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Abstract

We introduce a novel self-supervised learning method

based on adversarial training. Our objective is to train a

discriminator network to distinguish real images from im-

ages with synthetic artifacts, and then to extract features

from its intermediate layers that can be transferred to other

data domains and tasks. To generate images with artifacts,

we pre-train a high-capacity autoencoder and then we use

a damage and repair strategy: First, we freeze the autoen-

coder and damage the output of the encoder by randomly

dropping its entries. Second, we augment the decoder with

a repair network, and train it in an adversarial manner

against the discriminator. The repair network helps gen-

erate more realistic images by inpainting the dropped fea-

ture entries. To make the discriminator focus on the arti-

facts, we also make it predict what entries in the feature

were dropped. We demonstrate experimentally that features

learned by creating and spotting artifacts achieve state of

the art performance in several benchmarks.

1. Introduction

Recent developments in deep learning have demon-

strated impressive capabilities in learning useful features

from images [23], which could then be transferred to sev-

eral other tasks [12, 13, 35, 38]. These systems rely on

large annotated datasets, which require expensive and time-

consuming human labor. To address these issues self-

supervised learning methods have been proposed [7, 28, 32,

42, 44]. These methods learn features from images with-

out annotated data. Some introduce a pretext task through

the following strategy: one withholds some information

about the input data and then trains a network to recover

it. For example, some methods withhold image regions

[32], color [44] or both grayscale and color values [45];

others have widthheld the location of patches [7, 28], or ad-

ditional external information such as egomotion [19]. In

self-supervised learning the main challenge is to define a

pretext task that relates the most to the final applications of

the learned features.

Figure 1. A mixture of real images (green border) and images with

synthetic artifacts (red border). Is a good object representation

necessary to tell them apart?

Towards this goal, we propose to learn features by clas-

sifying images as real or with artifacts (see Figure 1). We

aim at creating image artifacts, such that a model capable

of spotting them would require an accurate representation

of objects and thus build features that could transfer well to

tasks such as object classification, detection and segmenta-

tion. A first approach to create artifacts is to use inpainting

algorithms [2, 6]. Besides being computationally inefficient

on large inpainting regions, these methods are unsuitable for

training because they may introduce low-level statistics that

a neural network could easily learn to detect. This could

limit what the network learns about objects. Therefore, in-

stead of editing images at the pixel level, we tamper with

their feature representation and create corrupt images so

that the texture artifacts are locally unnoticeable, but glob-

ally incorrect, as illustrated in Figure 1.

To generate artifacts we first train an autoencoder to re-

produce images. Then, we randomly drop entries from the

encoded feature (at the bottleneck) so that some informa-

tion about the input image is lost. We then add a repair

neural network to the decoder to help it render a realistic

image. The repair network inpaints the feature representa-

tions at every layer of the decoder, but its limited capacity

does not allow it to fully recover the missing information.

In this way we obtain an image with artifacts that cannot

be detected through local analysis. We then train a discrim-
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inator to distinguish real from corrupt images. Moreover,

we also make the discriminator output a mask to indicate

what feature entries were dropped. This implicitly helps the

discriminator focus on the important details in the image.

We also use the true mask to restrict the scope of the repair

network to the features corresponding to the dropped en-

tries. This limits the ability of the repair network to replace

missing information in a globally consistent manner. The

repair network and the discriminator are then trained in an

adversarial fashion. However, in contrast to other adversar-

ial schemes, notice that our repair network is designed not

to completely confuse the discriminator. Finally, we trans-

fer features from the discriminator, since this is the model

that learns an approximation of the distribution of images.

Our contributions can be summarized as follows: 1) a

novel feature learning framework based on detecting im-

ages with artifacts, which does not require human annota-

tion; 2) a method to create images with non-trivial artifacts;

3) our features achieve state of the art performance on sev-

eral transfer learning evaluations (ILSVRC2012 [5], Pascal

VOC [11] and STL-10 [4]).

2. Prior Work

This work relates to several topics in machine learn-

ing: adversarial networks, autoencoders and self-supervised

learning, which we review briefly here below.

Adversarial Training. The use of adversarial networks has

been popularized by the introduction of the generative ad-

versarial network (GAN) model by Goodfellow et al. [14].

