
Learning to Look Around:

Intelligently Exploring Unseen Environments for Unknown Tasks

Dinesh Jayaraman

UC Berkeley*

Kristen Grauman

UT Austin

Abstract

It is common to implicitly assume access to intelligently

captured inputs (e.g., photos from a human photographer),

yet autonomously capturing good observations is itself a

major challenge. We address the problem of learning to

look around: if an agent has the ability to voluntarily ac-

quire new views to observe its environment, how can it learn

efficient exploratory behaviors to acquire informative vi-

sual observations? We propose a reinforcement learning

solution, where the agent is rewarded for actions that re-

duce its uncertainty about the unobserved portions of its

environment. Based on this principle, we develop a recur-

rent neural network-based approach to perform active com-

pletion of panoramic natural scenes and 3D object shapes.

Crucially, the learned policies are not tied to any recogni-

tion task nor to the particular semantic content seen during

training. As a result, 1) the learned “look around” behav-

ior is relevant even for new tasks in unseen environments,

and 2) training data acquisition involves no manual label-

ing. Through tests in diverse settings, we demonstrate that

our approach learns useful generic policies that transfer to

new unseen tasks and environments.

1. Introduction

Visual perception requires not only making inferences

from observations, but also making decisions about what to

observe. Individual views of an environment afford only a

small fraction of all information relevant to a visual agent.

For instance, an agent with a view of a television screen

in front of it may not know if it is in a living room or a

bedroom. An agent observing a mug from the side may

have to move to see it from above to know what is inside.

An agent surveying a rescue site may need to explore at the

onset to get its bearings.

In principle, complete certainty in perception is only

achieved by making every possible observation—that is,

looking around in all directions, or systematically examin-

ing all sides of an object—yet observing all aspects is often

*Work done while at UT Austin.

inconvenient if not intractable. In practice, however, not

all views are equally informative. The natural visual world

contains regularities, suggesting not every view needs to be

sampled for near-perfect perception. For instance, humans

rarely need to fully observe an object to understand its 3D

shape [33,58,59], and one can often understand the primary

contents of a room without literally scanning it [63]. Given

a set of past observations, some new views are more useful

than others. This leads us to investigate the question: how

can a learning system make intelligent decisions about how

to acquire new exploratory visual observations?

Today, much of the computer vision literature deals with

inferring visual properties from a fixed observation. For

instance, there are methods to infer shape from multiple

views [24], depth from monocular views [54], or category

labels of objects [37]. The implicit assumption is that the in-

put visual observation is already appropriately captured. We

contend that this assumption neglects a key part of the chal-

lenge: intelligence is often required to obtain proper inputs

in the first place. Arbitrarily framed snapshots of the visual

world are ill-suited both for human perception [16, 49] and

for machine perception [3, 70]. Circumventing the acqui-

sition problem is only viable for passive perception algo-

rithms running on disembodied stationary machines, which

are tasked only with processing human-captured imagery.

In contrast, we are interested in learning to observe

efficiently—a critical yet understudied problem for au-

tonomous embodied visual agents. An agent ought to be

able to enter a new environment or pick up a new object and

intelligently (non-exhaustively) look around. This capabil-

ity would be valuable in both task-driven scenarios (e.g., a

drone searches for signs of a particular activity) as well as

scenarios where the task itself unfolds simultaneously with

the agent’s exploratory actions (e.g., a search-and-rescue

robot enters a burning building and dynamically decides its

mission). While there is interesting recent headway in ac-

tive object recognition [3, 11, 29, 43] and intelligent search

mechanisms for detection [10, 32, 45, 73], such systems are

supervised and task-specific—limited to accelerating a pre-

defined recognition task.

We address the general setting, where exploration is not

11238



Where to

look next? ?

Figure 1. Looking around efficiently is a complex task requiring the ability to reason about regularities in the visual world using cues like

context and geometry. (Left) An agent that has observed limited portions of its environment can reasonably hallucinate some unobserved

portions (e.g. water near the ship), but is much more uncertain about other portions. Where should it look next? (Right) An agent inspecting

a mug. Having seen a top view and a side view, how must it rotate the mug now to get maximum new information? Critically, we aim to

learn policies that are not specific to a given object or scene, and not even to a specific individual task. Rather, the look-around policies

ought to benefit the agent exploring new, unseen environments and performing tasks unspecified when learning the look-around behavior.

specialized to one task, but should benefit perception tasks

in general. To this end, we formulate an unsupervised learn-

ing objective based on active observation completion: a sys-

tem must intelligently acquire a small set of observations

from which it can hallucinate all other possible observa-

tions. The agent continuously updates its internal model of

a target scene or 3D shape based on all previously observed

views. The goal is not to produce photorealistic predictions,

but rather to represent the agent’s evolving internal state.

Its task is to select actions leading to new views that will

efficiently complete its internal model. Posing the active

view acquisition problem in terms of observation comple-

tion has two key advantages: generality and low cost (label-

free) training data. It is also well-motivated by findings that

infants’ abilities to actively manipulate and inspect objects

correlates with learning to complete 3D shapes [58].

We develop a reinforcement learning approach for active

visual completion. It uses recurrent neural networks to ag-

gregate information over a sequence of views. The agent is

rewarded based on its predictions of unobserved views.

We explore our idea in two settings. See Figure 1. In

the first, the agent scans a scene through its limited field of

view camera; the goal is to select efficient camera motions

so that after a few glimpses, it can model unobserved por-

tions of the scene well. In the second, the agent manipulates

a 3D object to inspect it; the goal is to select efficient ma-

nipulations so that after only a small number of actions, it

has a full model of the object’s 3D shape. In both cases,

the system must learn to leverage visual regularities (shape

primitives, context, etc.) that suggest the likely contents

of unseen views, focusing on portions that are hard to hal-

lucinate. Furthermore, we show our exploratory policies

are generic enough to be transferred to entirely new unseen

tasks and environments.

