with the lowest AP and their

top-ranked negative images. In most cases the ground-truth

is incorrect, as these images have visual overlap with the

query bounding box. The first correct negative image for

“La Défense” appears at rank 126, where buildings from the

surroundings are retrieved due to “topic drift”. The same

happens with “Pyramide du Louvre”, where the first correct

negative image is at rank 108.

7637

(La Défense, AP: 92.1) #5 #32 #51 #70 #71 #76 #79 #126

(Pyramide du Louvre, AP: 92.7) #2 #4 #8 #61 #68 #72 #75 #108

Figure 3: Two queries with the lowest AP from Paris6k (left) and the corresponding top-ranked negative images based on the

ground-truth, with their rank underneath. Ranks are marked in blue for incorrectly labeled images, and red otherwise.

100 500 1k 2k 5k
40

60

80

100

0.3ms 4ms 21ms 700ms
0.3ms 4ms 21ms 600ms

0.9ms

10ms 42ms 3000ms

rank r

m
A

P

Paris6k
Oxford5k
INSTRE

Figure 4: Performance of regional search with FSR.RANK-

r. Runtimes are reported in text labels. ⋄ refers to

FSR.EXACT performed with conjugate gradients as in [24]

Regional search performs better than global [24] at the

cost of more memory and slower query. We unlock this

bottleneck thanks to the offline pooling U = ΣU . In-

deed, global and regional search on Instre take 0.040s and

0.042s respectively with our method, while the correspond-

ing times for FSR.EXACT are 0.055s and 3s.

Approximate eigendecomposition keeps the off-line stage

tractable at large scale. With 570k regional descriptors on

Instre, FSR.RANK-5000 and FSR.APPROX yield a mAP of

89.5 and 89.2 respectively, with offline cost 60 and 3 hours

respectively, using 16-core Intel Xeon 2.00GHz CPU. This

is important at large scale because the off-line complexity

of FSR.RANK-r is polynomial.

When new images are added, one can express them ac-

cording to existing ones, as in (12). We evaluate such ex-

tension by constructing the graph on a random subset of

100%, 90%, 70%, 50%, 30% and 10% of Instre, yielding

80.5, 80.1, 78.3, 75.8, 70.2 and 40.6 mAP respectively on

the entire dataset, with global search. The drop is graceful

until 30%; beyond that, the graph needs to be updated.

8.3. Largescale experiments

We now apply our approach to a larger scale by using

only 5 descriptors per image using GMM reduction [24].

This choice improves scalability while minimizing the ac-

curacy loss.

1k 2k 5k 10k

40

60

80

100

rank r
m

A
P

FSRw.APPROX (R)
FSRw.APPROX- (V)

FSR.APPROX-(R)
FSR.APPROX- (V)

Figure 5: mAP vs. r on Oxford105k with FSR.APPROX and

FSRw.APPROX, using Resnet101(R) and VGG(V).

FSRw.APPROX becomes crucial, especially at large scale,

because vectors of sparsely populated parts of the graph are

not well represented. Figure 5 shows the comparison be-

tween FSRw.APPROX and FSR.APPROX. We achieve 90.2
and 94.2 with FSR.APPROX and FSRw.APPROX respec-

tively, with r = 10k and Resnet101 descriptors.

We further report the performance separately for each of

the 11 queries of Oxford105k dataset. Results are shown in

Figure 6. Low values of r penalize sparsely populated parts

of the graph, i.e. landmarks with less similar instances in

the dataset. FSRw.APPROX partially solves this issue.

The search time is 0.14s and 0.3s per query for r = 5k

and r = 10k respectively on Oxford105k. It is two orders

of magnitude faster than FSR.EXACT: The implementation

of [24] requires about 14s per query, which is reduced to

1s with dataset truncation: manifold search is a re-ranking

only applied to top-ranked images. We do not use any trun-

cation. This improves the mAP by 3% and our method is

still one order of magnitude faster.

