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Abstract

Salient object detection is a problem that has been con-

sidered in detail and many solutions proposed. In this paper,

we argue that work to date has addressed a problem that is

relatively ill-posed. Specifically, there is not universal agree-

ment about what constitutes a salient object when multiple

observers are queried. This implies that some objects are

more likely to be judged salient than others, and implies a

relative rank exists on salient objects. The solution presented

in this paper solves this more general problem that considers

relative rank, and we propose data and metrics suitable to

measuring success in a relative object saliency landscape.

A novel deep learning solution is proposed based on a hier-

archical representation of relative saliency and stage-wise

refinement. We also show that the problem of salient object

subitizing can be addressed with the same network, and our

approach exceeds performance of any prior work across all

metrics considered (both traditional and newly proposed).

1. Introduction

The majority of work in salient object detection considers

either a single salient object [37, 38, 7, 8, 31, 32, 9, 19, 17,

24, 39, 18] or multiple salient objects [13, 27, 36], but does

not consider that what is salient may vary from one person to

another, and certain objects may be met with more universal

agreement concerning their importance.

There is a paucity of data that includes salient objects that

are hand-segmented by multiple observers. It is important to

note that any labels provided by a small number of observers

(including one) does not allow for discerning the relative im-

portance of objects. Implicit assignment of relative salience

based on gaze data [33] also presents difficulties, given a

different cognitive process than a calculated decision that

involves manual labeling [16]. Moreover, gaze data is rela-

tively challenging to interpret given factors such as centre

bias, visuomotor constraints, and other latent factors [2, 1].

∗Both authors contributed equally to this work.
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Figure 1. We present a solution in the form of a deep neural network

to detect salient objects, consider the relative ranking of salience

of these objects, and predict the total number of salient objects.

Left to right: input image, detected salient regions, rank order of

salient objects, confidence score for salient object count (subitizing).

Colors indicate the rank order of different salient object instances.

Therefore, in this paper we consider the problem of salient

object detection more broadly. This includes detection of all

salient regions in an image, and accounting for inter-observer

variability by assigning confidence to different salient re-

gions. We augment the PASCAL-S dataset [23] via further

processing to provide ground truth in a form that accounts

for relative salience. Success is measured against other al-

gorithms based on the rank order of salient objects relative

to ground truth orderings in addition to traditional metrics.

Recent efforts also consider the problem of salient object

subitizing. It is our contention that this determination should

be possible by a model that provides detection of salient

objects (see Fig. 1). We also allow our network to subitize.

As a whole, our work generalizes the problem of salient

object detection, we present a new model that provides pre-

dictions of salient objects according to the traditional form

of this problem, multiple salient object detection and relative

ranking, and subitizing. Our results show state-of-the-art

performance for all problems considered.

2. Background

2.1. Salient Object Detection:

Convolutional Neural Networks (CNNs) have raised the

bar in performance for many problems in computer vision

including salient object detection. CNN based models are
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able to extract more representative and complex features

than hand crafted features used in less contemporary work

[21, 34, 15] which has promoted widespread adoption.

Some CNN based methods exploit superpixel and object

region proposals to achieve accurate salient object detection

[9, 19, 17, 22, 39, 18]. Such methods follow a multi-branch

architecture where a CNN is used to extract semantic in-

formation across different levels of abstraction to generate

an initial saliency prediction. Subsequently, new branches

are added to obtain superpixels or object region proposals,

which are used to improve precision of the predictions.

As an alternative to superpixels and object region propos-

als, other methods [26, 8, 37] predict saliency per-pixel by

aggregating multi-level features. Luo et al. [26] integrate

local and global features through a CNN that is structured as

a multi-resolution grid. Hou et al. [8] implement stage-wise

short connections between shallow and deeper feature maps

for more precise detection and inferred the final saliency map

considering only middle layer features. Zhang et al. [37]

combine multi-level features as cues to generate and recur-

sively fine-tune multi-resolution saliency maps which are

refined by boundary preserving refinement blocks and then

fused to produce final predictions.

Other methods [24, 31, 38] use an end-to-end encoder-

decoder architecture that produces an initial coarse saliency

map and then refines it stage-by-stage to provide better lo-

calization of salient objects. Liu and Han [24] propose a

network that combines local contextual information step-by-

step with a coarse saliency map. Wang et al. [31] propose a

recurrent fully convolutional network for saliency detection

that includes priors to correct initial saliency detection errors.

Zhang et al. [38] incorporate a reformulated dropout after

specific convolutional layers to quantify uncertainty in the

convolutional features, and a new upsampling method to

reduce artifacts of deconvolution which results in a better

boundary for salient object detection.