2. Related work

Saliency and attention: Previous work studies the ques-

tion of “where to look” to prioritize portions of already cap-

tured image/video data, so as to reserve computation for the

most salient regions or block out distractors [1, 5, 8, 23, 41,

47, 52, 62, 71], or to predict the gaze or preference of a hu-

man observer [27,40,61]. In contrast, in our setting, the sys-

tem can never observe a snapshot of its entire environment

at once; its decision is not where to focus within a current

observation, but rather where to look for a new observation.

Optimal sensor placement: The sensor placement litera-

ture studies how to place sensors in a distributed network to

provide maximum coverage [14, 36, 64]. Unlike our active

completion problem, the sensors are static, i.e., their posi-

tions are preset, and their number is fixed. Further, sensor

placement is based on coverage properties of the sensors,

whereas our model must react to past observations.

Active perception: Intelligent control strategies for vi-

sual tasks were pioneered by [2, 6, 7, 65]. Recent work con-

siders tasks such as active object localization [4, 10, 17, 21,

32,45,46,56,77], action detection in video [73], and object

recognition [3,29,31,43] including foveated vision systems

that selectively obtain higher resolution data [9, 20, 53].

Our idea stands out from this body of work in two key as-

pects: (1) Rather than target a pre-defined recognition task,

we aim to learn a data acquisition strategy useful to percep-

tion in general, hence framing it as active “observation com-

pletion”. We show how policies trained on our task are use-

ful for recognition tasks for which the system has not been

trained to optimize its look-around behavior. (2) Rather

than manually labeled data, our method learns from unla-

beled observations. Training good policies usually requires

large amounts of data; our unsupervised objective removes

the substantial burden of manually labeling this data. In-

stead, our approach exploits viewpoint-calibrated observa-

tions as “free” annotations that an agent can acquire through

its own explorations at training time.

Work on intrinsic motivation “pseudorewards” [42] also

reduces the need for external supervision, but focuses on

learning “options” for policies seeking reward signals in a

specific task and fixed environment. Similarly motivated

self-supervised work [50] learns policies to play sparse-

reward video games by augmenting environmental reward

1239



from the game engine with rewards for actions whose out-

comes are unpredictable. Neither work explores problems

with real natural images.

Active visual localization and mapping: Active visual

SLAM aims to limit samples needed to densely reconstruct

a 3D environment using geometric methods [13, 34, 35, 44,

60]. Beyond measuring uncertainty in the current scene,

our learning approach capitalizes on learned context from

previous experiences with different scenes/objects.

Image completion: Completion tasks appear in other

contexts within vision and graphics. Inpainting and texture

synthesis fill small holes (e.g., [18,51]), and large holes can

be filled by pasting in regions or textures from other images

of the same scene or similar-looking scenes [25,55,75]. Re-

cent work explores unsupervised “proxy tasks” to learn rep-

resentations, via various forms of completion like inpaint-

ing and colorization [39, 51, 74]. Our observation comple-

tion setting differs from these in that 1) it requires agent ac-

tion, 2) a much smaller fraction of the overall environment

is observable at a time, 3) our target is a representation of

multimodal beliefs, rather than a photorealistic rendering,

and 4) we use completion to learn exploratory behaviors

rather than features.

Learning to reconstruct: While 3D vision has long been

tackled with geometry and densely sampled views [24],

recent work explores ways to inject learning into recon-

struction and view synthesis [12, 15, 22, 28, 38, 67, 72, 76].

Whereas prior work learns to aggregate and extrapolate

from passively captured views in one shot, our work is the

first to consider active, sequential acquisition of informa-

tive views. Our view synthesis module builds on the one-

shot reconstruction approach of [28], but our contribution

is entirely different. Whereas [28] infers a viewgrid image

from a single input view, our approach learns look-around

behavior to select the sequence of views expected to best

reconstruct all views.

Shortly after our work was first released [30], the

Im2Pano3D project [57] explored scene completion on

360 panoramas given a partial RGB-D view. Both our

work and [57] represent first attempts to i) extrapolate to

omnidirectional panoramas and ii) posit extrapolation as

a scene understanding task beyond graphics. However,

whereas [57] considers completion tasks where about half

of the scene is observed, in our case only about 5% of the

scene is observed at a time. More importantly, our idea is

to learn exploratory, non-myopic policies for how an agent

should direct its camera over time—even in a novel environ-

ment; the output is a policy for how to move. In contrast,

the goal in [57] is to perform one-shot reconstruction of a

given scene’s semantic segmentation and 3D structure; the

output is the panorama itself.

3. Approach

We now present our approach for learning to actively

look around. For ease of presentation, we present the prob-

lem setup as applied to a 3D object understanding task.

With minor modifications (detailed in Sec. 4) our frame-

work applies also to the panoramic scene understanding set-

ting. Both will be tested in results.

3.1. Problem setup and notation

The problem setting is as follows: At timestep t = 1, an

agent is presented with an object X in a random, unknown

pose1. At every timestep, it can perform one action to rotate

the object and observe it from the new viewpoint. Its objec-

tive is to make efficient exploratory rotations to understand

the object’s shape. It maintains an internal representation of

the object shape, which it updates after every new observa-

tion. After a budget of T timesteps of exploration, it should

have learned a model that can produce a view of the object

as seen from any specified new viewing angle.