Radford et al. [34] introduced a convolutional version of

the GAN along with architectural and training guidelines in

their DCGAN model. Since GANs are notoriously difficult

to train much work has focused on heuristics and techniques

to stabilize training [36, 34]. Donahue et al. [8] extend

the GAN model with an encoder network that learns the

inverse mapping of the generator. Their encoder network

learns features that are comparable to contemporary unsu-

pervised methods. They show that transferring the discrim-

inator features in the standard GAN setting leads to signif-

icantly worse performance. In contrast, our model demon-

strates that by limiting the capabilities of the generator net-

work to local alterations the discriminator network can learn

better visual representations.

Autoencoders. The autoencoder model is a common choice

for unsupervised representation learning [16], with two no-

table extensions: the denoising autoencoder [41] and the

variational autoencoder (VAE) [21]. Several combinations

of autoencoders and adversarial networks have recently

been introduced. Makhzani et al. [26] introduce adversar-

ial autoencoders, which incorporate concepts of VAEs and

GANs by training the latent hidden space of an autoencoder

to match (via an adversarial loss) some pre-defined prior

distribution. In our model the autoencoder network is sep-

arated from the generator (i.e., repair network) and we do

not aim at learning semantically meaningful representations

with the encoder.

Self-supervised Learning. A recently introduced paradigm

in unsupervised feature learning uses either naturally oc-

curring or artificially introduced supervision as a means to

learn visual representations. The work of Pathak et al. [32]

combines autoencoders with an adversarial loss for the task

of inpainting (i.e., to generate the content in an image re-

gion given its context) with state-of-the-art results in se-

mantic inpainting. Similarly to our method, Denton et al.

[6] use the pretext task of inpainting and transfer the GAN

discriminator features for classification. However, we re-

move and inpaint information at a more abstract level (the

internal representation), rather than at the raw data level.

This makes the generator produce more realistic artifacts

that are then more valuable for feature learning. Wang and

Gupta [42] use videos and introduce supervision via visual

tracking of image-patches. Pathak et al. [31] also make use

of videos through motion-based segmentation. The result-

ing segmentation is then used as the supervisory signal. Do-

ersch et al. [7] use spatial context as a supervisory signal by

training their model to predict the relative position of two

random image patches. Noroozi and Favaro [28] build on

this idea by solving jigsaw puzzles. Zhang et al. [44] and

Larsson et al. [24] demonstrate good transfer performance

with models trained on the task of image colorization, i.e.,

predicting color channels from luminance. The split-brain

autoencoder [45] extends this idea by also predicting the

inverse mapping. The recent work of Noroozi et al. [29]

introduces counting of visual primitives as a pretext task

for representation learning. Other sources of natural super-

vision include ambient sound [30], temporal ordering [27]

and physical interaction [33]. We compare our method to

the above approaches and show that it learns features that,

when transferred to other tasks, yield a higher performance

on several benchmarks.

3. Architecture Overview

We briefly summarize the components of the architec-

ture that will be introduced in the next sections. Let x be

a training image from a dataset and x̂ be its version with

artifacts. As model, we use a neural network consisting of

the following components (see also Figure 2):

1. Two autoencoder networks {E,D1, D2, D3, D4, D5},

where E is the encoder and D = {D1, D2, D3, D4, D5}
is the decoder, pre-trained to reproduce high-fidelity real

images x; φ(x) is the output of the encoder E on x;

2. A spatial mask Ω to be applied to the feature

output of E; the resulting masked feature is denoted

φ̂(x) = Ω ⊙ φ(x) + (1 − Ω) ⊙ (u ∗ φ(x)), where u is

some uniform spatial kernel so that u ∗ φ(x) is a feature

average, and ⊙ denotes the element-wise product in the
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Real/Corrupt

X + + + + +

Figure 2. The proposed architecture. Two autoencoders {E,D1, D2, D3, D4, D5} output either real images (top row) or images with

artifacts (bottom row). A discriminator C is trained to distinguish them. The corrupted images are generated by masking the encoded

feature φ(x) and then by using a repair network {R1, R2, R3, R4, R5} distributed across the layers of the decoder. The mask is also used

by the repair network to change only the dropped entries of the feature (see Figure 5 for more details). The discriminator and the repair

network (both shaded in blue) are trained in an adversarial fashion on the real/corrupt classification loss. The discriminator is also trained

to output the mask used to drop feature entries, so that it learns to localize all artifacts.

spatial domain (the mask is replicated along the channels);

3. A discriminator network C to classify x as real images

and x̂ as fake; we also train the discriminator to output the

mask Ω, so that it learns to localize all artifacts;

4. A repair network {R1, R2, R3, R4, R5} added to the

layers of one of the two decoder networks; the output of

a layer Ri is masked by Ω so that it affects only masked

features.