In contrast to the above described approaches, we achieve

spatial precision through stage-wise refinement by applying

novel mechanisms to control information flow through the

network while also importantly including a stacking strategy

that implicitly carries the information necessary to determine

relative saliency.

2.2. Salient Object Subitizing:

Recent work [35, 7] has also addressed the problem of

subitizing salient objects in images. This task involves count-

ing the number of salient objects, regardless of their impor-

tance or semantic category. The first salient object subitiz-

ing network proposed in [35] applies a feed-forward CNN

to treat the problem as a classification task. He et al. [7]

combine the subitizing task with detection by exploring the

interaction between numeric and spatial representations. Our

proposal provides a specific determination of the number of

salient objects, recognizes variability in this number, and

also provides output as a distribution that reflects this vari-

ability.

3. Proposed Network Architecture

We propose a new end-to-end framework for solving the

problem of detecting multiple salient objects and ranking the

objects according to their degree of salience. Our proposed

salient object detection network is inspired by the success of

convolution-deconvolution pipelines [28, 24, 12] that include

a feed-forward network for initial coarse-level prediction.

Then, we provide a stage-wise refinement mechanism over

which predictions of finer structures are gradually restored.

Fig. 2 shows the overall architecture of our proposed net-

work. The encoder stage serves as a feature extractor that

transforms the input image to a rich feature representation,

while the refinement stages attempt to recover lost contextual

information to yield accurate predictions and ranking.

We begin by describing how the initial coarse saliency

map is generated in section 3.1. This is followed by a de-

tailed description of the stage-wise refinement network, and

multi-stage saliency map fusion in sections 3.2 and sec-

tion 3.3 respectively.

3.1. Feed­forward Network for Coarse Prediction

Recent feed-forward deep learning models applied to

high-level vision tasks (e.g. image classification [6, 30], ob-

ject detection [29]) employ a cascade comprised of repeated

convolution stages followed by spatial pooling. Down-

sampling by pooling allows the model to achieve a highly

detailed semantic feature representation with relatively poor

spatial resolution at the deepest stage of encoding, also

marked by spatial coverage of filters that is much larger

in extent. The loss of spatial resolution is not problematic

for recognition problems; however, pixel-wise labeling tasks

(e.g. semantic segmentation, salient object detection) require

pixel-precise information to produce accurate predictions.

Thus, we choose Resnet-101 [6] as our encoder network (fun-

damental building block) due to its superior performance

in classification and segmentation tasks. Following prior

works on pixel-wise labeling [3, 12], we use the dilated

ResNet-101 [3] to balance the semantic context and fine de-

tails, resulting in an output feature map reduced by a factor

of 8. More specifically, given an input image I ∈ Rh×w×d,

our encoder network produces a feature map of size
⌊

h
8
, w
8

⌋

.

To augment the backbone of the encoder network with a

top-down refinement network, we first attach one extra con-

volution layer with 3× 3 kernel and 12 channels to obtain a

Nested Relative Salience Stack (NRSS). Then, we append a

Stacked Convolutional Module (SCM) to compute the coarse

level saliency score for each pixel. It is worth noting that

our encoder network is flexible enough to be replaced with

any other baseline network e.g. VGG-16 [30], DenseNet-
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Figure 2. Illustration of our proposed network architecture. In the encoder network, the input image is processed with a feed-forward encoder

to generate a coarse nested relative salience stack (St
ϑ). We append a Stacked Convolutional Module (SCM) on top of St

ϑ to obtain a coarse

saliency map S
t
m. Then, a stage-wise refinement network, comprised of rank-aware refinement units (dotted box in the figure), successively

refines each preceding NRSS (St
ϑ) and produces a refined NRSS (St+1

ϑ ). A fusion layer combines predictions from all stages to generate the

final saliency map (ST
m). We provide supervision (∆t

Sϑ
, ∆t

Sm
) at the outputs (St

ϑ, St
m) of each refinement stage. The architecture based on

iterative refinement of a stacked representation is capable of effectively detecting multiple salient objects.

