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Abstract

Leveraging the disparity information from both left and

right views is crucial for stereo disparity estimation. Left-

right consistency check is an effective way to enhance the

disparity estimation by referring to the information from the

opposite view. However, the conventional left-right consis-

tency check is an isolated post-processing step and heavily

hand-crafted. This paper proposes a novel left-right com-

parative recurrent model to perform left-right consistency

checking jointly with disparity estimation. At each recurrent

step, the model produces disparity results for both views,

and then performs online left-right comparison to identify

the mismatched regions which may probably contain erro-

neously labeled pixels. A soft attention mechanism is in-

troduced, which employs the learned error maps for better

guiding the model to selectively focus on refining the unre-

liable regions at the next recurrent step. In this way, the

generated disparity maps are progressively improved by the

proposed recurrent model. Extensive evaluations on KITTI

2015, Scene Flow and Middlebury benchmarks validate the

effectiveness of our model, demonstrating that state-of-the-

art stereo disparity estimation results can be achieved by

this new model.

1. Introduction

This paper aims at the problem of computing the dense

disparity map between a rectified stereo pair of images.

Stereo disparity estimation is core to many computer vi-

sion applications, including robotics and autonomous vehi-

cles [4, 5, 16]. Finding local correspondences between two

images plays a key role in generating high-quality disparity

maps. Modern stereo matching methods rely on deep neural

networks to learn powerful visual representations and com-

pute more accurate matching costs between left and right

views.

However, it is still challenging for the current methods

to deal with ill-posed regions, such as object occlusions,

reflective regions, and repetitive patterns. It is also ob-

Figure 1: From top to bottom: the input image, predicted

disparity map, learned attention map showing the poten-

tial erroneously labeled regions by the LRCR model, and

the real error map (difference between the predicted and

ground-truth maps).

served that the mismatched pixels between the left and right

views usually appear in the error-prone regions, including

occluded objects, textureless areas, and sophisticated image

borders (see Fig. 1). Taking advantage of disparity informa-

tion from both the views to verify the left-right mutual con-

sistency is an effective strategy to identify the unreliable re-

gions. By doing this, the stereo disparity estimation results

can be selectively improved by being refined on the mis-

matched regions. Traditional left-right consistency check

is performed only as an offline post-processing step after

the disparity map generation. Moreover, it is highly hand-

crafted and hardwired—it only refines the pixels having er-

rors above a mismatching threshold by interpolating their

fixed local neighbors. The results are thus fragile due to

low-quality local features and potential errors in the match-

ing cost computation. As such, the traditional pipelines,

whose regularization steps involve hand-engineered, shal-

low cost aggregation and disparity optimization (SGM or
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MRF), have been proven to be inferior [28] and sub-optimal

for stereo disparity estimation.

To overcome the above issue, we propose a novel Left-

Right Comparative Recurrent (LRCR) model to integrate

the left-right consistency check and disparity generation

into a unified pipeline, which allows them to mutually boost

and effectively resolve the drawbacks of offline consistency

check. Formulated as a recurrent neural network (RNN)-

style model, the LRCR model can learn to progressively

improve the disparity estimation for both the left and right

images by exploiting the learned left-right consistency. In

this way, both disparity maps for two views favorably con-

verge to stable and accurate predictions eventually. LRCR

creatively introduces an attention mechanism accompany-

ing recurrent learning to simultaneously check consistency

and select proper regions for refinement. Concretely, at each

recurrent step, the model processes both views in parallel,

and produces both disparity maps as well as their associated

error maps by performing the online left-right comparison.

The error maps reflect the correctness of the obtained dis-

parities by “referring” the disparity map of the other view.

Treating the error maps as soft attention maps, the model

is guided to concentrate more on the potential erroneously

predicted regions in the next recurrent step. Such an error-

diagnosis self-improving scheme allows the model to au-

tomatically improve the estimation of both views without

tedious extra supervision over the erroneously labeled re-

gions. Moreover, incorporating the left-right consistency

into the model training achieves the desirable consistency

between the training and inference (application) phases.