The repair network and the discriminator are trained

in an adversarial fashion on the real/corrupt classification

loss.

4. Learning to Spot Artifacts

Our main objective is to train a classifying network (the

discriminator) so that it learns an accurate distribution of

real images. Prior work [34] showed that a discriminator

trained to distinguish real from fake images develops fea-

tures with interesting abstraction capabilities. In our work

we build on this observation and exploit a way to control

the level of corruption of the fake images (see Sec. 4.1).

Thus, we train a classifier to discriminate between real and

corrupt images (see Sec. 4.3). As illustrated earlier on, by

solving this task we hope that the classifier learns features

suitable for other tasks such as object classification, detec-

tion and segmentation. In the next sections we describe our

model more in detail, and present the design choices aimed

at avoiding learning trivial features.

4.1. The Damage & Repair Network

In our approach we would like to be able to create corrupt

images that are not too unrealistic, otherwise, a classifier

(a) (b) (c) (d) (e)

Figure 3. Two examples of corrupt images obtained from our dam-

age & repair network. (a) shows two original images from the Im-

ageNet dataset. At the bottom-left corner of those images we show

the masks applied to the encoded feature φ(x). These masks drop

on average about 50% of the encoded feature. (b) shows the output

corrupt images. The repair network assists the decoder in inpaint-

ing texture that is only locally unnoticeable. However, at the global

scale the objects are no longer recognizable as valid instances. (c)

shows the output of the decoder when the repair network is not ac-

tive. In this case the artifacts are very visible and easy to detect by

exploiting low-level statistics. (d) shows the output of the decoder

when the repair network is not masked. The repair network is then

able to change the image more globally. This has a negative effect

on the discriminator as it fails to predict the mask. (e) shows an

example where the images are fed through the damage & repair

network twice. This results in even more artifacts than in (b).

could distinguish them from real images by detecting only

low-level statistics (e.g., unusual local texture patterns). At

the same time, we would like to have as much variability as

possible, so that a classifier can build a robust model of real

images.

To address the latter concern we randomly corrupt real

images of an existing dataset. To address the first con-

cern instead of editing images at the pixel-level, we cor-
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rupt their feature representation and then partly repair the

corruption by fixing only the low-level details. We en-

code an image x in a feature φ(x) ∈ R
M×N×L, where

φ(x) = E(x), and then at each spatial coordinate in the

M ×N domain we randomly drop all the L channels with

a given probability θ ∈ (0, 1). This defines a binary mask

matrix Ω ∈ {0, 1}M×N of what feature entries are dropped

(Ωij = 0) and which ones are preserved (Ωij = 1). The

dropped feature channels are replaced by the correspond-

ing entries of an averaged feature computed by convolv-

ing φ(x) with a large uniform kernel u. As an alternative,

we also replace the dropped feature channels with random

noise. Experimentally, we find no significant difference in

performance between these two methods. The mask Ω is

generated online during training and thus the same image x

is subject to a different mask at every epoch. If we fed the

corrupt feature directly to the decoder D the output would

be extremely unrealistic (see Figure 3 (c)). Thus, we in-

troduce a repair network that partially compensates for the

loss of information due to the mask. The repair network in-

troduces repair layers Ri between layers of the decoder Di.

These layers receive as input the corrupt feature or the out-

puts of the decoder layers and are allowed to fix only entries

that were dropped. More precisely, we define the input to

the first decoder layer D1 as

φ̂(x) + (1− Ω)⊙R1(φ̂(x)), (1)

where φ̂(x) = Ω ⊙ φ(x) + (1 − Ω) ⊙ (u ∗ φ(x)) and u is

a large uniform filter. At the later layers D2, D3, and D4

we upsample the mask Ω with the nearest neighbor method

and match the spatial dimension of the corresponding inter-

mediate output, i.e., we provide the following input to each

layer Di with i = 2, 3, 4

Di−1 + (1− Ui−1(Ω))⊙Ri(Di−1), (2)

where Ui−1 denotes the nearest neighbor upsampling to the

spatial dimensions of the output of Di−1. Finally, we also

design our encoder E so that it encodes features that are spa-

tially localized and with limited overlap with one another.