101 [10]. Moreover, we utilize atrous pyramid pooling [3] to

gather more global contextual information. The described

operations can be expressed as

St
ϑ = C3×3(Fs(I;W); Θ), St

m = ξ(St
ϑ) (1)

where I is the input image and (W ,Θ) denote the parameters

of the convolution C. St
ϑ is the coarse level NRSS for stage

t that encapsulates different degrees of saliency for each

pixel (akin to a prediction of the proportion of observers that

might agree an object is salient), St
m refers to the coarse

level saliency map, and ξ refers to SCM. Fs(.) denotes the

output feature map generated by the encoder network. The

SCM consists of three convolutional layers for generating

the desired saliency map. The initial convolutional layer has

6 channels with a 3×3 kernel, followed by two convolutional

layers having 3 channels with 3× 3 kernel and one channel

with 1× 1 kernel respectively. Each of the channels in the

SCM learns a soft weight for each spatial location of the

nested relative salience stack in order to label pixels based

on confidence that they belong to a salient object.

3.2. Stage­wise Refinement Network

Most existing works [24, 32, 37, 8] that have shown suc-

cess for salient object detection typically share a common

structure of stage-wise decoding to recover per-pixel cate-

gorization. Although the deepest stage of an encoder has

the richest possible feature representation, relying only on

convolution and unpooling at the decoding stages to recover

lost information may degrade the quality of predictions [12].

So, the spatial resolution that is lost at the deepest layer may

be gradually recovered from earlier representations. This

intuition appears in proposed refinement based models that

include skip connections [25, 12, 37, 8] between encoder and

decoder layers. However, how to effectively combine local

and global contextual information remains an area deserving

further analysis. Inspired by the success of refinement based

approaches [25, 11, 12], we propose a multi-stage fusion

based refinement network to recover lost contextual infor-

mation in the decoding stage by combining an initial coarse

representation with finer features represented at earlier layers.

The refinement network is comprised of successive stages of

rank-aware refinement units that attempt to recover missing

spatial details in each stage of refinement and also preserve

the relative rank order of salient objects. Each stage refine-

ment unit takes the preceding NRSS with earlier finer scale

representations as inputs and carries out a sequence of oper-

ations to generate a refined NRSS that contributes to obtain

a refined saliency map. Note that refining the hierarchical

NRSS implies that the refinement unit is leveraging the de-

gree of agreement at different levels of SCMs to iteratively

improve confidence in relative rank and overall saliency. As

a final stage, refined saliency maps generated by the SCMs

are fused to obtain the overall saliency map.

3.2.1 Rank-Aware Refinement Unit

Previous saliency detection networks [32, 24] proposed re-

finement across different levels by directly integrating repre-

sentations from earlier features. Following [12], we integrate

gate units in our rank-aware refinement unit that control the

information passed forward to filter out the ambiguity relat-

ing to figure-ground and salient objects. The initial NRSS

(St
ϑ) generated by the feed-forward encoder provides input

for the first refinement unit. Note that one can interpret St
ϑ as

the predicted saliency map in the decoding process, but our

model forces the channel dimension to be the same as the

number of participants involved in labeling salient objects.

The refinement unit takes the gated feature map Gt generated

7144



by the gate unit [12] as a second input. As suggested by [12],

we obtain Gt by combining two consecutive feature maps

(f t
ϑ and f t+1

ϑ ) from the encoder network (see dotted box in

Fig. 2). We first upsample the preceding St
ϑ to double its

size. A transformation function Tf comprised of a sequence

of operations is applied on upsampled St
ϑ and Gt to obtain

the refined NRSS (St+1

ϑ ). We then append the SCM module

on top of St+1

ϑ to generate the refined saliency map St+1
m . Fi-

nally, the predicted S
t+1

ϑ is fed to the next stage rank-aware

refinement unit. Note that, we only forward the NRSS to the

next stage, allowing the network to learn contrast between

different levels of confidence for salient objects. Unlike

other approaches, we apply supervision for both of the re-

fined NRSS and the refined saliency map. The procedure

for obtaining the refined NRSS and the refined saliency map

for all stages is identical. The described operations may be

summarized as follows:

S
t+1

ϑ = wb ∗ Tf (G
t, u(St

ϑ)), S
t+1
m = wb

s ∗ ξ(S
t+1

ϑ ) (2)

where u represents the upsample operation; wb and wb
s de-

notes the parameter for the transformation function Tf and

SCM (ξ in the equation) respectively. Note that t refers to

particular stage of the refinement process.

3.3. Multi­Stage Saliency Map Fusion

Predicted saliency maps at different stages of the refine-

ment units are capable of finding the location of salient

regions with increasingly sharper boundaries. Since all the

rank-aware refinement units are stacked together on top of

each other, the network allows each stage to learn specific

features that are of value in the refinement process. These

phenomena motivate us to combine different level SCMs

predictions, since the internal connection between them is

not explicitly present in the network structure. To facilitate

interaction, we add a fusion layer at the end of network that

concatenates the predicted saliency maps of different stages,

resulting in a fused feature map S f̂
m. Then, we apply a 1× 1

convolution layer Υ to produce the final predicted saliency

map ST
m of our network. Note that our network has T pre-

dictions, including one fused prediction and T-1 stage-wise

predictions. We can write the operations as follows:

S f̂
m = ð(St

m,St+1
m , ....,ST−1

m ), ST
m = wf ∗Υ(S f̂

m) (3)

where ð denotes the cross channel concatenation; wf is the

resultant parameter for obtaining the final prediction.