We discretize the space of all viewpoints into a “view-

grid” V (X), as in [29,31,43]. To do this, we evenly sample

M azimuths from 0° to 360° and N elevations from -90° to

+90° and form all MN possible pairings. Each pairing of

an azimuth and an elevation corresponds to one viewpoint

θi on a viewing sphere focused on the object. Let x(X,θi)
denote the 2D image corresponding to the view of object

X from viewpoint θi. The viewgrid V (X) is the table of

views x(X,θi) for 1 ≤ i ≤ MN . During training, the full

viewgrid of each object is available to the agent as supervi-

sion. During testing, the system must predict the complete

viewgrid, having seen only a few views within it.

At each timestep t, the agent observes a new view xt

and updates its prediction for the viewgrid V̂t(x1, · · · ,xt).
Simplifying notation, the problem now reduces to sequen-

tially exploring the viewgrid V to improve V̂t — in other

words, actively completing the observation of the viewgrid

V (X) of object X . Given the time budget T << MN , the

agent can see a maximum of T views out of all MN views

(maximum because it is allowed to revisit old views).

We explicitly choose to complete the viewgrid in the

pixel-space so as to maintain generality—the full scene/3D

object encompasses all potentially useful information for

any task. Hence, by formulating active observation comple-

tion in the pixel space, our approach avoids committing to

any intermediate semantic representation, in favor of learn-

ing policies that seek generic information useful to many

tasks. That said, our formulation is easily adaptable to more

specialized settings—e.g., if the target task only requires se-

mantic segmentation labels, the predictions could be in the

space of object labels instead.

1We assume the elevation angle alone is known, since this is true of

real-world settings due to gravity.

1240



The active observation completion task poses three ma-

jor challenges. Firstly, to predict unobserved views well,

the agent must learn to understand 3D from very few views.

Classic geometric solutions struggle under these conditions.

Instead, reconstruction must draw on semantic and con-

textual cues. Secondly, intelligent action is critical to this

task. Given a set of past observations, the system must act

based on which new views are likely to be most informa-

tive, i.e., determine which views would most improve its

model of the full viewgrid. We stress that the system will

be faced with objects and scenes it has never encountered

during training, yet still must intelligently choose where it

would be valuable to look next. Finally, the task is highly

underconstrained—after only a few observations, there are

typically many possibilities, and the agent must be able to

handle this multimodality.

3.2. Active observation completion framework

Our solution to these challenges is a recurrent neural net-

work, whose architecture naturally splits into five modules

with distinct functions: SENSE, FUSE, AGGREGATE, DE-

CODE, and ACT. We first present these modules and their

connections; Sec. 3.3 below defines the learning objective

and optimization. Architecture details for all modules are

given in Fig 2.

Encoding to an internal model of the target First we de-

fine the core modules with which the agent encodes its in-

ternal model of the current environment. At each step t, the

agent is presented with a 2D view xt captured from a new

viewpoint θt. We stress that absolute viewpoint coordinates

θt are not fully known, and objects/scenes are not presented

in any canonical orientation. All viewgrids inferred by our

approach treat the first view’s azimuth as the origin. We as-

sume only that the absolute elevation can be sensed using

gravity, and that the agent is aware of the relative motion

from the previous view. Let pt denote this proprioceptive

metadata (elevation, relative motion).

The SENSE module processes these inputs in separate

neural network stacks to produce two vector outputs, which

we jointly denote as st = SENSE(xt,pt) (see Fig 2, top

left). FUSE combines information from both input streams

and embeds it into ft = FUSE(st) (Fig 2, top center).

Then this combined sensory information ft from the cur-

rent observation is fed into AGGREGATE, which is a long

short term memory module (LSTM) [26]. AGGREGATE

maintains an encoded internal model at of the object/scene

under observation to “remember” all relevant information

from past observations. At each timestep, it updates this

code, combining it with the current observation to produce

at = AGGREGATE(f1, · · · ,ft) (Fig 2, top right).

SENSE, FUSE, and AGGREGATE together may be thought

of as performing the function of “encoding” observations

into an internal model. This code at is now fed into two

modules, for producing the output viewgrid and selecting

the action, respectively.

Decoding to the inferred viewgrid DECODE trans-

lates the aggregated code into the predicted viewgrid

V̂t(x1, · · · ,xt) = DECODE(at). To do this, it first reshapes

at into a sequence of small 2D feature maps (Fig 2, bottom

right), before upsampling to the target dimensions using a

series of learned up-convolutions. The final up-convolution

produces MN maps, one for each of the MN views in the

viewgrid. For color images, we produce 3MN maps, one

for each color channel of each view. This is then reshaped

into the target viewgrid (Fig 2, bottom center). Seen views

are pasted directly from memory.

Acting to select the next viewpoint to observe Finally,

ACT processes the aggregate code at to issue a motor com-

mand δt = ACT(at) (Fig 2, middle right). For objects, the

motor commands rotate the object (i.e., agent manipulates

the object or peers around it); for scenes, the motor com-

mands move the camera (i.e., agent turns in the 3D envi-

ronment). Upon execution, the observation’s pose updates

for the next timestep to θt+1 = θt + δt. For t = 1, θ1 is

randomly sampled.

Internally, ACT first produces a distribution over all pos-

sible actions, and then samples δt from this distribution. To

approximate the constraint that motions in the real world

must be continuous, we restrict ACT to select “small” dis-

crete actions (details in Sec 4) at each timestep. Due to

the sampling operation, ACT is a stochastic neural net-

work [48]. Once the new viewpoint θt+1 is set, a new view

is captured and the whole process repeats. This happens

until T timesteps have passed, involving T − 1 actions.