To do so, we define the encoder E = {E1, E2, E3, E4, E5}
with five layers where E1 uses 3 × 3 convolutional filters

with stride 1 and the remaining four layers E2, E3, E4, and

E5 use 2 × 2 convolutional filters with stride 2. As shown

in Figure 4, this design limits the receptive field of each en-

coded feature entry to a 18×18 pixels patch in the input im-

age with a 2 pixels overlap with neighboring patches. Thus,

dropping one of these feature entries is essentially equiva-

lent to dropping one of the 18 × 18 pixels patches in the

input image.

In Figure 3 we show two examples of real images and

corresponding corrupt images obtained under different con-

ditions. Figure 3 (a) shows the original images and the mask

18

18

2

Figure 4. Encoder design. On the left we show the input im-

age and on the right we show the corresponding feature encoding

φ(x). We use 5 layers, where the first one uses 3×3 convolutional

filters with stride 1 and the remaining 4 use 2 × 2 convolutional

filters with stride 2. As can be observed, this results in almost sep-

arate receptive fields for each feature entry of φ(x). Each entry

corresponds to a 18 × 18 pixels patch in the original input and

overlaps 2 pixels with the neighboring patches (1 pixel each side).

This encoding ensures a strong spatial locality to each entry of the

encoded features.

Ω, where M,N = 8, as inset on the bottom-left corner.

The dropping probability is θ = 0.5. Figure 3 (b) shows

the resulting corrupt images obtained by our complete ar-

chitecture. Notice that locally it is impossible to determine

whether the image is real or corrupt. Only by looking at

a larger region, and by exploiting prior knowledge of what

real objects look like, it is possible to determine that the

image is corrupt. For comparison purposes we show in Fig-

ure 3 (c) and (d) the corresponding corrupt images obtained

by disabling the repair network and by using the repair net-

work without the mask restriction, respectively. Finally, in

Figure 3 (e) we apply the repair network twice and observe

that more easy-to-detect low-level artifacts have been intro-

duced.

4.2. Replication of Real Images

Given the corrupt images generated as described in the

previous section, we should be ready to train the discrimi-

nator C. The real images could indeed be just the original

images from the same dataset that we used to create the cor-

rupt ones. One potential issue with this scheme is that the

discriminator may learn to distinguish real from corrupt im-

ages based on image processing patterns introduced by the

decoder network. These patterns may be unnoticeable to

the naked eye, but neural networks seem to be quite good at

spotting them. For example, networks have learnt to detect

chromatic aberration [7] or downsampling patterns [29].

To avoid this issue we use the same autoencoder {E,D}
used to generate corrupt images, also to replicate real im-

ages. Since the same last layer D5 of the decoder is used to

generate the real and corrupt images, we expect both images
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to share the same processing patterns. This should discour-

age the discriminator from focusing on such patterns.

We therefore pre-train this autoencoder and make sure

that it has a high capacity, so that images are replicated with

high accuracy. The training of E and D is a standard opti-

mization with the following least-squares objective

Lauto =
∑

x∼p(x)

|D(E(x))− x|2. (3)

4.3. Training the Discriminator

As just discussed in Sec. 4.2, to replicate real images we

use an autoencoder {E,D} and, as described in Sec. 4.1,

to create corrupt images we use a damage & repair autoen-

coder {Ω ⊙ E, D̂}, where D̂ = {R1, D1, R2, D2, R3, D3,
R4, D4, R5, D5}. Then, we train the discriminator and the

repair subnetwork R = {R1, R2, R3, R4, R5} via adversar-

ial training [14]. Our discriminator C has two outputs, a

binary probability Cclass ∈ [0, 1] for predicting real vs cor-

rupt images and a prediction mask Cmask ∈ [0, 1]M×N to

localize artifacts in the image. Given an image x, training

the discriminator C and the repair network R involves solv-

ing

Lclass = min
R

max
C

∑

x∼p(x)

logCclass(D(φ(x)))

+ log(1− Cclass(D̂(φ̂(x)))).