3.4. Stacked Representation of Ground­truth

The ground-truth for salient object detection or segmenta-

tion contains a set of numbers defining the degree of saliency

for each pixel. The traditional way of generating binary

masks is by thresholding which implies that there is no no-

tion of relative salience. Since we aim to explicitly model

observer agreement, using traditional binary ground-truth

masks is unsuitable. To address this problem, we propose to

generate a set of stacked ground-truth maps that corresponds

to different levels of saliency (defined by inter-observer

agreement). Given a ground-truth saliency map Gm, we ob-

tain a stack Gϑ of N ground-truth maps (Gi,Gi+1, .....,GN )

where each map Gi includes a binary indication that at least

i observers judged an object to be salient (represented at a

per-pixel level). N is the number of different participants

involved in labeling the salient objects. The stacked ground-

truth saliency maps Gϑ provides better separation for mul-

tiple salient objects (see Eq. (4) for illustration) and also

naturally acts as the relative rank order that allows the net-

work to learn to focus on degree of salience. It is important

to note the nested nature of the stacked ground truth wherein

Gi+1 ⊆ Gi. This is important conceptually as a represen-

tation wherein Gi = 1 ⇐⇒ exactly i observers agree,

results in zeroed layers in the ground truth stack, and large

changes to ground truth based on small differences in degree

of agreement.

Gϑ =





Gi









Gi+1









Gi+2







...









GN



 (4)

3.5. Salient Object Subitizing Network

Previous works [35, 7] treat subitizing as a straight-

forward classification task. Similar to our multiple salient ob-

ject detection network, the subitizing network is also based

on ResNet-101 [6] except we remove the last block. We

append a fully connected layer at the end to generate con-

fidence scores for each of 0, 1, 2, 3, and 4+ salient objects

existing in the input image followed by another fully con-

nected layer leads to generate final confidence scores for

each category. The reasoning behind this is that a single

layer allows for accumulation of confidence tied to salience

while two layers allows for reasoning about relative salience.

We use our pre-trained detection model to train the subitizing

network. As a classifier, the subitizing network reduces two

cross entropy losses ℓ1sub(c, n) and ℓ
f
sub(cf , n) between the

number of salient objects n in ground-truth, and the total

predicted objects.

A New Dataset for Salient Object Subitizing: Since

salient object subitizing is not a widely addressed problem,

a limited number of datasets [35] were created. In order to

facilitate the study of this problem in more complex scenar-

ios, we create the subitizing ground-truth for the Pascal-S

dataset [23] that provides instance-wise counting as labels.

The distribution of the images in Pascal-S dataset with re-

spect to different categories is shown in Table 1. It is an

evident from the table that, there is a considerable number

of images with more than two salient objects but only few

images with more than 7. We initially include all instances of

salient objects in the labeling process. To reduce imbalance
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# Salient Object 1 2 3 4 5 6 7 8+ Total

#Images 300 227 136 72 43 28 18 26 850

Distribution (%) 0.35 0.27 0.16 0.08 0.05 0.03 0.02 0.03 1

Table 1. Count and percentage of images corresponding to different

numbers of salient objects in the Pascal-S dataset.

between different categories, we create another ground-truth

set where we only categorize the images as 1, 2, 3, and 4+

salient objects.

3.6. Training the Network

Our proposed network produces a sequence of nested

relative salience stacks (NRSS) and saliency maps at each

stage of refinement; however, we are principally interested

in the final fused saliency map. Each stage of the network is

encouraged to repeatedly produce NRSS and a saliency map

with increasingly finer details by leveraging preceding NRSS

representations. We apply an auxiliary loss at the output of

each refinement stage along with an overall master loss at the

end of the network. Both of the losses help the optimization

process. In more specific terms, let I ∈ Rh×w×3 be a

training image with ground-truth saliency map Gm ∈ Rh×w.

