
Enhancing the Spatial Resolution of Stereo Images using a Parallax Prior

Daniel S. Jeon Seung-Hwan Baek Inchang Choi Min H. Kim∗

Korea Advanced Institute of Science and Technology (KAIST)

{sjjeon,shwbaek,inchangchoi,minhkim}@vclab.kaist.ac.kr

Abstract

We present a novel method that can enhance the spatial res-

olution of stereo images using a parallax prior. While tradi-

tional stereo imaging has focused on estimating depth from

stereo images, our method utilizes stereo images to enhance

spatial resolution instead of estimating disparity. The crit-

ical challenge for enhancing spatial resolution from stereo

images: how to register corresponding pixels with subpixel

accuracy. Since disparity in traditional stereo imaging is

calculated per pixel, it is directly inappropriate for enhanc-

ing spatial resolution. We, therefore, learn a parallax prior

from stereo image datasets by jointly training two-stage net-

works. The first network learns how to enhance the spatial

resolution of stereo images in luminance, and the second

network learns how to reconstruct a high-resolution color

image from high-resolution luminance and chrominance of

the input image. Our two-stage joint network enhances

the spatial resolution of stereo images significantly more

than single-image super-resolution methods. The proposed

method is directly applicable to any stereo depth imaging

methods, enabling us to enhance the spatial resolution of

stereo images.

1. Introduction

With recent advances in mobile phones, a dual camera is

more commonly used to estimate depth information, al-

lowing for 3D imaging and augmented reality applications.

While traditional stereo imaging has focused on depth esti-

mation, other applications from stereo have rarely been dis-

cussed. In this work, we present a novel method that allows

us to enhance the spatial resolution of stereo images. To

enhance spatial resolution, multiple sampling with subpixel

offsets is necessary [42]. Since we have two images in a

stereo pair, the disparity exists between these images and is

much larger than a pixel. While the disparity in traditional

stereo imaging allows us to estimate depth, per-pixel reg-

istration using disparity is insufficient to enhance the spa-

∗Corresponding author’s email: minhkim@kaist.ac.kr

Ground truth Bicubic upsampling Bhavsar Our method

PSNR 32.00 dB 26.85 dB 35.90 dB

Figure 1: Compared to a naı̈ve approach of bicubic upsam-

pling, Bhavsar et al. [5] enhance the spatial resolution but

suffer from jaggy aliasing artifacts. The proposed method

can enhance the spatial resolution significantly by taking

advantage of stereo input.

tial resolution of stereo images. We, therefore, propose a

method that learns a subpixel parallax prior to enhance the

spatial resolution of stereo images.

Traditional approaches to enhance spatial resolution uti-

lize multiple source images of low resolution with jittered

subpixel offsets. Multiple shots or sequentially-moving

video frames have been used as input [42]. Recent advances

in enhancing spatial resolution have recovered a high-

resolution image from a single source image itself by find-

ing similar small patches [20, 52, 24, 53, 36, 43], joint learn-

ing [15, 8], or convolutional neural networks [13, 53, 9].

These data-driven approaches are a great success indeed in

enhancing the resolution of a single image. However, no

work looks into stereo images as input for enhancing spatial

resolution, since stereo images are different due to parallax.

In this work, we propose a novel method that takes stereo

images as input to enhance spatial resolution.

A simple solution for enhancing the spatial resolution of

stereo images is to utilize disparity obtained from a depth-

from-stereo algorithm to register pixels in a pair of stereo

images [4, 5, 41]. However, the disparity accuracy obtained

from stereo imaging is significantly lower than the subpixel

precision required for super-resolution reconstruction [42],

in addition to correspondence errors of stereo matching.

Therefore, the reconstructed resolution of prior stereo en-
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hancements has been significantly lower than that of single

image-based approaches. See Figure 1 for an example.