(4)

We also train the discriminator to predict the mask Ω by

minimizing

Lmask = min
C

∑

x̂

∑

ij

Ωij log σ
(

Cmask
ij (x̂)

)

(5)

+ (1− Ωij) log(1− σ
(

Cmask
ij (x̂))

)

where x̂ = D̂(φ̂(x)) and σ(z) = 1/(1+e−z) is the sigmoid

function.

4.4. Implementation

Let (64)3c2 denote a convolutional layer with 64

filters of size 3 × 3 with a stride of 2. The archi-

tecture of the encoder E is then defined by (32)3c1-

(64)2c2-(128)2c2-(256)2c2-(512)2c2. The de-

coder network D is given by (256)3rc2-(128)3rc2-

(64)3rc2-(32)3rc2-(3)3c1where rc denotes resize-

convolutions (i.e., bilinear resizing followed by standard

convolution). Batch normalization [18] is applied at all lay-

ers of E and D except the last convolutional layer of D. All

convolutional layers in E and D are followed by the leaky-

ReLU activation f(x) = max(x/10, x). The filtering of

φ(x) with u is realized using 2D average pooling with a

kernel of size 3× 3.

The discriminator network C is based on the standard

AlexNet architecture [23] to allow for a fair comparison
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Figure 5. The repair block. We use a residual block design. We

also concatenate the drop mask to the output of the batch normal-

ization layer as an additional channel before feeding it to the first

convolutional layer. We also gate the output of the last convo-

lutional layer with the same drop mask. This ensures that only

corrupted regions can be altered by the repair block.

with other methods. The network is identical to the orig-

inal up to conv5. We drop pool5 and use a single 3 × 3
convolutional layer for the mask prediction. For the classi-

fication we remove the second fully-connected layer. Batch

normalization is only applied after conv5 during unsuper-

vised training and removed in transfer experiments. The

standard ReLU activation is used throughout C. The repair

layers follow a similar design as the residual blocks found

in ResNet [15]. Their design is illustrated in Figure 5.

Adam [20] with an initial learning rate of 3·10−4 and the

momentum parameter β1 = 0.5 is used for the optimization.

We keep all other hyper-parameters at their default values.

During training we linearly decay the learning rate to 3 ·
10−6. The autoencoder is pre-trained for 80 epochs and

the damage & repair network is trained for 150 epochs on

random 128× 128 crops of the 1.3M ImageNet [5] training

images.

5. Experiments

5.1. Ablation Analysis

We validate the main design choices in our model by per-

forming transfer learning for classification on STL-10 [4].

All results were obtained with models trained for 400

epochs on the unlabelled training set and supervised transfer

learning for 200 epochs on the labelled training set. During

transfer the standard AlexNet architecture is used with the

exception that we drop the pool5 layer in order to handle

the smaller image size. The weights in the convolutional

layers are transferred while the fully-connected layers are

randomly initialized. We perform the following set of ex-

periments:

(a) Input image as real: We show that it is better to use

autoencoded images as real examples for discrimina-

tor training. The rationale here is that the discriminator

could exploit the pixel patterns of the decoder network

to decide between real and corrupted images. We also

observed common GAN artifacts in this setting (see
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Figure 6 (a)). In our model, the inputs to the discrimi-

nator pass through the same convolutional layer.

(b) Distributed vs. local repair network: Here we illus-

trate the importance of distributing the repair network

throughout the decoder. In the local case we apply the

five repair layers consecutively before the first decoder

layer. We observe more low-level artifacts in this setup

(see Figure 6 (b)).

(c)-(f) Dropping rate: We show how different values of θ
influence the performance on classification. The fol-

lowing values are considered: 0.1, 0.3, 0.5 (the base-

line), 0.7 and 0.9. The dropping rate has a strong influ-

ence on the performance of the learnt features. Values

around 0.7 give the best results and low dropping rates

significantly reduce performance. With low dropping

rates it is unlikely that object parts are corrupted. This

makes the examples less valuable for learning seman-

tic content.

(g) Without mask prediction: This experiment demon-

strates that the additional self-supervision signal pro-

vided through the drop mask improves performance.