As described in section 3.4, we generate a stack of ground-

truth saliency maps Gϑ ∈ Rh×w×12. To apply supervision

on the NRSS (St
ϑ) and saliency map St

m, we first down-

sample Gϑ and Gm to the size of St
ϑ generated at each stage

resulting in Gt
ϑ and Gt

m. Then, at each refinement stage we

define pixel-wise euclidean loss ∆t
Sϑ

and ∆t
Sm

to measure

the difference between (St
ϑ,G

t
ϑ) and (St

m,Gt
m) respectively.

We can summarize these operations as:

∆t
Sϑ

(W ) =
1

2dN

d∑

i=1

N∑

z=1

(xi(z)− yi(z))
2

∆t
Sm

(W ) =
1

2d

d∑

i=1

(xi − yi)
2

Lt
aux(W ) = ∆t

Sϑ
+∆t

Sm
(5)

where x ∈ IRd and y ∈ IRd (d denotes the spatial resolution)

are the vectorized ground-truth and predicted saliency map.

xi and yi refer to a particular pixel of St
ϑ and Gt

ϑ respectively.

W denotes the parameters of whole network and N refers

to total number of ground-truth slices (N =12 in our case).

The final loss function of the network combining master and

auxiliary losses can be written as:

Lfinal(W ) = Lmas(W ) +

T−1∑

t=1

λtL
t
aux(W ) (6)

where Lmas(W ) refers to the euclidean loss function com-

puted on the final predicted saliency map ST
m. We set λt to 1

for all stages to balance the loss, which remains continuously

differentiable. Each stage of prediction contains information

related to two predictions, allowing our network to propagate

supervised information from deep layers. This also begins

with aligning the weights with the initial coarse representa-

tion, leading to a coarse-to-fine learning process. The fused

prediction generally appears much better than other stage-

wise predictions since it contains the aggregated information

from all the refinement stages. For saliency inference, we

can simply feed an image of arbitrary size to the network

and use the fused prediction as our final saliency map.

4. Experiments

The core of our model follows a structure based on

ResNet-101 [6] with pre-trained weights to initialize the

encoder portion. A few variants of the basic architecture are

proposed, and we report numbers for the following variants

that are described in what follows:

RSDNet: This network includes dilated ResNet-101 [3] +

NRSS + SCM. RSDNet-A: This network is the same as

RSDNet except the ground-truth is scaled by a factor of

1000, encouraging the network to explicitly learn deeper

contrast. RSDNet-B: The structure follows RSDNet except

that an atrous pyramid pooling module is added. RSDNet-C:

RSDNet-B + the ground-truth scaling. RSDNet-R: RSDNet

with stage-wise rank-aware refinement units + multi-stage

saliency map fusion.

4.1. Datasets and Evaluation Metrics

Datasets: The Pascal-S dataset includes 850 natural images

with multiple complex objects derived from the PASCAL

VOC 2012 validation set [4]. We randomly split the Pascal-S

dataset into two subsets (425 for training and 425 for test-

ing). In this dataset, salient object labels are based on an

experiment using 12 participants to label salient objects. Vir-

tually all existing approaches for salient object segmentation

or detection threshold the ground-truth saliency map to ob-

tain a binary saliency map. This operation seems somewhat

arbitrary since the threshold can require consensus among

k observers, and the value of k varies from one study to

another. This is one of the most highly used salient ob-

ject segmentation datasets, but is unique in having multiple

explicitly tagged salient regions provided by a reasonable

sample size of observers. Since a key objective of this work

is to rank salient objects in an image, we use the original

ground-truth maps (each pixel having a value corresponding

to the number of observers that deemed it to be a salient

object) rather than trying to predict a binary output based on

an arguably contentious thresholding process.

Evaluation Metrics: For the multiple salient object detec-

tion task, we use four different standard metrics to mea-

sure performance including precision-recall (PR) curves,

F-measure (maximal along the curve), Area under ROC

curve (AUC), and mean absolute error (MAE). Since some

of these rely on binary decisions, we threshold the ground-

truth saliency map based on the number of participants that
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deem an object salient, resulting in 12 binary ground truth

maps. For each binary ground truth map, multiple thresholds

of a predicted saliency map allow for calculation of the true

positive rate (TPR), false positive rate (FPR), precision and

recall, and corresponding ROC and PR curves. Given that

methods that predate this work are trained based on varying

thresholds and consider a binary ground truth map, scores are

reported based on the binary ground truth map that produces

the best AUC or F-measure score (and the corresponding

curves are shown). Max F-measure, average F-measure and

median F-measure are also reported to provide a sense of

how performance varies as a function of the threshold chosen.

We also report the MAE score i.e. the average pixel-wise

difference between the predicted saliency map and the binary

ground-truth map that produces the minimum score.