Thus, LRCR can improve the disparity estimation perfor-

mance in a more straightforward and expected manner, with

better optimization quality.

The proposed left-right comparative recurrent model is

based on a convolutional Long-Short Term Memory (Con-

vLSTM) network, considering its superior capability of in-

corporating contextual information from multiple dispari-

ties. Besides, the historical disparity estimation stored in

LSTM memory cells automatically flows to following steps,

and provides a reasonably good initial disparity estima-

tion to facilitate generating higher-quality disparities in later

steps. The proposed LRCR model replaces the conventional

hand-crafted regularization methods [27] plus the “Winner

Takes All” (WTA) pipeline to estimate the disparity, offer-

ing a better solution.

To summarize, our contributions are as follows.

1. We propose a novel deep recurrent model for better

handling stereo disparity estimation tasks. This model

generates increasingly consistent disparities for both

views by effectively learning and exploiting online

left-right consistency. To the best of our knowledge,

this is the first end-to-end framework unifying consis-

tency check and disparity estimation.

2. A soft attention mechanism is introduced to guide the

network to automatically focus more on the unreli-

able regions learned by the online left-right compari-

son during the estimation.

3. We perform extensive experiments on the KITTI 2015

[19, 20], Scene Flow [17] and Middlebury [26] bench-

marks to validate the effectiveness of our proposed

model, and show that it can achieve state-of-the-art re-

sults on these benchmarks.

2. Related Work

Traditional stereo matching methods usually utilize the

low-level features of image patches around the pixel to mea-

sure the dissimilarity. Local descriptors such as absolute

difference (AD), sum of squared difference (SSD), census

transform [12], or their combination (AD-CENSUS) [18]

are often employed. For cost aggregation and disparity op-

timization, some global methods treat disparity selection as

a multi-label learning problem and optimize a correspond-

ing 2D graph partitioning problem by graph cut [1] or belief

propagation [3, 31, 33]. Semi-global methods [10] approx-

imately solve the NP-hard 2D graph partitioning by factor-

izing it into independent scan-lines and leveraging dynamic

programming to aggregate the matching cost.

Deep learning has been used in stereo matching re-

cently [34, 35, 15, 2, 29, 32]. Zbontar et al. [35] trained

a siamese network to extract patch features and then com-

pared patches accordingly. Luo et al. [15] proposed a faster

network model which computes local matching costs as per-

forming multi-label classification over disparities. Chen et

al. [2] presented a multi-scale embedding model to obtain

faithful local matching costs. Guney et al. [7] introduced

object-category specific disparity proposals to better esti-

mate the disparity. Shaked et al. [29] proposed a constant

highway network to learn both 3D cost volume and match-

ing confidence. Taniai et al. [32] over-parameterized each

pixel with a local disparity plane and constructed an MRF

to estimate the disparity map. Combining the matching cost

from [35] and their proposed local expansion move algo-

rithm also achieves good performance on the Middlebury

stereo evaluation [26].

End-to-end deep learning methods have also been pro-

posed to take the raw images as input and output the final

disparity results with deep neural networks without offline

post-processing. Mayer et al. [17] leveraged a large dataset

to train a convolutional neural network (CNN) to estimate

the disparity directly from the image appearances. In [17],

the cost volume was constructed with the extracted features

and the disparity was learned with 3D convolution. GC-

NET [13] combines the geometric and contextual informa-

tion with 3D convolution to learn the disparity.

Another type of work focuses on getting more reliable

measurements of disparity. A review [11] has summarized
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Figure 2: An illustration of the LRCR model. At each step, the Stacked ConvLSTMs

of both views take as input the corresponding matching cost volume and the error map

of that view obtained at the last step. Then, the generated disparity maps are compared

to produce the error maps of both views to be fed into the model at the next step, which

serve as the soft attention guidance to allow the model to selectively improve the regions.