3.3. Objective function and model optimization

All modules are jointly optimized end-to-end to improve

the final reconstructed viewgrid V̂T , which contains pre-

dicted views x̂T (X, θj) for all viewpoints θj , 1 ≤ j ≤

MN .

A simple objective would be to minimize the distance

between predicted and target views at the same viewpoint

coordinate at time T : for each training object X , LT (X) =∑
i d(x̂T (X,θi),x(X, θi)), where d(.) is a distance func-

tion. However, this loss function requires viewpoint coordi-

nates to be registered exactly in the output and target view-

grids, whereas the agent has only partial knowledge of the

object’s pose (known elevation but unknown azimuth) and

thus must output viewgrids assuming the azimuth coordi-

nate of the first view to be the origin. Therefore, output

viewgrids are shifted by an angle ∆0 from the target view-

grid, and ∆0 must be included in the loss function:

LT (X) =
MN∑

i=1

d(x̂T (X,θi +∆0),x(X,θi)). (1)

1241



max-pool

(3x3, stride2)

ReLU

ReLU

avg-pool

(3x3, stride2)

5

5

1 32

32

32

32

15

15

7

7

5

5

256

256

64

3

3

fc 

ReLU
ReLU

avg-pool

(3x3)

5

5

16

image stack

proprioception stack

fc fc

256 256

ReLU ReLU

fusesense

64

4

4

256

8

8

16

16

128

Leaky 

ReLU

Leaky 

ReLU

Leaky 

ReLU

32

32

(M azimuths)x

(N elevations)

Leaky 

ReLU

decode

aggregate

LSTM

act
fc

input

view

In
p

u
t 

v
ie

w

O
u

tp
u

t

v
ie

w
g

r
id

fc
ReLU

fc
SoftMax

sample action

fc
ReLU

actions PMF

output

viewgrid

reshape channels 

to viewgrid

Figure 2. Architecture of our active observation completion system. While the input-output pair shown here is for the case of 360° scenes,

we use the same architecture for the case of 3D objects. In the output viewgrid, solid black portions denote observed views, question marks

denote unobserved views, and transparent black portions denote the system’s uncertain contextual guesses. See Sec. 3.2 for details.

We set d(.) to be the per-pixel squared L2 distance, so the

agent expresses its uncertainty by averaging over the modes

of its beliefs about unseen views. In principle, d(.) could be

replaced with other metrics. In particular, a GAN loss [19]

would force the agent to select one belief mode to produce

a photorealistic viewgrid, but the selected mode might not

match the ground truth. Rather than one plausible photore-

alistic rendering (GAN), we aim to resolve uncertainty over

time to converge to the correct model (L2).

Note that ∆0 is used only at training time and only to

compute the loss. This choice has the effect of making the

setting more realistic and also significantly improving gen-

eralization ability. If the viewpoint were fully known, the

system might minimize the training objective by memoriz-

ing a mapping from <view, viewpoint> to viewgrid, which

would not generalize. Instead, with our unknown viewpoint

setting and training objective (Eq 1), the system is incen-

tivized to learn the harder but more generalizable skill of

mental object rotation to produce the target viewgrids.

To minimize the loss, we employ a combination of

stochastic gradient descent and REINFORCE [66], as

in [47]. Specifically, the gradient of the loss in Eq 1 is

backpropagated via the DECODE, AGGREGATE, FUSE, and

SENSE modules. If ACT were a standard deterministic neu-

ral network module, it could receive gradients from SENSE.

However, ACT is stochastic as it involves a sampling oper-

ation. To handle this, we use the REINFORCE technique:

we compute reward R(X) = −LT (X), and apply it to the

outputs of ACT at all timesteps2, backpropagating to encour-

age ACT behaviors that led to high rewards. To backprop-

2In practice, we reduce the variance of R for stable gradients by sub-

tracting the “baseline” expected reward over the last few iterations.

agate through time (BPTT) to the previous timestep, the

reward gradient from ACT is now passed to AGGREGATE

for the previous timestep. BPTT for the LSTM module in-

side AGGREGATE proceeds normally with incoming gradi-

ents from the various timesteps—namely, the DECODE loss

gradient for t = T , and the ACT reward gradients for previ-

ous timesteps.

In practice, we find it beneficial to penalize errors in the

predicted viewgrid at every timestep, rather than only at t =
T , so that the loss LT (X) of Eq 1 changes to:

L(X) =

T∑

t=1

MN∑

i=1

d(x̂t(X,θi +∆0),x(X, θi)). (2)

Note that this loss L(X) would reduce to the loss LT (X) of

Eq 1 if, instead of the summation over t, t were held fixed at

T . Since there are now incoming loss gradients to DECODE

at every timestep, BPTT involves adding reward gradients

from ACT to per-timestep loss gradients from DECODE be-

fore passing through AGGREGATE. BPTT through AGGRE-

GATE is unaffected. Our approach learns a non-myopic pol-

icy to best utilize the budget T , meaning it can learn be-

haviors more complex than simply choosing the next most

promising observation. Accordingly, we retain the reward

R(X) = −LT (X) for REINFORCE updates to ACT, based

only on the final prediction; per-timestep rewards would in-

duce greedy short-term behavior and disincentivize actions

that yield gains in the long term, but not immediately.

Further, we find it useful to pretrain the entire network

with T = 1, before training AGGREGATE and ACT with

more timesteps, while other modules are frozen at their pre-

trained configurations. This helps avoid poor local minima

and enables much faster convergence.

1242



There are prior methods that use recurrent neural net-

works and REINFORCE to achieve some notion of vi-

sual attention [29, 47, 73]. Following the best practice of

adopting well-honed architectures in the literature, we re-

tain broadly similar architectural choices to these recent in-

stantiations of neural network policy learning where pos-

sible. This also facilitates fair comparisons with [29] for

testing our policy transfer idea (defined below). However,

in addition to all the technical details presented above, our

approach differs significantly in its objective (see Sec. 2).