We, therefore, endeavor to build a deep convolutional

network that directly learns an end-to-end mapping between

continuous parallax shifts and a high-resolution image. Our

deep network includes two subnetworks, which are trained

jointly in the end-to-end training manner. Since we decom-

pose an input pair of stereo to left/right pairs of luminance

and chrominance, the first network directly learns a lumi-

nance mapping from a pair of stereo luminance images to

a high-resolution luminance image. The second network

learns chrominance mapping from both original chromi-

nance and high-resolution luminance images to a final high-

resolution color image. The proposed method outperforms

both state-of-the-art image-enhance methods and presents

effectiveness in particular for removing aliasing artifacts on

slanted edges.

2. Related Work

Super-resolution imaging has been researched extensively

in recent decades. For the sake of brevity, we refer read-

ers to [42] for the foundation of this subject. This section

reviews only state-of-the-art methods.

Multi-Frame Super-Resolution The classical super-

resolution approach is to reconstruct a high-resolution

image from multiple image inputs from a single camera

jittered with subpixel offsets [42]. However, since multiple

images from the same viewpoint cannot be captured

simultaneously and also precise registration of fast moving

objects is challenging, the applicability of multi-frame

methods is restricted to static scenes [10, 11, 45, 3].

Single-Image Super-Resolution To overcome the draw-

backs of the multi-frame approach, a single image-based

approach has been studied more extensively like other

example-based vision applications [35] in the past decade,

aiming at recovering a high-resolution image from a sin-

gle image input. However, it is fundamentally an ill-

posed problem that has multiple solutions. Recent research

of single-image approaches can be categorized into two

groups: example-based and deep network-based methods.

Example-based methods exploit similarities of small

patches within an image [24] or learn dictionary priors from

external datasets of pairs of low- and high-resolution im-

ages [13, 53, 50, 51, 24]. For instance, Yang et al. [53]

proposed a sparse representation-based method that learns a

joint dictionary from pairs of low- and high-resolution train-

ing datasets. Huang et al. [24] exploit a statistical natural

image prior by searching similar patches explicitly from lo-

calized planes in the source image.

Recently, the example-based approach has been ex-

tended using deep convolutional neural networks (CNN) [9,

27, 28, 48]. Dong et al. [9] extend an example-based

method [53] to a super-resolution convolutional neural net-

work (SRCNN), where a layer consists of patch extrac-

tion, non-linear mapping, and reconstruction, analogous to

super-resolution sparse coding [53]. Kim et al. [27, 28] en-

hance the performance of SRCNN by applying a very-deep

network architecture [49] and residual learning [23]. Shi et

al. [48] proposed an efficient method using subpixel CNN

to extract features from a low-resolution space. Note that

single-image super-resolution methods do not rely on sub-

pixel registration, but infer subpixel similarities using con-

volutional networks.

Light-Field Image Enhancement Since light-field imag-

ing extends the angular resolution of light-field by sacri-

ficing the spatial resolution, light-field super-resolution has

been proposed for enhancing the reduced spatial resolution.

Bishop et al. [6] estimate a point spread function to defocus

light-field images. Georgiev et al. [18] reconstruct a high-

resolution light field image directly from a Bayer-patterned

input image by avoiding interpolation. Yoon et al. [54] train

end-to-end convolutional networks that synthesize both an-

gular and spatial light field images. Kalantari et al. [26] pro-

posed a two-stage network architecture: one for disparity

and the other for reconstruction. Flynn et al. [12] proposed a

CNN-based view synthesis from plane-sweep panorama in-

put like light-field. These light field-based methods rely on

short baseline characteristics in light-field for training these

reconstruction networks. However, they are inapplicable di-

rectly to an ordinary stereo setup with a larger baseline.

Stereo Image Enhancement Since estimating disparity

from the stereo is also an ill-posed problem, the resolution

enhancement by stereo images has often been limited by the

inaccuracy of disparity. Komatsu et al. [33] preliminarily

combine stereo input images on a single depth plane to re-

construct a high-resolution image. However, this method

is inapplicable to real 3D scenes as they do not account

for parallax. Gao et al. [14] proposed a refractive stereo

method that can measure depth and enhance the image res-

olution. Multiple images need to be captured while mov-

ing the glass orientation and reconstruct a high-resolution

image similar to multi-frame SR; therefore, it is inapplica-

ble to the snapshot-based approach, which is our objective.