Sparse embeddings. Most descriptors belong only to

few manifolds and each embedding vector has high en-

ergy in the corresponding components. Setting r =
10k, large enough to avoid compromising accuracy, Fig-

ure 7 shows the effect of sparsifying the embeddings with

FSRw.SPARSE on Oxford105k. Remarkably, we can make

up to 90% memory savings with only %2 drop of mAP.

Quantized descriptors. Construction of the observation

vector requires storing the initial descriptors. We further

7638

100 1k 2k 5k 10k
0

20

40

60

80

100

rank r

m
A

P

100 1k 2k 5k 10k
0

20

40

60

80

100

rank r

all souls (78)

ashmolean (25)

balliol (12)

bodleian (24)

christ church (78)

cornmarket (9)

hertford (54)

keble (7)

magdalen (54)

pittrivers (6)

radcliffe (221)

Figure 6: mAP vs. rank r separately per landmark in Oxford105k with FSR.APPROX (left) and FSRw.APPROX (right).

Number of positive images per landmark is shown in the legend.

0 20 40 60 80 100
80

85

90

95

sparsity

m
A

P

Figure 7: mAP vs. sparsity of U by keeping its τ largest

values and varying τ with FSRw.SPARSE on Oxford105k,

Resnet101 descriptors and rank r = 10k.

use product quantization (PQ) [25] to compress them. Us-

ing FSRw.APPROX on Oxford105k, mAP drops from 94.4
with uncompressed descriptors to 94.2 and 91.1 with 256-

and 64-byte PQ codes, respectively.

8.4. Comparison to other methods

Table 1 compares our method with the state-of-the-art.

We report results for r = 5k, FSR.RANK-r for global

description, FSR.APPROX for regional description, and

FSRw.APPROX in large-scale (with 100k distractors) and

regional experiments. GMM reduces the number of re-

gions per image from 21 to 5 [24]. We do not experiment

at large-scale without GMM since there is not much im-

provement and it is less scalable. Our method reaches per-

formance similar to that of FSR.EXACT as evaluated with

CG [24]. Our benefit comes from the dramatic speed-up.

For the first time, manifold search runs almost as fast as

Euclidean search. Consequently, dataset truncation is no

longer needed and this improves the mAP.

9. Discussion

This work reproduces the excellent results of online lin-

ear system solution [24] at fraction of query time. We even

improve performance by avoiding to truncate the graph on-

line. The offline stage is linear in the dataset size, embar-

rassingly parallelizable and takes a few hours in practice

for the large scale datasets of our experiments. The approx-

imation quality is arbitrarily close to the optimal one at a

Method m× d INSTRE Oxf5k Oxf105k Par6k Par106k

Global descriptors - Euclidean search

R-MAC [45] 512 47.7 77.7 70.1 84.1 76.8

R-MAC [15] 2,048 62.6 83.9 80.8 93.8 89.9

Global descriptors - Manifold search

Diffusion [24] 512 70.3 85.7 82.7 94.1 92.5

FSR.RANK-r 512 70.3 85.8 85.0 93.8 92.4

Diffusion [24] 2,048 80.5 87.1 87.4 96.5 95.4

FSR.RANK-r 2,048 80.5 87.5 87.9 96.4 95.3

Regional descriptors - Euclidean search

R-match [46] 21×512 55.5 81.5 76.5 86.1 79.9

R-match [46] 21×2,048 71.0 88.1 85.7 94.9 91.3

Regional descriptors - Manifold search

Diffusion [24] 5×512 77.5 91.5 84.7 95.6 93.0

FSR.APPROX 5×512 78.4 91.6 86.5 95.6 92.4

Diffusion [24] 21×512 80.0 93.2 90.3 96.5 92.6

FSR.APPROX 21×512 80.4 93.0 - 96.5 -

Diffusion [24] 5×2,048 88.4 95.0 90.0 96.4 95.8

FSR.APPROX 5×2,048 88.5 95.1 93.0 96.5 95.2

Diffusion [24] 21×2,048 89.6 95.8 94.2 96.9 95.3

FSR.APPROX 21×2,048 89.2 95.8 - 97.0 -

Table 1: Performance comparison to the baseline methods

and to the state of the art on manifold search [24]. Points

at 512D are extracted with VGG [45] and at 2048D with

ResNet101 [15]. Regional representation with m = 5 de-

scriptors per image uses GMM. Large-scale regional exper-

iments use the FSRw.APPROX variant. Dataset truncation

is used in [24] at large scale.