Figure 3: An illustration of the left-right com-

parative branch. The predicted disparity maps

(i.e., DL and DR) are first converted to the op-

posite coordinates to obtain the induced dispar-

ity maps (i.e., D′

L and D
′

R). Then DL and D
′

L

are fed into a simple network with several con-

volutional layers to learn the error map EL for

the left view, which are the comparison outputs.

The same process also applies for the right view.

and compared an exhaustive list of hand-crafted confidence

measurements for disparity maps. CNN has also been im-

plemented to improve the accuracy of a confidence predic-

tion by exploiting the local information [30, 9, 24, 28, 22,

25, 23]. Haeusler et al. [9] combined different confidence

measurements with a random forest classifier to measure

the reliability of disparity maps. Seki and Pollefeys [28]

estimated the confidence map by extracting patches from

both the left and right disparity maps with a CNN. Poggi

and Mattoccia [24, 23] predicted the confidence from only

one disparity map within a deep network.

The most closely related work to ours is [6], which

also considers incorporating error localization and improve-

ment. [28] is also related in the sense of detecting left-right

mismatched regions as potential erroneous regions. How-

ever, these methods are only for refinement and require

external disparity results as inputs. By comparison, our

method is a unified model integrating disparity generation

and left-right comparison without requiring the initial dis-

parity. Our proposed model can generate disparity maps

with increasing left-right consistency, by learning to focus

on erroneously predicted regions for disparity enhancement.

[8] and [14] consider left-right consistency in the monocular

depth estimation under unsupervised and semi-supervised

settings, respectively.

3. Disparity Estimation with LRCR

This paper focuses on computing the disparity map for

given rectified stereo pair images. Given left and right in-

put images, we aim to produce the corresponding dispar-

ity results. The proposed left-right comparative recurrent

(LRCR) model takes the matching cost volume of each

pixel at all possible disparities as input. It outputs the dis-

parity map containing the disparity values of all the pix-

els. The matching cost volume is a 3D tensor of size

H × W × dmax, where H , W , and dmax are the height,

the width of the original image, and the maximal possi-

ble disparity, respectively. A pixel in the cost volume

shows the matching cost between a patch centered around

p = (x, y) in the left image and a patch centered around

pd = (x − d, y), for every pixel p in the left image and

every possible disparity d.

We deploy the constant highway networks [29] to pro-

duce the matching cost volume which serves as the input

to our proposed LRCR model for disparity estimation. The

constant highway network is trained on pairs of small image

patches whose true disparity is known. It adopts a siamese

architecture, where each branch processes the left or right

image patches individually and generates its own descrip-

tion vector. Each branch contains several highway residual

blocks with shared weights [29]. Subsequently, two path-

ways are exploited to compare the two patches and produce

a matching cost. In the first pathway, the two feature vectors

are concatenated into a single one, and then passed through

several fully-connected layers to obtain a binary decision

trained via a cross-entropy loss. The second pathway em-

ploys a hinge loss to the dot product between the two feature

vectors. Both pathways provide the matching cost volumes

that can be taken as input by the later LRCR model for the

disparity estimation. During inference, the fully-connected

layers are cast into 1 × 1 convolutional layers. Taking the

whole images as inputs, the constant highway network out-

puts the matching cost volumes with the same spatial di-

mensions in one feed-forward pass efficiently.

3.1. LRCR Model

Based on the computed matching cost volume, conven-

tional stereo matching pipelines apply several regularization

techniques to incorporate information from neighboring

pixels to obtain smoothed matching costs. Then a simple

“Winner Takes All” (WTA) rule is implemented to deter-

mine the disparity for each pixel. However, such pipelines
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are still highly hand-crafted and merely uses shallow func-

tions to pool the contextual information from neighboring

pixels.

In contrast, we propose a deep model, called as LRCR,

which automatically learns the local contextual informa-

tion among the neighborhood for each pixel based on the

obtained matching cost volume. Specifically, LRCR si-

multaneously improves the disparity results of both views

by learning to evaluate the left-right consistency. Formu-

lated as an RNN-style model, the LRCR model can receive

the past predicted disparity results and selectively improve

them by learning information about the potential left-right

mismatched regions. The progressive improvements facili-

tate predicting disparity maps with increasing left-right con-

sistency as desired.