Bhavsar and Rajagopalan [4, 5] and Park et al. [41] uti-

lize stereo block matching to search pixel correspondences.

The correspondences are then used to register two stereo

input images. Garcia et al. [16] and Jain et al. [25] sim-

ilarly use a stereo pair of low- and high-resolution video

frames. They transfer the high-resolution frame to the low-

resolution video frame through block matching to obtain a

high-resolution image. While subpixel multi-sampling is

required to reconstruct a high-resolution image [42], these

state-of-the-art stereo methods have attempted to utilize the

per-pixel disparity from stereo matching, which is the dis-

crete estimation of parallax.
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3. Learning a Parallax Prior

Our objective is to enhance the spatial resolution of stereo

images. Since multiple sampling with subpixel shifts is

necessary as input to enhance image resolution [42], we

are motivated to avoid using discrete disparity from stereo

matching. Instead, we directly learn an end-to-end map-

ping from a stereo pair of low-resolution images to a high-

resolution output image. As shown in Figure 2, parallax

occurs through perspective projection between the stereo

images. By the geometric difference between parallax in

perspective projection and affinity in stereo image transfor-

mation [22, 2, 1, 34], continuous shifts by parallax exist at

a subpixel resolution in the horizontal and vertical displace-

ment of corresponding stereo pairs. Our deep network en-

hances image resolution by directly utilizing these subpixel

shifts caused by parallax to reconstruct a high-resolution

image without estimating depth or disparity.

3.1. Network Architecture Overview

To make convolutional networks learn stereo correspon-

dences, we create an image stack with shift intervals to feed

it to train networks. Shifted pixels are designed to infer

correspondence cues through the networks, which interpret

them in a nonlinear fashion to yield a high-resolution im-

age. To do so, we devise a two-network architecture, in-

spired by the traditional architecture of image compression,

which reserves two different bandwidths for luminance and

chrominance respectively, accounting for human percep-

tion [29, 30, 31]. The first network focuses on learning

the high-resolution luminance mapping. The second net-

work learns a color transformation mapping from both high-

resolution luminance and low-resolution chrominance to a

high-resolution color image. See Figure 3 for an overview.

3.2. Network Formulation

Instead of using general color channels, we convert three

color channels of red, green and blue (RGB) into Y CbCr

coefficients of luminance Y and chrominance CbCr as a

3D tensor of size H×W×C ∈ R
3, where H is the height,

W is the width, and C is the number of channels in an input

image. We formulate the first network that learns a lumi-

nance mapping between a stereo image stack with shift in-

tervals and a high-resolution image. Suppose a training data

set
{

Xi,yi
}N

i=1
is given from N number of low-resolution

stereo image pairs Xi =
{

xi
1
,xi

2

}

and ground-truth high-

resolution images yi ∈ R
3. xi

1
∈ R

3 denotes the left ref-

erence color image and xi
2
∈ R

3 means the right image in

stereo. Note that we upsample the resolution of the source

low-resolution stereo images by using bicubic interpolation

to match the resolution of the high-resolution images. The

main objective of our network is to learn a model F that can

predict a high-resolution image ŷ = F (X) from given input

: Left camera pixels
: Right camera pixels

Continuous sub-pixel 
shift by parallax

Camera

Camera

Le
ft

R
ig

ht

Sensor

Figure 2: Registering stereo images with parallax. Affine

transformation that aligns two images contains subpixel

shifts, due to the geometric difference between perspective

projection and affinity of the stereo planes. We learn a map-

ping from subpixel shifts to a high-resolution image.

X. Our model consists of two deep networks: a luminance

network and a chrominance network. Note that we jointly

train both networks as one to learn an end-to-end mapping.

Luminance Network Our luminance network detects sim-

ilar patches in the input stereo tensor with shift using deep

convolutional networks, rather than using traditional block

matching that determines the discrete disparity. It means

that our luminance network detects patch similarities in

stereo channels that contain continuous parallax offsets.