In ordered to evaluate the rank order of salient objects, we

introduce the Salient Object Ranking (SOR) metric which is

defined as the Spearman’s Rank-Order Correlation between

the ground truth rank order and the predicted rank order of

salient objects. SOR score is normalized to [0 1] for ease

of interpretation. Scores are reported based on the average

SOR score for each method considering the whole dataset.

4.2. Performance Comparison with State­of­the­art

The problem of evaluating salient detection models is

challenging in itself which has contributed to differences

among benchmarks that are used. In light of these con-

siderations, the specific evaluation we have applied to all

the methods aims to remove any advantages of one algo-

rithm over another. We compare our proposed method with

recent state-of-the-art approaches, including Amulet [37],

UCF [38], DSS [8], NLDF [26], DHSNet [24], MDF [18],

ELD [17], MTDS [22], MC [39], HS [34], HDCT [15], DSR

[21], and DRFI [14]. For fair comparison, we build the eval-

uation code based on the publicly available code provided

in [20] and we use saliency maps provided by authors of

models compared against, or by running their pre-trained

models with recommended parameter settings.

Quantitative Evaluation: Table 2 shows the performance

score of all the variants of our model, and other recent

methods on salient object detection. It is evident that,

RSDNet-R outperforms other recent approaches for all

evaluation metrics, which establishes the effectiveness of

our proposed hierarchical nested relative salience stack.

From the results we have few fundamental observations: (1)

Our network improves the max F-measure by a considerable

margin on the Pascal-S dataset which indicates that our

model is general enough that it achieves higher precision

with higher recall (see Fig. 3). (2) Our model decreases

the overall MAE on the Pascal-S dataset and achieves

higher area under the ROC curve (AUC) score compared

to the baselines shown in Fig. 3. (3) Although our model

is only trained on a subset of Pascal-S, it significantly

∗ AUC max-Fm med-Fm avg-Fm MAE SOR

DRFI [14] 0.887 0.716 0.583 0.504 0.216 0.726

DSR [21] 0.871 0.696 0.628 0.583 0.186 0.728

HDCT [15] 0.809 0.654 0.567 0.523 0.214 0.645

HS [34] 0.837 0.702 0.634 0.596 0.263 0.714

MC [39] 0.870 0.717 0.616 0.573 0.216 0.732

MTDS [22] 0.941 0.805 0.731 0.664 0.176 0.782

ELD [17] 0.916 0.789 0.784 0.774 0.123 0.792

MDF [18] 0.892 0.787 0.746 0.730 0.138 0.768

DHSNet [24] 0.927 0.837 0.833 0.822 0.092 0.781

NLDF [26] 0.933 0.846 0.843 0.836 0.099 0.783

DSS [8] 0.918 0.841 0.838 0.830 0.099 0.770

AMULET [37] 0.957 0.865 0.854 0.841 0.097 0.788

UCF [38] 0.959 0.858 0.840 0.813 0.123 0.792

RSDNet 0.972 0.873 0.854 0.834 0.091 0.825

RSDNet-A 0.973 0.874 0.851 0.796 0.103 0.838

RSDNet-B 0.969 0.877 0.857 0.831 0.100 0.840

RSDNet-C 0.972 0.874 0.850 0.795 0.110 0.848

RSDNet-R 0.971 0.880 0.861 0.837 0.090 0.852

Table 2. Quantitative comparison of methods including AUC, max

F-measure (higher is better), median F-measure, average F-measure,

MAE (lower is better), and SOR (higher is better). The best three

results are shown in red, violet and blue respectively.
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Figure 3. Left: ROC curves corresponding to different state-of-

the-art methods. Right: Precision-Recall curves for salient object

detection corresponding to a variety of algorithms.

outperforms other algorithms that also leverage large-scale

saliency datasets. Overall, this analysis hints at strengths

of the proposed hierarchical stacked refinement strategy

to provide a more accurate saliency map. In addition, it

is worth mentioning that RDSNet-R outperforms all the

recent deep learning based methods intended for salient

object detection/segmentation without any post-processing

techniques such as CRF that are typically used to boost

scores.

Qualitative Evaluation: Fig. 4 depicts a visual comparison

of RSDNet-R with respect to other state-of-the-art methods.

We can see that our method can predict salient regions accu-

rately and produces output closer to ground-truth maps in

various challenging cases e.g., instances touching the image

boundary (1st & 2nd rows), multiple instances of same object

(3rd row). The nested relative salience stack at each stage

provides distinct representations to differentiate between

multiple salient objects and allows for reasoning about their

relative salience to take place.
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Image GT RSDNet-R UCF [38] Amulet [37] DSS [8] NLDF [26] DHSNet [24] MTDS [22] HS [34] DRFI [14]

Figure 4. Predicted salient object regions for the Pascal-S dataset. Each row shows outputs corresponding to different algorithms designed

for the salient object detection/segmentation task.