given embedding dimensionality. The required dimension-

ality for good performance is large but in practice the em-

bedded vectors are very sparse. This resembles an encoding

based on a large vocabulary, searched via an inverted index.

Our method is generic and may be used for problems other

than search, including clustering and unsupervised or semi-

supervised learning.

Acknowledgments The authors were supported by the

MSMT LL1303 ERC-CZ grant. The Tesla K40 used for

this research was donated by the NVIDIA Corporation. The

authors would like to thank James Pritts for fruitful discus-

sions during this work.

7639

References

[1] K. M. Abadir and J. R. Magnus. Matrix algebra. Cambridge Univer-

sity Press, 2005. 3

[2] P. Boldi, V. Lonati, M. Santini, and S. Vigna. Graph fibrations, graph

isomorphism, and PageRank. RAIRO-Theoretical Informatics and

Applications, 40(2):227–253, 2006. 4

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond euclidean data.

arXiv preprint arXiv:1611.08097, 2016. 5

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral net-

works and locally connected networks on graphs. arXiv preprint

arXiv:1312.6203, 2013. 5

[5] S. Chandra and I. Kokkinos. Fast, exact and multi-scale inference for

semantic image segmentation with deep Gaussian CRFs. In ECCV,

pages 402–418, 2016. 4, 5

[6] O. Chapelle, J. Weston, and B. Scholkopf. Cluster kernels for semi-

supervised learning. NIPS, pages 601–608, 2003. 5

[7] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total

recall: Automatic query expansion with a generative feature model

for object retrieval. In ICCV, October 2007. 1

[8] F. R. Chung. Spectral graph theory, volume 92. American Mathe-

matical Soc., 1997. 2

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-

tion to algorithms. Massachusetts Institute of Technology, 2009. 5,

6

[10] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neu-

ral networks on graphs with fast localized spectral filtering. In NIPS,

pages 3837–3845, 2016. 5

[11] M. Donoser and H. Bischof. Diffusion processes for retrieval revis-

ited. In CVPR, 2013. 1, 5

[12] P. Drineas and M. W. Mahoney. On the Nyström method for approx-

imating a gram matrix for improved kernel-based learning. Journal

of Machine Learning Research, 6(Dec):2153–2175, 2005. 2

[13] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast

and exact top-k search for random walk with restart. Proceedings of

the VLDB Endowment, 5(5):442–453, 2012. 5

[14] A. Gordo, J. Almazan, J. Revaud, and D. Larlus. Deep image re-

trieval: Learning global representations for image search. ECCV,

2016. 1

[15] A. Gordo, J. Almazan, J. Revaud, and D. Larlus. End-to-end learning

of deep visual representations for image retrieval. arXiv preprint

arXiv:1610.07940, 2016. 1, 6, 8

[16] L. Grady. Random walks for image segmentation. IEEE Trans.

PAMI, 28(11):1768–1783, 2006. 5

[17] W. Hackbusch. Iterative solution of large sparse systems of equa-

tions. Springer Verlag, 1994. 4

[18] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with

randomness: Probabilistic algorithms for constructing approximate

matrix decompositions. SIAM Review, 53(2):217–288, 2011. 2, 3, 4

[19] D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on

graphs via spectral graph theory. Applied and Computational Har-

monic Analysis, 30(2):129–150, 2011. 5

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. In CVPR, 2016. 6

[21] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional networks on

graph-structured data. arXiv preprint arXiv:1506.05163, 2015. 5

[22] C. H. Hubbell. An input-output approach to clique identification.