The closest patch in the source image can be used directly

for reconstruction through networks, enabling subpixel pre-

cision multi-sampling for image enhancement. Finding

similar patches is more effective way to enhance patch reso-

lution regardless of patch correspondences for the disparity.

Note that no disparity map is required for our enhancement

of spatial resolution.

Inspired by the modern architecture of very deep net-

works using residual learning [27], we define a residual im-

age of luminance rL = yL − x1,L ∈ R
2, where yL is a

high-resolution luminance image and x1,L is one of the low-

resolution luminance stereo images. Since we have stereo

input from a dual camera, we utilize stereo images as input

to learn residuals to infer subpixel shifts by parallax through

the networks. Different from [27], we make use of a stack

of stereo input to reconstruct a high-resolution luminance

image and design two-network architecture by separating

colors into luminance and chrominance.

The first network learns the residuals riL between a high-

resolution luminance yi
L and a low-resolution luminance

stereo image xi
1,L over training datasets. To account for

subpixel shift by parallax, we repack the left and right im-

ages to yield a combined stereo image tensor X̃i
L ∈ R

3 as

follows:

X̃i
L,j(x, y) = xi

2,L(x− φ(j), y)

X̃i
L,j(x, y) = xi

1,L(x, y)

for j ∈ {1 . . .M},

for j = M + 1,
(1)

where φ(j) is a shifted offset of the j-th layer, and M is

the number of shifts. We then minimize the mean squared

errors of
{

1

2
‖riL − f(X̃i

L)‖
2

}

i
, where f predicts the resid-
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Figure 3: Schematic diagram of our stereo-enhancement network architecture. Our network comprises two subnetworks

for enhancing luminance resolution and reconstructing colors, respectively. For the luminance network, we concatenate the

left image and 64 of the right images with shifting as input. The number of feature maps for the input layer is 65. The last

convolutional layer applies no ReLU for computing residuals following [7, 37]. For the chrominance network, we concatenate

the reconstructed high-resolution luminance image and upsampled chrominance components from the low-resolution input.

In this network, instead of directly adding a residual prediction to the low-resolution image, we employ the last convolutional

layer after concatenating the residuals and the original image. This semi-residual learning approach allows us to increase the

accuracy. Finally, we train them jointly for an end-to-end mapping.

uals of the high-resolution luminance r̂L with respect to the

low-resolution luminance image x1,L. Note that f estimates

r̂L ∈ R
2 from given X̃L ∈ R

3, reducing the input dimen-

sion through the networks.

Once we learn the residual prediction model f , we can

reconstruct a high-resolution luminance image ŷL ∈ R
2 by

summing the left low-resolution luminance input and the

predicted residual:

ŷL = x1,L + f(X̃L). (2)

The function f comprises multiple subsets of convolutional

layers fk. A k-th convolutional layer fk (Z) can be repre-

sented as

fk (Z) = max (0,Ωk ∗ Z+ βk) , Z ∈ R
3, (3)

where Ωk ∈ R
4 and βk ∈ R

3 represent the convolution fil-

ters and biases of the k-th layer, and the operator ∗ denotes

convolution. When the depth of the k-th layer is nk, the size

of kernel Ωk is nk−1×3×3×nk, and the size of bias βk is

nk. max(0, ·) represents a rectified linear unit (ReLU) [40].

Chrominance Network State-of-the-art super-resolution

algorithms [9, 43, 27] reconstruct high-resolution colors by

either applying the super-resolution algorithm to three color

channels independently or converting the RGB input into

the Y CbCr color space and applying the super-resolution

Ground truth Bicubic interpolation Our chroma network

PSNR 37.20 dB 39.04 dB

Figure 4: Comparison between the bicubic interpolation

and our chrominance network for reconstructing colors.

Our method shows clearer color edges.

method to the Y luminance only. Different from these sim-

ple approaches, we introduce an additional network to en-

hance the chrominance upsampling stage instead of using

bicubic interpolation. Although the luminance component

is dominant for color image resolution, upsampling of low-

resolution chrominance using bicubic interpolation gener-

ates a color bleeding problem over edges. See the middle

column image of Figure 4 for an example. We attempt to

overcome the problem by introducing the chrominance net-

work. Figure 4 demonstrates that the chrominance upsam-

pling artifacts of color bleeding over edges are effectively

removed by the chrominance network.