3.4. Unsupervised policy transfer to unseen tasks

The complete scene or 3D object encompasses all po-

tentially useful information for any task. To capitalize

on this property, we next propose an unsupervised policy

transfer approach. The main idea is to inject our generic

look-around policy into new unseen tasks in unseen en-

vironments. In particular, we consider transferring our

policy—trained without supervision—into a specific recog-

nition task that targets objects unseen by the policy learner.

To do this, we plug in our unsupervised active observa-

tion completion policies into the active categorization sys-

tem of [29]. At training time, we train two models: an end-

to-end model for active categorization using random poli-

cies following [29] (“model A”), and an active observation

completion model (“model B”). Note that our completion

model is, without supervision, trained to look around en-

vironments/objects that have zero overlap with model A’s

target set. Furthermore, even the categories of objects seen

during training may differ from those during testing.

At test time, we run forward passes through both mod-

els A and B simultaneously. At every timestep, both mod-

els observe the same input view. They then communicate

as follows: the observation completion model B selects ac-

tions to complete its internal model of the new environment.

At each timestep, this action is transmitted to model A, in

place of the randomly sampled actions that it was trained

with. Model A now produces the labels from the correct

target label set. If the policy learned in model A is truly

generic, it will intelligently explore to solve the new (un-

seen) categorization task.

4. Experiments

To validate our approach, we examine the effective-

ness of active completion policies for faster reconstruction

(Sec 4.2), as well as their utility for transferring unsuper-

vised look-around policies to a recognition task (Sec 4.2).

4.1. Datasets and experimental setups

For benchmarking and reproducibility, we evaluate ac-

tive settings with two widely used datasets:

On SUN360 [69], our limited field-of-view (45°) agent

attempts to complete an omnidirectional scene. SUN360

has spherical panoramas of diverse categories. We use

the 26-category subset used in [29, 69]. The viewgrid has

32×32 views from 5 camera elevations (-90,-45,. . . ,90°)

and 8 azimuths (45,90,. . . ,360°). At each timestep, the

agent moves within a 3 elevations×5 azimuths neighbor-

hood from the current position. Balancing task difficulty

(harder tasks require more views) and training speed (fewer

views is faster) considerations, we set training episode

length T = 6 a priori.

On ModelNet [68], our agent manipulates a 3D object

to complete its image-based shape model of the object.

ModelNet has two subsets of CAD models: ModelNet-

40 (40 categories) and ModelNet-10 (10 category-subset

of ModelNet-40). To help test our ability to generalize

to previously unseen categories, we train on categories in

ModelNet-40 that are not in ModelNet-10. We then test

both on new instances from the seen categories, and on the

unseen categories from ModelNet-10. The viewgrid has

32x32 views from 7 camera elevations (0,±30,±60,±90)

and 12 azimuths (30,60,. . . ,360°). Per-timestep motions are

allowed within the 5×5 neighboring angles of the current

viewing angle. The training episode length is T = 4.

Baselines We test our active completion approach ours

against a variety of baselines:

• 1-view is our method trained with T = 1. No informa-

tion aggregation or action selection is performed by this

baseline.

• random is identical to our approach, except that the action

selection module is replaced by randomly selected actions

from the pool of all possible actions.

• large-action chooses the largest allowable action re-

peatedly. This tests if “informative” views are just far-

apart views. Since there is no one largest action, we test

all actions along the perimeter of the grid of allowable ac-

tions, and report results for the best-performing action on

the test set.

• peek-saliency moves to the most salient view within

reach at each timestep, using a popular saliency met-

ric [23]. To avoid getting stuck in a local saliency max-

imum, it does not revisit seen views. peek-saliency

tests if salient views are informative for observation com-

pletion. Note that this baseline “peeks” at neighboring

views prior to action selection to measure saliency, giv-

ing it an unfair and impossible advantage over ours and

the other baselines.

These baselines all use the same network architecture as

ours, differing only in the exploration policy which we

seek to evaluate. All results sample every possible starting

position for all methods.

1243



SUN360 scene and ModelNet object observation completion examples

Ground truth viewgrid t = 1 (MSE: 43.28) t = 2 (MSE: 32.51) t = 3 (MSE: 27.29) t = 4 (MSE: 24.92)

Ground truth viewgrid t = 1 (MSE: 8.32) t = 2 (MSE: 4.38) t = 3 (MSE: 4.22) t = 4 (MSE: 4.20)

Figure 3. Best viewed on pdf with zoom. Episodes of active observation completion for a scene (top) and object (bottom). Column 1 shows the ground

truth viewgrid with a red square around the random starting view. Columns 2-5 show our method’s viewgrid completions for t = 1, . . . , 4 with red

squares around selected views. As the model’s beliefs evolve, the space of possibilities grows more constrained, and the shape of the ground truth

viewgrid begins to emerge. Row 1: The system correctly estimates a flat outdoor scene at t = 1, inferring the position of a horizon and even the sun from

just one view of a gradient in the sky. At t = 2, it sees rocks and sand, and updates the viewgrid to begin resembling a beach. It then continues to focus

on the most interesting (and unpredictable) region of the scene containing the rocks and shrubs. Row 2: The first view is overhead, and azimuthally

aligned with one of the sides of an unseen category object (chair). Our agent chooses to move as far from this view as possible at t = 2, instantly forming

a much more chair-like predicted viewgrid, which continues to improve gradually afterwards.