Sociometry, 1965. 5

[23] A. Iscen, T. Furon, V. Gripon, M. Rabbat, and H. Jégou. Memory

vectors for similarity search in high-dimensional spaces. IEEE Trans.

Big Data, 4(1), 2018. 6

[24] A. Iscen, G. Tolias, Y. Avrithis, T. Furon, and O. Chum. Efficient dif-

fusion on region manifolds: Recovering small objects with compact

cnn representations. In CVPR, 2017. 1, 2, 3, 4, 5, 6, 7, 8

[25] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE Trans. PAMI, 33(1):117–128, January 2011.

8

[26] J. Jung, K. Shin, L. Sael, and U. Kang. Random walk with restart

on large graphs using block elimination. ACM Transactions on

Database Systems, 41(2):12, 2016. 5

[27] J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic

similarity. In NIPS, 2002. 5

[28] U. Kang and C. Faloutsos. Beyond ’caveman communities’: Hubs

and spokes for graph compression and mining. In Proceedings of

the IEEE International Conference on Data Mining, pages 300–309.

IEEE, 2011. 5, 6

[29] L. Katz. A new status index derived from sociometric analysis. Psy-

chometrika, 18(1):39–43, 1953. 5

[30] T. H. Kim, K. M. Lee, and S. U. Lee. Generative image segmentation

using random walks with restart. In ECCV, pages 264–275. Springer,

2008. 5

[31] R. Kondor and J.-P. Vert. Diffusion kernels. Kernel Methods in Com-

putational Biology, pages 171–192, 2004. 5

[32] R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other

discrete structures. In ICML, 2002. 5

[33] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction.

Springer Science & Business Media, 2007. 5

[34] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.

Bronstein. Geometric deep learning on graphs and manifolds using

mixture model cnns. arXiv preprint arXiv:1611.08402, 2016. 5

[35] N. Murray and F. Perronnin. Generalized max-pooling. In CVPR,

June 2014. 6

[36] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffu-

sion maps, spectral clustering and eigenfunctions of fokker-planck

operators. NIPS, 2005. 5

[37] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.

4

[38] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Process-

ing: Pearson New International Edition. Pearson Higher Ed, 2010.

4

[39] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank cita-

tion ranking: bringing order to the web. 1999. 1, 5

[40] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic mul-

timedia cross-modal correlation discovery. In International Confer-

ence on Knowledge Discovery and Data Mining. ACM, 2004. 4, 5

[41] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object

retrieval with large vocabularies and fast spatial matching. In CVPR,

June 2007. 6

[42] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost

in quantization: Improving particular object retrieval in large scale

image databases. In CVPR, June 2008. 6

[43] G. Puy, S. Kitic, and P. Pérez. Unifying local and non-local signal

processing with graph cnns. arXiv preprint arXiv:1702.07759, 2017.

5

[44] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello

neighbor: Accurate object retrieval with k-reciprocal nearest neigh-

bors. In CVPR, 2011. 1

[45] F. Radenović, G. Tolias, and O. Chum. CNN image retrieval learns

from bow: Unsupervised fine-tuning with hard examples. ECCV,

2016. 1, 2, 6, 8

[46] A. S. Razavian, J. Sullivan, S. Carlsson, and A. Maki. Visual in-

stance retrieval with deep convolutional networks. ITE Transactions

on Media Technology and Applications, 4:251–258, 2016. 1, 8

[47] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for

principal component analysis. SIAM Journal on Matrix Analysis and

Applications, 31(3):1100–1124, 2009. 2

[48] S. Roux, N. Tremblay, P. Borgnat, P. Abry, H. Wendt, and P. Messier.