The input of our chrominance network is the recon-

structed high-resolution luminance image ŷi
L and the up-

1724



sampled chrominance from Cb and Cr channels in a low-

resolution image in stereo xi
1,cb

and xi
1,cr

. In order to build

a training dataset
{

x̃i,yi
}N

i=1
, we concatenate three input

channels into x̃i as

x̃i
c = ŷi

L

x̃i
c = xi

1,c

for c = 1

for c ∈ {2, 3},
(4)

where xi
1,2 and xi

1,3 denote xi
1,cb

and xi
1,cr

, respectively.

The main objective of the chroma network is to reconstruct

a final high-resolution color image.

Our chrominance network implicitly learns the residuals

between the high-resolution color and the half-way-through

low-resolution color image in stereo. To do so, we define a

residual image of chrominance r = y − x̃ ∈ R
3. We then

minimize the mean squared errors of
{

1

2
‖ri − g(x̃i)‖2

}

i
,

where function g predicts residuals of high-resolution col-

ors from the combined input image x̃i of low-resolution

chrominance and high-resolution luminance.

Different from traditional residual learning, we follow a

recent semi-residual learning approach with an additional

convolutional layer, inspired by Gharbi et al. [19]. Instead

of using the simple summation approach in traditional resid-

ual learning [23], we combine the predicted residuals r with

the fast-forwarded identity x̃ in the form of a convolutional

layer. To calculate their convolution, we concatenate the

predicted residual and the input colors as

ỹc = x̃c

ỹc = g(x̃)c′

for c ∈ {1 . . . 3}

for c ∈ {4 . . . 6},
(5)

where c′ = c − 3. The last sub-layer h takes ỹ as input

without the ReLU activation function to reconstruct the final

color image ŷ:

ŷ = h (ỹ) = Ωh ∗ ỹ + βh, (6)

where the depth of the last layer is nh, the size of kernel

Ωh is 3×3×3×nh, and the size of bias βh is H×W×nh.

It allows us to enhance high-frequency information in the

final output through the chroma upsampling network (see

Figure 8). In summary, we learn a model F that can predict

a high-resolution image ŷ = F (X) = h(g(f(X),X),X)
from a given input X.

3.3. Network Parameters

3.3.1 Luminance Network

Architecture Since the human eye’s resolving power of

contrast mainly depends on luminance, we exclusively use

the luminance channel of input images to enhance spatial

resolution. The first layer contains a total of 65 images,

where with an image from the left-view and 64 images from

the right-view with parallax shifting. The filter size of the

first convolutional layer is 65×3×3×64. We use 16 layers

with the same kernel size of 64×3×3×64. Each convolu-

tional layer is followed by a ReLU. The last layer is used

for the residual image reconstruction with a filter size of

64×3×3×1.

Receptive Field The size of a receptive field varies de-

pending on the size of filters and the number of layers.

3×3 filters with 16 layers operate the receptive field size

of 33×33. Inserting more layers increases not only the

size of the receptive field but also its computational cost.

We found that the increased receptive field does not guar-

antee increased performance regarding accuracy. Recently,

Mayer et al. [39] found that deep CNN cannot handle rela-

tively large disparities even with an enlarged receptive field.

We also found that the convolutional networks could be in-

efficient in searching correspondences as CNN’s test match-

ing costs in 2D, rather than in 1D along the epipolar line.

Maximum Disparity We build a stereo image tensor with

64 shifted images with one-pixel intervals, in which the

maximum disparity is assumed to be the summation of 64

shifted pixels plus 33 pixels of the width of the receptive

field, approximately ∼100 pixels in total.