Table 1. Per-pixel mean squared error (MSE×1000) with episode length set to training length T (6 on SUN360, 4 on ModelNet), and

corresponding improvement over 1-view baseline. Lower error and higher improvement is better. RGB (luminance) values in color

(gray) images are normalized to [0,1], so error values are on scale of 0 to 1000.

Dataset→ SUN360 ModelNet (seen classes) ModelNet (unseen classes)

Method↓ — Metric→ MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement

1-view 39.40 - 3.83 - 7.38 -

random 31.88 19.09% 3.46 9.66% 6.22 15.72%

large-action 30.76 21.93% 3.44 10.18% 6.16 16.53%

peek-saliency 27.00 31.47% 3.47 9.40% 6.35 13.96%

ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

4.2. Active observation completion results

Tab 1 shows the scene and object completion mean-

squared error on SUN360 and ModelNet (seen and unseen

classes). For these results, episode lengths are held con-

stant to T timesteps, same as during training. While all

the multi-view methods improve over 1-view, our method

outperforms all baselines by large margins. To isolate

the impact of view selection, we report improvement over

1-view for all methods. Compared to random, ours con-

sistently yields approximately 2x improvement; our gains

over large-action are also substantial in all cases, mean-

ing that simply looking at well-spaced views is not enough.

Both outcomes highlight the major value in learning to in-

telligently look around. Improvements are larger on more

difficult datasets, where errors are larger (SUN360 > Mod-

elNet unseen > ModelNet seen). This is as expected, since

additional views are most critical where one view produces

very poor results. On SUN360, peek-saliency, which

has unfair access to neighboring views for action selection,

is the strongest baseline, but still falls short of ours. On

ModelNet data, peek-saliency performs poorly, likely

because saliency fails to differentiate well between the syn-

thetic CAD model views; what is informative about an ob-

ject’s shape is much more complex than what low-level un-

supervised saliency can measure. Importantly, our advan-

tages hold even for unseen categories (rightmost), empha-

sizing the task-independence of our look-around policies.

Does our approach simply exploit its knowledge of cam-

era elevation to sample useful elevations more than others?

For instance, perhaps views from a horizontal camera posi-

tion (elevation 0°) are more informative than others. Upon

investigation, we find that this is not the case in practice.

In particular, our learned policy samples all elevations uni-

formly on both SUN360 and ModelNet data. Hence, the

ability to sense gravity alone offers no advantage over the

random baseline.

Figure 4 further shows how error drops over time. With

perfect information aggregation, all methods should asymp-

totically approach zero error at high t, which diminishes the

value of intelligent exploration. All methods show consis-

tent improvement, with sharpest error drops for ours.

Fig 3 presents some completion episodes (see Supp for

more). As our system explores, the rough “shape” of the

target scene or object emerges in its viewgrid predictions.

1244



1 2 3 4 5 6

time t

25

30

35

40

p
er
-p
ix
el

M
S
E
(x
10
00
)

SUN360

1 2 3 4

time t

3.4

3.6

3.8

4.0
ModelNet seen classes

1 2 3 4

time t

6.0

6.5

7.0

7.5

ModelNet unseen classes

1-view

random

large-action

peek-saliency

ours

Figure 4. Active observation completion: per-pixel mean-squared error versus time for the three test datasets.

We stress that the goal of our work is not to obtain pho-

torealistic images. Rather, the goal is to learn policies for

looking around that efficiently resolve model uncertainty in

novel environments; the predicted viewgrids visualize the

agent’s beliefs over time. The key product of our method is

a policy, not an image—as the next result emphasizes.

4.3. Unsupervised policy transfer results

Having shown our approach successfully trains unsuper-

vised policies to acquire useful visual observations, we next

test how well this policy transfers to a new task with new

data from unseen categories (cf. Sec 3.4).

We closely follow the active categorization experimental

setups in [29]. Using our method presented in Sec 3.4, we

plug our unsupervised active observation completion poli-

cies into the active categorization system of [29]. The active

categorization model (“model A”) is trained with random

policies—this is the same as the random-policy baseline

below. For ModelNet, we train “model A” on ModelNet-

10 training objects, and the active observation completion

model (“model B”) on ModelNet-30 training objects, dis-

joint from the target ModelNet-10 dataset classes. For

SUN360, both models are trained on SUN360 training data.

Baselines We compare: 1) sup-policy, the full end-to-

end active categorization system trained using the “Looka-

head active RNN” approach [29]; 2) 1-view, a passive

feed-forward neural network which only processes one ran-

domly presented view and predicts its category. Its ar-

chitecture is identical to sup-policy minus the action

selection and information aggregation modules; and 3)

random-policy, an active categorization system trained

on the target classes that selects random actions. It uses the

same core architecture as sup-policy, except for the ac-

tion selection module; in place of learned actions, it selects

random legal motions from the same motion neighborhood

as sup-policy. We also compare 4) large-action and

5) peek-saliency from the last section.

Fig 5 shows the results. For both SUN360 active scene

recognition and ModelNet-10 active object recognition, our

unsupervised policies perform on par with the end-to-end

active categorization policy of [29], easily outperforming

random-policy, 1-view, and large-action. This is

remarkable because our policy is only trained for the sepa-

rate, unsupervised active observation completion task. Fur-

40

45

50

55

60

65

70

1 2 3 4 5 6

A
cc

u
ra

cy
 (

%
)

time t

SUN360 active categorization

85

87

89

91

93

1 2 3 4

time t

ModelNet-10 active categorization

1-view

random-policy

sup-policy [29]

large-action

peek-saliency

ours (policy transfer)

Figure 5. Policy transfer: Active categorization accuracy vs. time

on SUN360 scenes (left) and ModelNet-10 objects (right).

ther, in the ModelNet case, it is also trained on data from

disjoint classes. Recall that peek-saliency is not actu-

ally a viable solution; it “cheats” by trying out all moves

and measuring saliency before selecting a move at each

timestep. Still, even this strategy falls short of our method.