(h) 3× 3 encoder convolutions: In this experiment we let

the encoder features overlap. We replace the 2 × 2
convolutions with 3 × 3 convolutions. This increases

the receptive field from 18× 18 to 33× 33 and results

in an overlap of 15 pixels. We observe a small decrease

in transfer performance.

(i) No gating in repair layers: We demonstrate the influ-

ence of training without gating the repair network out-

put with the drop mask. Without gating, the repair net-

work can potentially affect all image regions.

(j) No history of corrupted examples: Following [39] we

keep a buffer of corrupted examples and build mini-

batches where we replace half of the corrupted exam-

ples with samples from the buffer. Removing the his-

tory has a small negative effect on performance.

(k) No repair network: In this ablation we remove the re-

pair network completely. The poor performance in this

case illustrates the importance of adversarial training.

(l) GAN instead of damage & repair: We test the option

of training a standard GAN to create the fake exam-

ples instead of our damage-repair approach. We ob-

serve much poorer performance and unstable adversar-

ial training in this case.

The resulting transfer learning performance of the dis-

criminator on STL-10 is shown in Table 1. In Figure 6 we

show renderings for some of the generative models.

5.2. Transfer Learning Experiments

We perform transfer learning experiments for classifi-

cation, detection and semantic segmentation on standard

datasets with the AlexNet discriminator pre-trained using

a dropping rate of θ = 0.7.

Table 1. Influence of different architectural choices on the classi-

fication accuracy on STL-10 [4]. Convolutional layers were pre-

trained on the proposed self-supervised task and kept fixed during

transfer for classification.

Ablation experiment Accuracy

Baseline (dropping rate = 0.5) 79.94%

(a) Input image as real 74.99%

(b) Distributed vs. local repair network 77.51%

(c) Dropping rate = 0.1 70.92%

(d) Dropping rate = 0.3 76.26%

(e) Dropping rate = 0.7 81.06%

(f) Dropping rate = 0.9 79.60%

(g) Without mask prediction 78.44%

(h) 3× 3 encoder convolutions 79.84%

(i) No gating in repair layers 79.66%

(j) No history of corrupted examples 79.76%

(k) No repair network 54.74%

(l) GAN instead of damage & repair 56.59%

(a) (b) (c) (d) (e) (f)

Figure 6. The damage & repair network renderings. The left-

most column shows the input image. Column (a) shows results

when input images are used as real examples. Note that this intro-

duces commonly observed GAN artifacts. Column (b) shows re-

sults with the local instead of distributed repair network. Columns

(c)-(f) show results with dropping rates of 0.1, 0.3, 0.7 and 0.9.

5.2.1 Classification on STL-10

The STL-10 dataset [4] is designed with unsupervised rep-

resentation learning in mind and is a common baseline

for comparison. The dataset contains 100,000 unlabeled

training images, 5,000 labeled training images evenly dis-

tributed across 10 classes for supervised transfer and 8,000

test images. The data consists of 96 × 96 color images.

We randomly resize the images and extract 96 × 96 crops.

Unsupervised training is performed for 400 epochs and su-

pervised transfer for an additional 200 epochs.

We follow the standard evaluation protocol and perform

supervised training on the ten pre-defined folds. We com-

pare the resulting average accuracy to state-of-the-art re-

sults in Table 2. We can observe an increase in performance
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Table 2. Comparison of test-set accuracy on STL-10 with other

published results. Following the guidelines in [4] the average

accuracy from models trained on the ten pre-defined folds is re-

ported. We train a linear classifier on top of conv5 features for a

fair comparison with the other methods.

Model Accuracy SD

Dosovitskiy et al. [9] 74.2% ±0.4
Dundar et al. et al. [10] 74.1% -

Huang et al. [17] 76.8% ±0.3
Swersky et al. [40] 70.1% ±0.6
Zhao et al. [46] 74.3% -

Denton et al. [6] (finetuned) 77.8% ±0.8

Ours (conv1-conv5 frozen) 76.9% ±0.2
Ours (conv1-conv5 finetuned) 80.1% ±0.3

Table 3. Transfer learning results for classification, detection and

segmentation on Pascal VOC2007 and VOC2012 compared to

state-of-the-art feature learning methods.