We use the Middlebury dataset for training our net-

works. Since the resolution of the original Middlebury

dataset [47, 46] is too higher than others (Tsukuba and

KITTI), we downsampled the Middlebury dataset in half

both horizontally and vertically to make its resolution simi-

lar to others for testing. More than about 98% of disparities

in the dataset are within this range except for very close ob-

jects. Figure 5 compares the impact of the number of input

stereo images for learning the luminance network.

0 10 20 30 40
Epochs

33

34

35

36

PS
NR

 (d
B)

Single learning
Stereo learning

8-pixel shift
16-pixel shift

32-pixel shift
64-pixel shift

Figure 5: Impact of the size of the stereo image stack for

learning the luminance network. A larger stereo tensor in-

put increases the reconstruction accuracy.

Number of Layers Figure 6 compares the impact of con-

volutional layers in the luminance network. While a large

number of layers improves the quality of a result image, it

also inflates the computational time. Also, more than 16

layers made no significant improvement so that we chose

16 layers at the end.

Activation Functions The last convolutional layer of

the luminance network reconstructs residuals for a high-

resolution image. The activation function in the last layer

handles the contrast variance of the residual image. We

compare the performance differences by using three dif-

ferent types of activation functions: ReLU, sigmoid, and
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0 10 20 30 40
Epochs

33

34

35

36

PS
NR

 (d
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10 layers
12 layers

14 layers
16 layers

18 layers
20 layers

Figure 6: Impact of the number of layers in the luminance

network.

an identity function (no activation), as shown in Figure 7.

The case of no activation function in the last layer shows

the highest peak signal-to-noise ratio (PSNR) performance.

The ReLU and the sigmoid function clamp residual values

between [0, ∞] and [-1, +1], respectively. We found that

they cause contrast compression. As a result, we employ

no activation function at the last layer to reproduce high-

frequency features of the target image.

0 10 20 30 40
Epochs

33

34

35

36

PS
NR

 (d
B)

None
ReLU
Sigmoid

Figure 7: Impact of the activation function in the last con-

volutional layer in the luminance network.

3.3.2 Chrominance Network

Architecture Our chrominance network follows the typi-

cal residual learning architecture [23]. We use 15 convolu-

tional layers for learning residual images, and an additional

layer to produce the final image from low-resolution chro-

maticity channels and the reconstructed high-resolution lu-

minance image. The kernel size of the first convolutional

layer is 3×3×3×64. Internal convolutional layers apply

64×3×3×64 for each convolution operation. Then we con-

catenate residuals with the reference image and apply the

last convolutional layer with a kernel size of 6×3×3×3.

The last convolutional layer applies no activation function

when computing final results.

Semi-Residual Learning To preserve high-frequency de-

tails from the reconstructed high-resolution luminance, we

take a semi-residual learning approach, which includes a

convolutional layer at the end of the network instead of

the sum of the fast-forwarded identity. While details in Cb

and Cr channels tend to disappear through the convolution

steps, the semi-residual approach allows us to increase high-

frequency details, as shown in Figure 8.

3.4. Training Networks

The number of layers of each subnetwork is similar to very

deep neural networks [27]. We are therefore motivated to

train this network in two stages. For initial estimation of

subnetworks, we trained each subnetwork individually. We

first trained the luminance network and then trained the

0 10 20 30 40
Epochs

46
47
48
49
50
51
52

PS
NR

 (d
B)

Traditional residual learning
Semi-residual learning
Bicubic upsampling

Figure 8: Impact of the additional convolutional layer at

the end of the chrominance network.

chrominance network using high-resolution luminance re-

constructed by the previous network (see Figure 3). How-

ever, from this separately learning process, the chrominance

network learns the second residual for the luminance chan-

nel which has already been conducted by the previous net-

work. To avoid the second residual issue, we additionally

trained both networks jointly to refine the end-to-end model

through the second stage of optimization.

4. Results

We employed the TensorFlow deep-learning framework to

implement our stereo super-resolution networks. For com-

puting and applying gradients to weights, we select the

Adam optimizer [32] with an initial learning rate of 0.001.