Fig. 2 shows the architecture of the proposed LRCR

model, which contains two parallel stacked convolutional

LSTM networks. The left network takes the cost volume

matching left image to right as input and generates a dispar-

ity map for the left view. Similarly, the right network gener-

ates the disparity map for the right view. At each recurrent

step, the two stacked convolutional LSTMs process the two

input cost volumes and generate the corresponding dispar-

ity maps individually. The two generated disparity maps are

then converted to the opposite coordinates [28] for compari-

son with each other. Formally, let Dleft,t and Dright,t denote

the disparity maps derived from the left-view and right-view

matching cost volumes at the tth step, respectively. Dright,t

can be converted to the left-view coordinates, providing a

right-view induced disparity map D′

left,t. Then, a pixel-

wise comparison can be conveniently performed between

Dleft,t and D′

left,t with the information from both views.

For doing the comparison, several convolutional layers and

pooling layers are added on the top of Dleft,t and D′

left,t,

producing the error map of the left-view disparity. Taking

such an error map, which serves as a soft attention map (to-

gether with the left-view matching cost volume), as input at

the next step, the LRCR model suffices to selectively focus

more on the left-right mismatched regions at the next step.

Learning to generate error maps is not trivial. An alter-

native is to impose the supervision by adopting the differ-

ence between the predicted and corresponding ground-truth

disparity maps as the regression target. To enhance robust-

ness and solve the aforementioned issues, we propose not

to impose explicit supervision on the error map generation,

in order to prevent the left-right comparative branch from

learning the simple element-wise subtraction when com-

paring the two disparity maps. Instead, allowing the net-

work to automatically learn the regions that need to be fo-

cused more at the next step may be beneficial to capturing

the underlying local correlation between the disparities in

the neighborhood. Moreover, we aim to provide a soft at-

tention map whose values serve as confidence or attention

weights for the next step prediction, which can hardly be in-

terpreted as a simple element-wise difference between two

disparity maps. It is observed that the learned error maps

indeed provide reliable results in detecting the mismatched

labels which are mostly caused by repetitive patterns, oc-

cluded pixels, and depth discontinuities (see Fig. 1). For

the right view, the model performs the exactly same process

including the conversion of left-view disparity, right-view

error map generation, and using the error map as the atten-

tion map in the next step of right-view prediction.

3.2. Architecture

We describe the architecture of LRCR model in details,

including the stacked convolutional LSTM and the left-right

comparative branch.

3.2.1 Stacked Convolutional LSTM

Convolutional LSTM (ConvLSTM) networks have an ad-

vantage in encoding contextual spatial information and re-

ducing the model redundancy, compared to conventional

fully-connected LSTM networks. The LRCR model con-

tains two parallel stacked ConvLSTM networks that process

the left and right views respectively. The inputs to each

stacked ConvLSTM include the matching cost volume of

that view and the corresponding error map generated at the

last step. The matching cost volume is a 3D tensor of size

H×W×dmax and the error map is a 2D map of size H×W .

They are first concatenated along the disparity dimension to

form a tensor of size H ×W × (dmax + 1). ConvLSTM is

similar to usual fully-connected LSTM, except that the for-

mer applies spatial convolution operations on the 2D map in

several layers to encode spatial contexts. The detailed unit-

wise computations of the ConvLSTM are shown below:

it = σ
(

Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi
)

,

ft = σ
(

Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf
)

,

ot = σ
(

Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct−1 + bo
)

,

Ct = ft ◦ Ct−1 + it ◦ tanh
(

Wxc ∗Xt +Whc ∗Ht−1 + bc
)

,

Ht = ot ◦ tanh(Ct).
(1)

Here ∗ denotes the spatial convolution operation, and Xt

is the input tensor concatenated by the matching cost vol-

ume and the error map generated at the tth step. Ht−1 and

Ct−1 are the hidden state and memory cell of the (t− 1)th

step, respectively. it, ft and ot are the gates of the ConvL-

STM. Feeding the hidden states of a ConvLSTM as input to

another ConvLSTM successively builds a stacked ConvL-

STM.