These results show the potential of unsupervised ex-

ploratory tasks to facilitate policy learning on massive un-

labeled datasets. Policy learning is famously expensive

in terms of data, computation, and time. Once trained,

exploratory policies like the proposed active completion

framework could be transferred to arbitrary new tasks with

much smaller datasets. Performance may further improve if

instead of directly transferring the policy, the policy could

be finetuned for the new task, analogous to feature finetun-

ing as widely employed in the passive recognition setting.

5. Conclusions

Our work tackles a new problem: how can a visual agent

learn to look around, independent of a recognition task? We

presented a new active observation completion framework

for general exploratory behavior learning. Our reinforce-

ment learning solution demonstrates consistently strong re-

sults across very different settings for realistic scene and

object completion, compared to multiple revealing base-

lines. Our results showing successful application of our

unsupervised exploratory policy for active recognition are

the first demonstration of “policy transfer” between tasks

to our knowledge. These results hold great promise for

task-agnostic exploration, an important step towards au-

tonomous embodied visual agents.

Acknowledgements: This research is supported in part

by a DARPA Lifelong Learning Machines award, an

AWS ML Research Award, and a Samsung Fellow-

ship. We thank TACC for providing computing resources.

1245



References

[1] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned salient region detection. In CVPR, 2009.

2

[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vi-

sion. In IJCV, 1988. 2

[3] P. Ammirato, P. Poirson, E. Park, J. Kosecka, and A. C. Berg.

A dataset for developing and benchmarking active vision. In

ICRA, 2017. 1, 2

[4] A. Andreopoulos and J. Tsotsos. 50 years of object recogni-

tion: Directions forward. In CVIU, 2013. 2

[5] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object recog-

nition with visual attention. In ICLR, 2015. 2

[6] R. Bajcsy. Active perception. In Proceedings of the IEEE,

1988. 2

[7] D. Ballard. Animate vision. In Artificial Intelligence, 1991.

2

[8] L. Bazzani, H. Larochelle, V. Murino, J.-A. Ting, and N. d.

Freitas. Learning attentional policies for tracking and recog-

nition in video with deep networks. In ICML, 2011. 2

[9] N. Butko and J. Movellan. Optimal scanning for faster object

detection. In CVPR, 2009. 2

[10] J. Caicedo and S. Lazebnik. Active object localization with

deep reinforcement learning. In ICCV, 2015. 1, 2

[11] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d

model repository. In arXiv preprint arXiv:1512.03012, 2015.

1

[12] C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-

R2N2: A unified approach for single and multi-view 3d ob-

ject reconstrution. In ECCV, 2016. 3

[13] A. J. Davison and D. W. Murray. Simultaneous localization

and map-building using active vision. In TPAMI, 2002. 3

[14] S. S. Dhillon and K. Chakrabarty. Sensor placement for ef-

fective coverage and surveillance in distributed sensor net-

works. In WCNC, 2003. 2

[15] A. Dosovitskiy, J. Springenberg, and T. Brox. Learning

to generate chairs with convolutional neural networks. In

CVPR, 2015. 3

[16] S. Edelman and H. H. Bülthoff. Orientation dependence

in the recognition of familiar and novel views of three-

dimensional objects. In Vision research, 1992. 1

[17] A. G. Garcia, A. Vezhnevets, and V. Ferrari. An active search

strategy for efficient object detection. In CVPR, 2015. 2

[18] L. Gatys, A. Ecker, and M. Bethge. Texture synthesis using

convolutional neural networks. In NIPS, 2015. 3

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014. 5

[20] S. Gould, J. Arfvidsson, A. Kaehler, B. Sapp, M. Messner,

G. Bradski, P. Baumstarck, S. Chung, and A. Ng. Peripheral-

foveal vision for real-time object recognition and tracking in

video. In IJCAI, 2007. 2

[21] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Ma-

lik. Cognitive mapping and planning for visual navigation.

In CVPR, 2017. 2

[22] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface pre-

diction for 3d object reconstruction. In CVPR, 2017. 3

[23] J. Harel, C. Koch, and P. Perona. Graph-based visual

saliency. In NIPS, 2006. 2, 6

[24] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003. 1, 3

[25] J. Hays and A. A. Efros. Scene completion using millions of

photographs. In ACM Graphics (TOG), 2007. 3

[26] S. Hochreiter and J. Schmidhuber. Long short-term memory.

In Neural computation, 1997. 4

[27] H. Hu, Y. Lin, M. Liu, H. Cheng, Y. Chang, and M. Sun.

Deep 360 pilot: Learning a deep agent for piloting through

360 sports videos. In CVPR, 2017. 2

[28] D. Jayaraman, R. Gao, and K. Grauman. Unsupervised

learning through one-shot image-based shape reconstruction.

In arXiv, 2017. 3

[29] D. Jayaraman and K. Grauman. Look-ahead before you leap:

end-to-end active recognition by forecasting the effect of mo-

tion. In ECCV, 2016. 1, 2, 3, 6, 8

[30] D. Jayaraman and K. Grauman. Learning to look around.

arXiv preprint arXiv:1709.00507, 2017. 3

[31] E. Johns, S. Leutenegger, and A. Davison. Pairwise decom-

position of image sequences for active multi-view recogni-

tion. In CVPR, 2016. 2, 3

[32] S. Karayev, T. Baumgartner, M. Fritz, and T. Darrell. Timely

object recognition. In NIPS, 2012. 1, 2

[33] P. J. Kellman and E. S. Spelke. Perception of partly occluded

objects in infancy. In Cognitive psychology, 1983. 1

[34] A. Kim and R. M. Eustice. Perception-driven navigation:

Active visual slam for robotic area coverage. In ICRA, 2013.