The Adam optimizer utilizes two momentum variables to

compute the adaptive learning rates. We set the exponential

decay rate for the first momentum as β1 = 0.9 and the sec-

ond momentum as β2 = 0.999. The initial values of the ker-

nels are calculated using Xavier’s algorithm [21]. The train-

ing of the luminance super-resolution network takes about 3

hours on a machine with a 4.0 GHz Intel i7-6700K CPU and

Titan X Pascal GPU with a batch size of 128 for 40 epochs

(50,000 iterations) of 26,825 training patches with augmen-

tation (flipping and rotation). We found that learning more

than 40 epochs causes an overfitting problem, which results

in performance degradation. Table 1 compares averaged

computational time for reconstructing a 320×240 image by

five different methods. Note that the computational cost of

our method increases linearly proportional to the size of in-

put as our computation consists of convolutions only.

Datasets To create the training datasets of low- and

high-resolution stereo image pairs, we use stereo images

from the Middlebury dataset [47, 46], the KITTI stereo

dataset [17, 39], and the Tsukuba dataset [44]. As men-

tioned, the Middlebury datasets are downsampled to match

the resolutions of the other datasets. For the training data,

we use 60 Middlebury images dividing into 33×33 patches

SRCNN VDSR PSyCo Bhavsar Ours

Time 9.17s 2.34s 2.54s 57.78s 3.23s

Methods
Single image input Stereo image input

Table 1: Average computational time for reconstructing

a 640×480 high-resolution image from a 320×240 low-

resolution image from the Middlebury dataset.
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PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
×2 29.64 0.9228 31.48 0.9505 31.62 0.9543 32.03 0.9542 33.05 0.9545
×3 27.20 0.8737 28.76 0.9136 29.30 0.9240 29.40 0.9231 29.59 0.8974
×4 25.79 0.8344 27.11 0.8814 27.23 0.8916 27.58 0.8935 26.80 0.8495
×2 36.69 0.9833 40.05 0.9846 40.50 0.984041.08 0.9846 43.30 0.9968
×3 32.98 0.9659 35.89 0.9611 36.70 0.9666 36.74 0.9657 37.32 0.9754
×4 30.89 0.9453 33.10 0.9343 33.40 0.9463 33.83 0.9418 34.40 0.9541
×2 28.08 0.9200 29.27 0.9162 29.48 0.9137 29.82 0.9202 30.30 0.9452
×3 25.72 0.8701 26.98 0.8533 27.24 0.8552 27.46 0.8637 27.96 0.8889
×4 24.33 0.8345 25.34 0.8002 25.44 0.8043 25.73 0.8142 25.75 0.8382
×2 27.14 0.9176 28.50 0.9193 28.60 0.9156 28.75 0.9188 29.36 0.9456
×3 24.74 0.8597 26.19 0.8530 26.37 0.8539 26.37 0.8548 26.96 0.8879
×4 23.34 0.8130 24.44 0.7951 24.50 0.7999 24.64 0.7998 24.83 0.8338

Ours

KITTI 2015
(100 images)

Bicubic SRCNN VDSR PSyCo
ScaleDataset

Middlebury
(5 images)

Tsukuba
(16 images)

KITTI  2012
(16 images)

Table 2: Quantitative evaluation of our method with state-of-the-art SR algorithms for ×2, ×3 and ×4 magnification ratios

on the Middlebury stereo dataset, Tsukuba dataset, and KITTI stereo dataset. Red color indicates the highest accuracy, and

blue color presents the second highest accuracy regarding PSNR [dB] and SSIM.

Ground truth Bicubic SRCNN [9] VDSR [27] PSyCo [43] Our method

(PSNR, SSIM) (25.47 dB, 0.8528) (27.03 dB, 0.8995) (27.22 dB, 0.9045) (27.39 dB, 0.9050) (28.58 dB, 0.9160)

(PSNR, SSIM) (26.82 dB, 0.8920) (28.28 dB, 0.9240) (28.75 dB, 0.9237) (28.73 dB, 0.9264) (29.20 dB, 0.9318)

Figure 9: Results of super-resolution with the ×2 magnification factor. PSNR and SSIM values are shown under each result.