The hidden state tensor of the last ConvLSTM is then

passed through simple convolutional layers to obtain the

cost tensor of size H ×W × dmax. Taking the negative of

each value in the cost tensor results in a score tensor. Ap-

plying softmax normalization to the score tensor leads to a
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probability tensor that reflects the probability on each avail-

able disparity for all pixels. Finally, a differentiable argmin
layer [13] is used to generate the predicted disparity map by

summing all the disparities weighted by their probabilities.

Mathematically, the following equation describes how one

can obtain the predicted disparity d∗ given the costs on each

available disparity cd via the cost tensor for a certain pixel:

d∗ =

dmax
∑

d=0

d× σ(−cd). (2)

3.2.2 Left-Right Comparative Branch

Fig. 3 shows an illustration of the left-right comparative

branch. The left-right comparative branch takes as input the

left and right disparity maps (i.e., Dleft and Dright) gener-

ated by the left-view and right-view stacked ConvLSTMs,

respectively. This branch first converts both maps to the

coordinates of the opposite view (i.e., D
′

left and D′

right).

Next, the original disparity map and converted disparity

map (e.g., Dleft and D′

left) are concatenated and fed into

a simple branch consisting of several simple convolutional

layers and a final sigmoid transformation layer to obtain the

corresponding error map for that view. This error map is

then used as the soft attention map in the next step to guide

the focused regions for the model.

3.3. Training

The supervisions of the whole ground-truth disparity

maps are imposed on the predicted disparity maps for both

left and right views at each recurrent step. The ℓ1 norm of

the difference between the ground-truth and the predicted

disparity is used as the training loss. The averaged loss over

all the labeled pixels is optimized for a particular sample.

The loss is mathematically defined in (3), where N is the

number of labeled pixels for the sample, and dn and d∗n are

the predicted disparity and the ground-truth disparity for the

nth pixel, respectively.

L =
1

N

N
∑

n=1

∣

∣|dn − d∗n
∣

∣|1. (3)

Due to the complexity of the model architecture, we train

the whole LRCR model in two stages. We expect the model

trained by the first stage to provide reliable initial dispar-

ity estimations, while the second stage trains the model to

progressively improve the estimations. At the first stage,

we train the stacked ConvLSTMs with only one recurrent

step. Indeed, the stacked ConvLSTM performs as a feed-

forward network that receives only the original matching

cost volumes and predicts disparity by pooling local con-

text via spatial convolutions, similar to [13] and [36]. In

this stage, Ht−1 and Ct−1 are set as constant zero tensors.

Therefore, only Wxi, Wxf and Wxc are trained in this stage,

and the rest weights in (1) will not be trained. This stage

results in a non-recurrent version of the LRCR model. In

the second stage, the non-recurrent version of the LRCR

model trained previously is used as the initialization to the

full LRCR model. All the weights in (1) as well as the left-

right comparative branch will be trained in this stage.

4. Experiments

We extensively evaluate our LRCR model on three

largest and most challenging stereo benchmarks: KITTI

2015, Scene Flow and Middlebury. In Sec. 4.1, we ex-

periment with different variants of our model and provide

detailed component analysis on the KITTI 2015 dataset. In

Sec. 4.2, we conduct the experiments on the Scene Flow

dataset. In Sec. 4.3, we report the results on the Middle-

bury benchmark and also compare our model against the

state-of-the-arts. In all the experiments, after generating the

disparity maps by the LRCR model, sub-pixel enhancement

plus median and bilateral filterings is used to refine the re-

sults.

4.1. Experiments on KITTI 2015

Dataset. KITTI 2015 is a real-world dataset with dynamic

street views captured by a driving car. It provides 200 stereo

pairs with sparse ground-truth disparities for training and

200 pairs for testing through online leaderboard. We ran-

domly split a validation set with 40 pairs from the train-

ing set. When evaluated on the validation set, our model

is trained on the training set containing the rest 160 pairs.