Classification Detection Segmentation

Model [Ref] (mAP) (mAP) (mIU)

Krizhevsky et al. [23] [44] 79.9% 56.8% 48.0%

Random [32] 53.3% 43.4% 19.8%

Agrawal et al. [1] [8] 54.2% 43.9% -

Bojanowski et al. [3] [3] 65.3% 49.4% -

Doersch et al. [7] [8] 65.3% 51.1% -

Donahue et al. [8] [8] 60.1% 46.9% 35.2%

Jayaraman & Grauman [19] [19] - 41.7% -

Krähenbühl et al. [22] [22] 56.6% 45.6% 32.6%

Larsson et al. [24] [24] 65.9% - 38.0%

Noroozi & Favaro [28] [28] 67.6% 53.2% 37.6%

Noroozi et al. [29] [29] 67.7% 51.4% 36.6%

Owens et al. [30] [30] 61.3% 44.0% -

Pathak et al. [32] [32] 56.5% 44.5% 29.7%

Pathak et al. [31] [31] 61.0% 52.2% -

Wang & Gupta [42] [22] 63.1% 47.4% -

Zhang et al. [44] [44] 65.9% 46.9% 35.6%

Zhang et al. [45] [45] 67.1% 46.7% 36.0%

Ours - 69.8% 52.5% 38.1%

over the other methods. Note that the models compared in

Table 2 do not use the same network architecture, hence

making it difficult to attribute the difference in performance

to a specific factor. It nonetheless showcases the potential

of the proposed self-supervised learning task and model.

5.2.2 Multilabel Classification, Detection and Segmen-

tation on PASCAL VOC

The Pascal VOC2007 and VOC2012 datasets consist of im-

ages coming from 20 object classes. It is a relatively chal-

lenging dataset due to the high variability in size, pose,

and position of objects in the images. These datasets are

standard benchmarks for representation learning. We only

transfer the convolutional layers of our AlexNet based dis-

criminator and randomly initialize the fully-connected lay-

ers. The data-dependent rescaling proposed by Krähenbühl

Table 4. Validation set accuracy on ImageNet with linear classi-

fiers trained on the frozen convolutional layers after unsupervised

pre-training. Results for the other methods are taken from [29].

Model\Layer conv1 conv2 conv3 conv4 conv5

Krizhevsky et al. [23] 19.3% 36.3% 44.2% 48.3% 50.5%

Random 11.6% 17.1% 16.9% 16.3% 14.1%

Doersch et al. [7] 16.2% 23.3% 30.2% 31.7% 29.6%

Donahue et al. [8] 17.7% 24.5% 31.0% 29.9% 28.0%

Krähenbühl et al. [22] 17.5% 23.0% 24.5% 23.2% 20.6%

Noroozi & Favaro [28] 18.2% 28.8% 34.0% 33.9% 27.1%

Noroozi et al. [29] 18.0% 30.6% 34.3% 32.5% 25.7%

Pathak et al. [32] 14.1% 20.7% 21.0% 19.8% 15.5%

Zhang et al. [44] 13.1% 24.8% 31.0% 32.6% 31.8%

Zhang et al. [45] 17.7% 29.3% 35.4% 35.2% 32.8%

Ours 19.5% 33.3% 37.9% 38.9% 34.9%

et al. [22] is used in all experiments as is standard prac-

tice. The convolutional layers are fine-tuned, i.e., not

frozen. This demonstrates the usefulness of the discrimina-

tor weights as an initialization for other tasks. A compari-

son to the state-of-the-art feature learning methods is shown

in Table 3.

Classification on VOC2007. For multilabel classifi-

cation we use the framework provided by Krähenbühl et

al. [22]. Fine-tuning is performed on random crops of the

’trainval’ dataset. The final predictions are computed as the

average prediction of 10 random crops per test image. With

a mAP of 69.8% we achieve a state-of-the-art performance

on this task.

Detection on VOC2007. The Fast-RCNN [12] frame-

work is used for detection. We follow the guidelines in [22]

and use multi-scale training and single-scale testing. All

other settings are kept at their default values. With a mAP

of 52.5% we achieve the second best result.

Semantic Segmentation on VOC2012. We use the stan-

dard FCN framework [25] with default settings. We train for

100,000 iterations using a fixed learning rate of 10−4. Our

discriminator weights achieve a state-of-the-art result with

a mean intersection over union (mIU) of 38.1%.