The red color indicates the highest PSNR and SSIM values, and the blue color represents the second highest values.

1727



with stride 24 and apply data augmentation to create a large

number of data patches. For the test data set, we use 5 im-

ages from Middlebury, 16 images from Tsukuba, 16 images

from KITTI2012, and 100 images from KITTI2015. Refer

to the supplemental materials for more images.

We use learning data in the Middlebury dataset, while

we use test images from other datasets (5 Middlebury im-

ages, 16 Tsukuba images, and 116 KITTI images) that are

not used in the training process. To test the impact of the

training dataset on accuracy, we attempted to train the orig-

inal SRCNN method with the same training dataset that we

used. The accuracy evaluation of the newly trained SR-

CNN network shows 31.39 for 5 Middlebury test images

and 40.11 for 16 Tsukuba images. This accuracy is not sig-

nificantly different from that of the original SRCNN model

trained by the authors (the average PSNR of 31.48 for 5

Middlebury test images and 40.05 for 16 Tsukuba images,

as shown in Table 2.) It validates that our results are not

affected by the training dataset.

Stereo Image Input We evaluate our method with a

state-of-the-art stereo super-resolution method proposed by

Bhavsar and Rajagopalan [5]. Figure 10 compares our re-

constructed image with the previous stereo super-resolution

method. The previous method severely suffers from arti-

facts on edges, resulting in even lower resolution than that

of bicubic upsampling.

Ground truth Bicubic Bhavsar et al. Our method

PSNR 30.01 dB 26.28 dB 32.12 dB

Figure 10: Comparison of our method with a state-of-

the-art stereo super-resolution method by Bhavsar and Ra-

jagopalan [5]. While their method suffers from aliasing ar-

tifacts on edges, our result is close to the ground truth.

Single Image Input We evaluate the results of our method

with quantitative and qualitative comparisons. For com-

parison, we choose state-of-the-art single-image super-

resolution methods: super-resolution convolutional neu-

ral network (SRCNN) [9], very deep super-resolution

(VDSR) [27], and patch symmetry collapse (PSyCo) [43].

SRCNN and VDSR are deep learning-based approaches as

our method, while PSyCo is an optimization-based solution.

We use the trained models and best parameters directly pro-

vided by the authors. (9-5-5 ImageNet model for SRCNN, a

network of 20 layers for VDSR, and 1024 atoms for PsyCo).

To quantitatively evaluate results, we first created test

datasets by downsampling them by ×2, ×3 and ×4. Then

we upscale them by the magnification ratios of ×2, ×3 and

×4. Also there is missing information around the image

boundary due to parallax, so we cropped out the missing

regions in the pair. Figure 9 shows super-resolution re-

sults of the magnification ratio of ×2 on the Middlebury

test dataset. Our method outperforms other state-of-the-

art single-image methods. Table 2 provides the average

PSNRs and SSIMs on each benchmark dataset. Our method

achieves the highest PSNR and SSIM values in most cases

when compared with the state-of-the-art methods. For more

results, refer to the supplemental materials.

Natural Objects To help judge the naturalness of our re-

construction method, we experimented with natural objects:

a human face (Figure 11). We compare our result with the

best prior performer, PSyCo, in our experiment. The PSNR

of our result is still higher than PSyCo, while our result can

provide highly natural appearance.

Ground truth Bicubic PSyCo Our method

PSNR 32.15 dB 33.29 dB 34.47 dB

Figure 11: Our method shows not only a higher PSNR value

but also the reconstructed image appears more plausible in

terms of naturalness. Image courtesy of Brian May [38].

5. Conclusion

We have described a method that can enhance the spatial

resolution of stereo images, which comprises two subnet-

works for luminance and chrominance, respectively. Even

though our method does not calculate disparity directly, it

utilizes a parallax prior in stereo that can reconstruct a high-

resolution image with subpixel accuracy in registration. Our

method can outperform both current state-of-the-art meth-

ods in enhancing the spatial resolution of stereo images. It

can be used with any other stereo imaging methods addi-

tionally to enhance spatial resolution.
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