When doing the evaluation on the testing set, we train the

model on the whole training set.

Implementation details. The constant highway net-

work [29] is used to learn the matching cost volumes as

input to our LRCR model. It has two versions, i.e., the

hybrid one and the fast one. The hybrid version contains

two pathways trained by both the cross-entropy loss and the

hinge loss in the matching cost learning, while the fast one

has only the dot-product pathway trained by the hinge loss.

dmax is set to 228. In our LRCR model, each of the parallel

stacked ConvLSTMs contains four ConvLSTM layers. The

numbers of output channels in the four ConvLSTM layers

are dmax, 2dmax, 2dmax, and dmax, respectively. All the

convolution kernel sizes in the four ConvLSTM layers are

3∗3, and 1∗1 paddings are applied to keep the feature map

sizes. After the four ConvLSTM layers, additional three

1 ∗ 1 convolutional layers are included and followed by the

final differentiable argmin layer. The numbers of output

channels in the three 1 ∗ 1 convolutional layers are dmax,

dmax, and dmax, respectively. The left-right comparative

branch has two 3∗3 convolutional layers with 1∗1 padding.

As explained in Sec. 3.3, we first perform the training

of the non-recurrent version of our LRCR model. This
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Figure 4: Visualization of input images, predicted disparity maps, real error maps (difference from the ground-truth disparity

maps), and the learned attention maps at different recurrent steps. Note that the attention maps of the 5th step are obtained

by forwarding the final disparity (obtained at the 5th step) to the left-right comparative branch once more.

stage lasts for 15 epochs. The initial learning rate is set

to 0.01 and decreased by a factor of 10 every 5 epochs. In

the second stage, the well trained non-recurrent version of

the LRCR model is used for the weight initialization. We

train the recurrent model for 5 recurrent steps. We train 30

epochs in this stage. The initial learning rate is set to 0.01

and decreased by a factor of 10 every 10 epochs.

Results. Based on the matching cost volumes produced

by the constant highway network, we may directly apply

the “Winner Takes All” (WTA) strategy, or choose different

ablation versions of the LRCR model to generate the dis-

parity maps. We thus compare WTA, full LRCR, and its

multiple variants including non-recurrent, non-comparison,

and non-attention. The non-recurrent version is a one-

step feed-forward network explained in Sec. 3.3. The non-

comparison version does not perform left-right comparison

at each recurrent step. Instead, it just updates the left-view

disparity based on only the left-view matching cost volumes

at each step. The non-attention version does not include the

left-right comparative branch to learn the attention map. In-

stead, it replaces the learned attention maps with a simple

subtraction on the two disparity maps (e.g., Dleft and D′

left).

Table 1 shows the results of different versions of the

LRCR model on the KITTI 2015 validation set. It can be

seen that “WTA” performs worse than all the deep network

based methods. All the recurrent versions achieve better re-

sults in the final step than the non-recurrent models. The

results of the early steps (e.g., 1st or 2nd steps) of the re-

current versions are slightly worse than the non-recurrent

version. The reason may be that the recurrent versions are

optimized at all the steps and the gradients of the later steps

are propagated back to the early steps, making the predic-

tion of early steps less accurate. Among the three recurrent

versions, the full LRCR model consistently performs the

best at all the recurrent steps. The non-comparison version

produces the worst results without the guiding information

from the opposite view.

To better demonstrate the effectiveness of the proposed
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Figure 5: Qualitative results of: (left) input images, (center) predicted disparity maps, and (right) stereo errors.

Table 1: Stereo matching results (end point error and pixel per-

centages with errors larger than 2, 3 and 5 pixels) of different ab-

lation versions of the LRCR model on the KITTI 2015 validation

set. The results of different steps for the recurrent versions are

shown.