5.2.3 Layerwise Performance on ImageNet & Places

We evaluate the quality of representations learned at differ-

ent depths of the network with the evaluation framework

introduced in [44]. All convolutional layers are frozen and

multinomial logistic regression classifiers are trained on top

of them. The outputs of the convolutional layers are re-

sized such that the flattened features are of similar size

(∼9200). A comparison to other models on ImageNet is

given in Table 4. Our model outperforms all other ap-

proaches in this benchmark. Note also that our conv1 fea-

tures perform even slightly better than the supervised coun-

terparts. To demonstrate that the learnt representations gen-

eralize to other input data, the same experiment was also
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Table 5. Validation set accuracy on Places with linear classifiers

trained on the frozen convolutional layers after unsupervised pre-

training. Results for the other methods are taken from [29].

Model\Layer conv1 conv2 conv3 conv4 conv5

Places-labels et al. [23] 22.1% 35.1% 40.2% 43.3% 44.6%

ImageNet-labels et al. [23] 22.7% 34.8% 38.4% 39.4% 38.7%

Random 15.7% 20.3% 19.8% 19.1% 17.5%

Doersch et al. [7] 19.7% 26.7% 31.9% 32.7% 30.9%

Donahue et al. [8] 22.0% 28.7% 31.8% 31.3% 29.7%

Krähenbühl et al. [22] 21.4% 26.2% 27.1% 26.1% 24.0%

Noroozi & Favaro [28] 23.0% 31.9% 35.0% 34.2% 29.3%

Noroozi et al. [29] 23.3% 33.9% 36.3% 34.7% 29.6%

Owens et al. [30] 19.9% 29.3% 32.1% 28.8% 29.8%

Pathak et al. [32] 18.2% 23.2% 23.4% 21.9% 18.4%

Wang & Gupta [42] 20.1% 28.5% 29.9% 29.7% 27.9%

Zhang et al. [44] 16.0% 25.7% 29.6% 30.3% 29.7%

Zhang et al. [45] 21.3% 30.7% 34.0% 34.1% 32.5%

Ours 23.3% 34.3% 36.9% 37.3% 34.4%

(a) conv1 weights (b) conv1

(c) conv2 (d) conv3

(e) conv4 (f) conv5

Figure 7. Visualisation of the learnt features at different layers of

the AlexNet after unsupervised training. We show conv1weights

and maximally activating image-patches for five neurons at each

layer.

performed on the Places [47] dataset. This dataset contains

2.4M images from 205 scene categories. As can be seen

in Table 5 we outperform all the other methods for lay-

ers conv2-conv5. Note also that we achieve the highest

overall accuracy with 37.3%.

5.3. Qualitative Analysis of the Features

To better understand what the discriminator has learnt we

use different network visualization techniques. We show the

learnt conv1 filters as well as maximally activating image-

patches [13, 43] for some neurons of each convolutional

layer in Figure 7. We observe prominent edge-detectors

Figure 8. Nearest-neighbor retrievals on the ImageNet validation

set obtained with conv5 features from the AlexNet discriminator.

Nearest-neighbors were computed using cosine-similarity.

Figure 9. Visualisation of contributing image features for the deci-

sion between real images (green border) and images with artifacts

(red border). The discriminator appears to focus on object parts

such as legs and heads as well as geometric shapes.

in the conv1 filters, much like what can be observed in

a supervised AlexNet. Figure 8 shows Nearest-Neighbor

retrievals obtained with our conv5 features.

We use Grad-CAM [37] in Figure 9 to illustrate what

image regions the discriminator focuses on when making

the decision between real and with artifacts. We can observe

that the discriminator often looks for missing or existing

object parts.

6. Conclusions

We have shown how to learn features by classifying im-

ages into real or corrupt. This classification task is designed

to use images without human annotation, and thus can ex-

ploit large readily-available image datasets. We have tack-

led this task with a model that combines autoencoders and

an assistive network (the repair network) with adversarial

networks. The transfer (via fine-tuning) of features learned

by the classification network achieves state of the art perfor-

mance on several benchmarks: ILSVRC2012, Pascal VOC

and STL-10.
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