4.2.1 Application: Ranking by Detection

As salient instance ranking is a completely new problem,

there is not existing benchmark. In order to promote this

direction of studying this problem, we are interested in find-

ing the ranking of salient objects from the predicted saliency

map. Rank order of a salient instance is obtained by averag-

ing the degree of saliency within that instance mask.

Rank(ST
m(δ)) =

∑ρδ

i=1
δ(xi, yi)

ρδ
(7)

where δ represents a particular instance of the predicted

saliency map (ST
m), ρδ denotes total numbers of pixels δ

contains, and δ(xi, yi) refers to saliency score for the pixel

(xi, yi). While there may exist alternatives for defining rank

order, this is an intuitive way of assigning this score. With

that said, we expect that this is another interesting nuance of

the problem to explore further; specifically salience vs. scale,

and part-whole relationships. Note that we do not need to

change the network architecture to obtain the desired ranking.

Instead we use the provided instance-wise segmentation and

saliency map to calculate the ranking for each image.

To demonstrate the effectiveness of our approach, we

compare the overall ranking score with recent state-of-the-

art approaches. It is worth noting that no prior methods

report results for salient instance ranking. We apply the pro-

posed SOR evaluation metric to report how different models

gauge relative salience. The last column in Table 2 shows the

SOR score of our approach and comparisons with other state-

of-the-art methods. We achieve 85.2% correlation score for

the best variant of our model. The proposed method signif-

icantly outperforms other approaches in ranking multiple

salient objects and our analysis shows that learning salient

object detection implicitly learns rank to some extent, but

explicitly learning rank can also improve salient object de-

tection irrespective of how the ground truth is defined. Fig. 5

shows a qualitative comparison of the state-of-the-art ap-

proaches designed for salient object detection. Note that the

role of ranking for more than three objects is particularly

pronounced.

Image GT RSDNet-R AMULET [37] UCF [38]

0 50 100 150 200 250

Figure 5. Qualitative depiction of rank order of salient objects.

Relative rank is indicated by the assigned color. Blue and red image

borders indicate correct and incorrect ranking respectively.

4.2.2 Application: Salient Object Subitizing

As mentioned prior, salient object detection, ranking, and

subitizing are interrelated. It is therefore natural to consider

whether salient region prediction and ranking provide guid-

ance to subitize. A copy of the detection network is further

trained to perform subitizing on Pascal-S. For simplicity

(and in line with prior work [35, 7]), we train our system

only for predicting objects either for 1, 2, 3, or 4+ and report

the Average Precision (AP) [5] in Table 3. Since this is the

first work to perform subitizing on the Pascal-S dataset, we

do not have any baselines to compare with. To make com-

parison possible, we fine-tune and evaluate our model on

the SOS dataset [35], and report the AP and weighted AP

(overall) scores in Table 4. Our proposed model achieves

state-of-the-art results on this dataset compared to baselines.

∗ 1 2 3 4+ mean

RSDNet 0.62 0.42 0.20 0.55 0.45

Table 3. Average Precision (AP) on Pascal-S dataset.

∗ 0 1 2 3 4+ mean overall

count 338 617 219 137 69 - -

% 0.24 0.45 0.16 0.10 0.05 - -

CNN [35] 0.92 0.82 0.34 0.31 0.56 0.59 0.70

SOS [35] 0.93 0.90 0.51 0.48 0.65 0.69 0.79

RSDNet 0.95 0.92 0.61 0.59 0.67 0.75 0.83

Table 4. Overall and Average Precision (AP) on the SOS dataset.
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∗
S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12

AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm AUC Fm

NLDF [26] 0.900 0.846 0.922 0.840 0.931 0.836 0.933 0.831 0.930 0.827 0.922 0.821 0.925 0.818 0.913 0.809 0.897 0.802 0.865 0.782 0.812 0.751 0.660 0.680

DSS [8] 0.883 0.841 0.906 0.839 0.916 0.832 0.918 0.825 0.915 0.821 0.910 0.819 0.912 0.816 0.901 0.805 0.886 0.799 0.855 0.779 0.802 0.745 0.651 0.675

AMULET [37] 0.932 0.865 0.949 0.856 0.954 0.850 0.957 0.847 0.952 0.840 0.944 0.834 0.946 0.829 0.933 0.819 0.918 0.813 0.884 0.791 0.827 0.760 0.671 0.688