Model Recurrent Type >2 px >3 px >5 px EPE

WTA – 7.94 4.78 3.11 1.144

Non-recurrent – 5.70 3.69 2.44 0.939

t=1

w/o comp 6.24 3.92 2.54 0.972

w/o atten 6.15 3.87 2.53 0.969

LRCR 6.20 3.90 2.54 0.971

t=2

w/o comp 5.88 3.74 2.46 0.950

w/o atten 5.79 3.72 2.45 0.945

LRCR 5.61 3.66 2.42 0.935

t=3

w/o comp 5.64 3.67 2.43 0.936

w/o atten 5.05 3.44 2.29 0.891

LRCR 4.85 3.35 2.15 0.877

t=4

w/o comp 5.43 3.61 2.38 0.922

w/o atten 4.54 3.22 2.08 0.855

LRCR 4.33 3.12 2.02 0.839

t/=5

w/o comp 5.32 3.58 2.36 0.913

w/o atten 4.14 3.05 1.99 0.825

LRCR 3.92 2.96 1.93 0.806

LRCR model, we illustrate the learned attention maps and

the real error maps at different recurrent steps in Fig. 4. The

real error maps are the difference maps between the pre-

dicted and ground-truth disparity maps. As can be seen,

the learned attention maps have high consistency with the

real error maps at different steps. Both the learned at-

tention maps and the real error maps mainly highlight the

error-prone regions, including reflective regions, occluded

objects, and sophisticated boundaries. The consistency

between the erroneously predicted regions and the left-

right mismatched regions is crucial for the designing of the

LRCR model. This makes it possible that the left-right com-

parative branch can localize the erroneously labeled pixels

Table 2: Stereo matching results (error rates of the non-occluded

pixels and all the pixels) of the LRCR model and the state-of-the-

art methods on the KITTI 2015 testing set.

Type Method NOC ALL Runtime

Others

MC-CNN-acrt [35] 3.33 3.89 67s

Content-CNN [15] 4.00 4.54 1s

Displets v2 [7] 3.09 3.43 265s

DRR [6] 2.76 3.16 1.4s

End-to-end

CNN

GC-NET [13] 2.61 2.87 0.9s

CRL [21] 2.45 2.67 0.47s

LRCR

and the baseline

λ-ResMatch (fast) [29] 3.29 3.78 2.8s

λ-ResMatch (hybrid) [29] 2.91 3.42 48s

Ours (fast) 2.79 3.31 4s

Ours (hybrid) 2.55 3.03 49.2s

with only the predicted disparities from both views, without

explicit supervision over the erroneously labeled regions.

With more recurrent steps, the learned attention maps be-

come less highlighted, indicating the increasing consistency

of the disparity maps from the two views. We also show

the qualitative visualization of the final predicted disparity

maps by the LRCR model on the KITTI 2015 testing set in

Fig. 5.

We then compare the LRCR model against the state-of-

the-arts on the KITTI 2015 testing set. The top-ranked

methods of the online leaderboard is shown in Table 2.

Since our model is based on the matching cost volumes

obtained by [29], we show the comparisons to [29] based

on both the fast and hybrid versions. From Table 2, the

proposed LRCR model outperforms [29] significantly while

has similar running time to [29]. It is worth mentioning that

the main time consumption lies in the matching cost com-

putation at all possible disparities, especially when fully-

connected layers are used in the matching cost generation.
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Table 3: Stereo matching results (end point error and pixel per-

centages with errors larger than 1, 3 and 5 pixels) of different vari-

ants of the LRCR model, and the state-of-the-art methods on the

Scene Flow testing set.