3

[35] T. Kollar and N. Roy. Trajectory optimization using rein-

forcement learning for map exploration. In IJRR, 2008. 3

[36] A. Krause and C. Guestrin. Near-optimal observation selec-

tion using submodular functions. In AAAI, 2007. 2

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[38] T. Kulkarni, W. Whitney, P. Kohli, and J. Tenenbaum. Deep

convolutional inverse graphics network. In NIPS, 2015. 3

[39] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization

as a proxy task for visual understanding. In CVPR, 2017. 3

[40] Y. Li, A. Fathi, and J. M. Rehg. Learning to predict gaze in

egocentric video. In ICCV, 2013. 2

[41] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H.-

Y. Shum. Learning to detect a salient object. In PAMI, 2011.

2

[42] M. Machado and M. Bowling. Learning purposeful be-

haviour in the absence of rewards. In ICML, 2016. 2

[43] M. Malmir, K. Sikka, D. Forster, J. Movellan, and G. W.

Cottrell. Deep Q-learning for active recognition of GERMS.

In BMVC, 2015. 1, 2, 3

[44] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A.

Castellanos. Active policy learning for robot planning and

exploration under uncertainty. In RSS, 2007. 3

[45] S. Mathe, A. Pirinen, and C. Sminchisescu. Reinforcement

learning for visual object detection. In CVPR, 2016. 1, 2

1246



[46] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard,

A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu,

et al. Learning to navigate in complex environments. In

ICLR, 2017. 2

[47] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recur-

rent models of visual attention. In NIPS, 2014. 2, 5, 6

[48] R. M. Neal. Learning stochastic feedforward networks. In

Tech Report, 1990. 4

[49] S. Palmer, E. Rosch, and P. Chase. Canonical perspective

and the perception of objects. In Attention and performance

IX, 1981. 1

[50] D. Pathak, P. Agrawal, A. Efros, and T. Darrell. Curiosity-

driven exploration by self-supervised prediction. In ICML,

2017. 2

[51] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting. In

CVPR, 2016. 3

[52] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung.

Saliency filters: Contrast based filtering for salient region

detection. In CVPR, 2012. 2

[53] M. Ranzato. On learning where to look. In arXiv preprint

arXiv:1405.5488, 2014. 2

[54] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d

scene structure from a single still image. In TPAMI, 2009. 1

[55] Q. Shan, B. Curless, Y. Furukawa, C. Hernandez, and S. M.

Seitz. Photo uncrop. In ECCV, 2014. 3

[56] S. Soatto. Actionable information in vision. In ICCV, 2009.

2

[57] S. Song, A. Zeng, A. X. Chang, M. Savva, S. Savarese,

and T. Funkhouser. Im2pano3d: Extrapolating 360 struc-

ture and semantics beyond the field of view. arXiv preprint

arXiv:1712.04569 (to appear at CVPR 2018), 2017. 3

[58] K. C. Soska, K. E. Adolph, and S. P. Johnson. Systems

in development: motor skill acquisition facilitates three-

dimensional object completion. In Developmental psychol-

ogy, 2010. 1, 2

[59] K. C. Soska and S. P. Johnson. Development of three-

dimensional object completion in infancy. In Child devel-

opment, 2008. 1

[60] R. Spica, P. R. Giordano, and F. Chaumette. Active struc-

ture from motion: application to point, sphere, and cylinder.

2014. 3

[61] Y.-C. Su, D. Jayaraman, and K. Grauman. Pano2vid: Auto-

matic cinematography for watching 360 videos. In ACCV,

2016. 2

[62] A. Torralba. Neurobiology of attention, chapter contextual

influences on saliency. 2005. 2

[63] A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Hender-

son. Contextual guidance of eye movements and attention

in real-world scenes: the role of global features in object

search. In Psychological review, 2006. 1

[64] B. Wang. Coverage problems in sensor networks: A survey.

In ACM CSUR, 2011. 2

[65] D. Wilkes and J. Tsotsos. Active object recognition. In

CVPR, 1992. 2

[66] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. In Machine

learning, 1992. 5

[67] J. Wu, T. Xue, J. Lim, Y. Tian, J. Tenenbaum, A. Torralba,

and W. Freeman. Single image 3d interpreter network. In

ECCV, 2016. 3

[68] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In CVPR, 2015. 6

[69] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba. Recogniz-

ing scene viewpoint using panoramic place representation.

In CVPR, 2012. 6

[70] B. Xiong and K. Grauman. Detecting snap points in egocen-

tric video with a web photo prior. In ECCV, 2014. 1

[71] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdi-

nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In ICML,

2015. 2

[72] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective

transformer nets: Learning single-view 3d object reconstruc-

tion without 3d supervision. In NIPS, 2016. 3

[73] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-

to-end learning of action detection from frame glimpses in

videos. In CVPR, 2016. 1, 2, 6

[74] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoen-

coders: Unsupervised learning by cross-channel prediction.

In CVPR, 2016. 3

[75] Y. Zhang, J. Xiao, J. Hays, and P. Tan. Framebreak: Dra-

matic image extrapolation by guided shift-maps. In CVPR,

2013. 3

[76] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. Efros. View

synthesis by appearance flow. In ECCV, 2016. 3

[77] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-

Fei, and A. Farhadi. Target-driven visual navigation in in-

door scenes using deep reinforcement learning. In ICRA,

2017. 2

1247