Multiscale anisotropic texture unsupervised clustering for photo-

graphic paper. In IEEE International Workshop on Information

Forensics and Security, pages 1–6, 2015. 6

7640

[49] H. Rue and L. Held. Gaussian Markov random fields: theory and

applications. CRC Press, 2005. 4

[50] A. Sandryhaila and J. M. Moura. Discrete signal processing on

graphs. IEEE Transactions on Signal Processing, 61(7):1644–1656,

2013. 1, 4, 5

[51] J. R. Seeley. The net of reciprocal influence. a problem in treating

sociometric data. Canadian Journal of Experimental Psychology,

3:234, 1949. 5

[52] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern anal-

ysis. Cambridge university press, 2004. 5

[53] X. Shen, Z. Lin, J. Brandt, and Y. Wu. Spatially-constrained sim-

ilarity measure for large-scale object retrieval. IEEE Trans. PAMI,

36(6):1229–1241, 2014. 1

[54] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-

dergheynst. The emerging field of signal processing on graphs: Ex-

tending high-dimensional data analysis to networks and other irregu-

lar domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

4, 5

[55] D. I. Shuman, P. Vandergheynst, and P. Frossard. Chebyshev poly-

nomial approximation for distributed signal processing. In Interna-

tional Conference on Distributed Computing in Sensor Systems and

Workshops, pages 1–8. IEEE, 2011. 5

[56] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. ICLR, 2014. 6

[57] A. J. Smola and R. Kondor. Kernels and regularization on graphs.

In Learning Theory and Kernel Machines, pages 144–158. Springer,

2003. 5

[58] A. J. Smola, B. Scholkopf, and K.-R. Muller. The connection be-

tween regularization operators and support vector kernels. Neural

Networks, 11(4):637–649, 1998. 5

[59] M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning

Gaussian conditional random fields for low-level vision. In CVPR,

pages 1–8. IEEE, 2007. 5

[60] G. Tolias, R. Sicre, and H. Jégou. Particular object retrieval with

integral max-pooling of cnn activations. ICLR, 2016. 1, 6

[61] H. Tong, C. Faloutsos, and J. Y. Pan. Fast random walk with restart

and its applications. In Proceedings of the IEEE International Con-

ference on Data Mining, pages 613–622, 2006. 4, 5

[62] L. N. Trefethen and D. Bau III. Numerical linear algebra. SIAM,

1997. 2

[63] N. Tremblay and P. Borgnat. Graph wavelets for multiscale commu-

nity mining. IEEE Transactions on Signal Processing, 62(20):5227–

5239, 2014. 6

[64] S. Vigna. Spectral ranking. arXiv preprint arXiv:0912.0238, 2009.

4, 5

[65] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.

Borgwardt. Graph kernels. Journal of Machine Learning Research,

11(Apr):1201–1242, 2010. 5

[66] M. Wainwright and M. Jordan. Graphical models, exponential fam-

ilies, and variational inference. Foundations and Trends in Machine

Learning, 649, 2008. 4

[67] S. Wang and S. Jiang. Instre: a new benchmark for instance-level

object retrieval and recognition. ACM Transactions on Multime-

dia Computing, Communications, and Applications (TOMM), 11:37,

2015. 1, 6

[68] R. Witten and E. Candes. Randomized algorithms for low-rank

matrix factorizations: Sharp performance bounds. arXiv preprint

arXiv:1308.5697, 2013. 2

[69] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learn-

ing with local and global consistency. In NIPS, 2003. 4, 5

[70] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf.

Ranking on data manifolds. In NIPS, 2003. 1, 4, 5

[71] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning

using Gaussian fields and harmonic functions. In ICML, 2003. 5

[72] X. Zhu, J. Kandola, J. Lafferty, and Z. Ghahramani. Graph kernels

by spectral transforms. Semi-Supervised Learning, pages 277–291,

2006. 5

[73] X. Zhu, J. D. Lafferty, and Z. Ghahramani. Semi-supervised learn-

ing: From Gaussian fields to Gaussian processes. Technical report,

2003. 5

7641