Model >1 px >3 px >5 px EPE

WTA 29.68 18.47 12.16 8.07

GC-NET [13] 16.9 9.34 7.22 2.51

Non-recurrent 23.32 14.08 9.69 5.26

LRCR (t=1) 25.61 15.53 10.57 6.33

LRCR (t=2) 21.36 12.80 9.03 4.54

LRCR (t=3) 18.59 10.84 7.86 3.18

LRCR (t=4) 16.74 9.54 7.03 2.43

LRCR (t=5) 15.63 8.67 6.56 2.02

Table 4: Stereo matching results (error rates) on the Middlebury

testing set.
Method Error Rate

MC-CNN-acrt[35] 8.08

λ-ResMatch (hybrid)[29] 9.08

LRCR (hybrid) 7.43

End-to-end models may have slightly better results than

the LRCR model, but they are all trained with a huge

amount of extra training data [17]. For example, [13] and

[21] utilize the large Scene Flow training set to train their

models (i.e., extra 34k pairs of training samples for GC-

NET [13] and extra 22k pairs of training samples for CRL

[21]). The demand for the huge training set is due to the

very deep networks that they use to achieve the end-to-end

disparity estimation. For example, the CRL model [21] con-

tains 47 convolutional layers with around 74.95M learn-

able parameters in its two-stage cascaded architecture. In

comparison, our LRCR model has only about 30M learn-

able parameters, including both the hybrid version of the

constant highway networks for matching cost learning and

the stacked ConvLSTMs for disparity estimation. We also

claim the possibility of the LRCR model in achieving better

disparity results when leveraging stronger networks to learn

the matching costs, e.g., embedding the LRCR model to the

existing end-to-end networks.

4.2. Experiments on Scene Flow

Dataset. The Scene Flow dataset [17] is a large scale syn-

thetic dataset containing around 34k stereo pairs for training

and 4k for testing.

Implementation details. First, the hybrid version of the

constant highway network [29] is used to learn the matching

cost volumes. dmax is set to 320. Each parallel ConvLSTM

in the LRCR model has four ConvLSTM layers with 3 ∗ 3
convolutions. Three additional 1 ∗ 1 convolutional layers

are also added after the ConvLSTM layers. The numbers

of output channels in the four ConvLSTM layers and the

three 1 ∗ 1 convolutional layers are dmax, 2dmax, 2dmax,

dmax, dmax, dmax, and dmax, respectively. The numbers of

epochs for both training stages and the learning rate setting

are the same as those in the KITTI 2015 experiments.

Results. We show the Scene Flow testing set results of ap-

plying “WTA”, the non-recurrent version model, and the full

LRCR model in Table 3. The LRCR model outperforms the

state-of-the-art end-to-end GC-NET [13] noticeably. One

can also find that the improvement trend on the Scene Flow

dataset is similar to that on KITTI 2015. The relative im-

provements between consecutive steps become smaller with

the increasing of the recurrent steps. The LRCR model has

better results than the non-recurrent version model at the

later steps, while performs slightly worse at the 1st step.

The “WTA” strategy is inferior to all the deep network based

methods.

4.3. Experiments on Middlebury

The Middlebury dataset contains five subsets [26] of in-

door scenes. The image pairs are indoor scenes given a full,

half and quarter resolutions. Due to the small number of

training images in Middlebury, we learn the matching costs

by fine-tuning the constant highway network model in the

Scene Flow on the Middlebury training set. For the LRCR

model training, we directly train the full LRCR model with

5 recurrent steps by fine-tuning the LRCR model trained on

the Scene Flow dataset. The training lasts for 10 epochs

with the initial learning rate set to 0.001 and decreased by a

factor of 10 after 5 epochs.

Table 4 shows the result comparison between the LRCR

model and [29] which shares the same matching cost as our

method. The proposed LRCR model outperforms [29] sig-

nificantly. The LRCR model achieves better results than an-

other deep learning based method which shows outstanding

performance on this dataset, i.e., MC-CNN-acrt [35].

5. Conclusion

In this paper, we proposed a novel left-right comparative

recurrent model, dubbed LRCR, which is capable of per-

forming left-right consistency check and disparity estima-

tion jointly. We also introduced a soft attention mechanism

for better guiding the model itself to selectively focus on the

unreliable regions for subsequent refinement. In this way,

the proposed LRCR model is shown to progressively im-

prove the disparity map estimation. We conducted extensive

evaluations on the KITTI 2015, Scene Flow and Middlebury

datasets, which validate that LRCR outperforms conven-

tional disparity estimation networks with offline left-right

consistency check, and achieves comparable results with the

state-of-the-arts.
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