UCF [38] 0.940 0.858 0.955 0.845 0.959 0.838 0.959 0.831 0.956 0.829 0.947 0.825 0.949 0.823 0.935 0.813 0.918 0.806 0.885 0.785 0.827 0.754 0.672 0.689

RSDNet 0.950 0.872 0.966 0.873 0.970 0.870 0.972 0.868 0.967 0.860 0.957 0.854 0.957 0.850 0.945 0.842 0.926 0.834 0.893 0.812 0.836 0.774 0.676 0.705

RSDNet-A 0.952 0.874 0.967 0.874 0.972 0.871 0.973 0.869 0.968 0.860 0.958 0.856 0.958 0.853 0.946 0.846 0.928 0.836 0.895 0.815 0.837 0.778 0.677 0.707

RSDNet-B 0.948 0.877 0.963 0.877 0.968 0.873 0.969 0.871 0.964 0.862 0.954 0.856 0.954 0.852 0.942 0.844 0.923 0.833 0.889 0.810 0.831 0.774 0.672 0.702

RSDNet-C 0.955 0.874 0.968 0.872 0.971 0.869 0.972 0.867 0.967 0.859 0.958 0.854 0.958 0.851 0.946 0.843 0.928 0.835 0.895 0.813 0.838 0.775 0.678 0.699

RSDNet-R 0.951 0.880 0.965 0.879 0.969 0.874 0.971 0.871 0.966 0.866 0.956 0.859 0.956 0.854 0.944 0.849 0.925 0.838 0.892 0.815 0.833 0.776 0.674 0.701

Table 5. Quantitative comparison (AUC & Fm) with state-of-the-art methods across all ground truth thresholds, each corresponding to

agreement among a specific number participants. Best and second best scores are shown in red and blue respectively.

Figure 6. Visualization of Principal component analysis (PCA) for

the final prediction stack (NRSS) of our model. The first column

shows the image and its ground truth. Second and third columns

show a selection of ground truth stack slices. The final column

provides a visualization of the top three principal components for

our predicted stack as an RGB image. Note that the contribution of

the top three components itself is diagnostic with respect to relative

salience.

4.3. Examining the Nested Relative Salience Stack

Comparison of slices of the nested relative salience stack

can be challenging as differences between some layer pairs

may be subtle, and contrast can differ across layers. We

therefore examine variability among NRSS layers through

Principal component analysis (PCA) to determine regions

where greatest variability (and signal) exists. Fig. 6 shows

the top three principal components as an RGB image where

the first principal component (which captures the most vari-

ance across layers) is mapped to the R-channel, the second

principal component is mapped to the G-channel and so

forth. Salient areas in the ground truth are captured in the

variability across layers demonstrating the value of our stack-

ing mechanism for saliency ranking. Moreover, it is nearly

possible to read a relative ranking directly from this visual-

ization wherein high values for the first 2 eigenvectors result

in yellow, the first only red, etc.

We also report the AUC score and max F-measure for

each slice (denoted as S) in Table 5. Compared to base-

lines, our proposed method achieves better scores across

all ground truth thresholds, that correspond to the different

numbers of participants showing agreement that an object is

salient. This further shows the effectiveness of the stacking

mechanism and predicting relative salience, which results in

improvements no matter how the ground truth is determined

(if considered as a binary quantity).

4.4. Failure Cases

Despite good performance for the majority of cases; there

are instances that are more challenging to predict (see Fig. 7).

Sometimes, the ground truth has multiple objects with the

same degree of saliency (ties in participants agreeing) (see

1st row in Fig. 7). Other failures of ranking happen when

there is considerable diversity in agreement on what is salient

in an image (as shown in the second row) or when there is

occlusion among two objects which have a relatively close

degree of saliency as shown in the last row.

Image Ground-truth RSDNet DSS [8] AMULET [37]

Figure 7. Shown are some illustrative examples of disagreements

in rank between model and ground truth. These are most common

for ties in the ground truth, and for scenes with many salient objects.

5. Conclusion

In this paper, we have presented a neural framework for

detecting, ranking, and subitizing multiple salient objects

that introduces a stack refinement mechanism to achieve

better performance. Central to the success of this approach,

is how to represent relative saliency both in terms of ground

truth, and in network in a manner that produces stable

performance. We highlight the fact that to date, salient

object detection has assumed a relatively limited, and

sometimes inconsistent problem definition. Comprehensive

experiments demonstrate that the proposed architecture

outperforms state-of-the-art approaches across a broad

gamut of metrics.
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