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Abstract

Video super-resolution (VSR) has become even more im-

portant recently to provide high resolution (HR) contents

for ultra high definition displays. While many deep learn-

ing based VSR methods have been proposed, most of them

rely heavily on the accuracy of motion estimation and com-

pensation. We introduce a fundamentally different frame-

work for VSR in this paper. We propose a novel end-to-end

deep neural network that generates dynamic upsampling fil-

ters and a residual image, which are computed depending

on the local spatio-temporal neighborhood of each pixel to

avoid explicit motion compensation. With our approach, an

HR image is reconstructed directly from the input image us-

ing the dynamic upsampling filters, and the fine details are

added through the computed residual. Our network with the

help of a new data augmentation technique can generate

much sharper HR videos with temporal consistency, com-

pared with the previous methods. We also provide analysis

of our network through extensive experiments to show how

the network deals with motions implicitly.

1. Introduction

The goal of super-resolution (SR) is to generate a high-

resolution (HR) image or video from its corresponding low-

resolution (LR) image or video. SR is widely used in many

fields ranging from medical imaging [7] to satellite imag-

ing [2] and surveillance [38]. With the advances in the dis-

play technology, the video super-resolution (VSR) for LR

videos are becoming more important as the ultra high defi-

nition televisions target 4K (3840×2160) and 8K resolution

(7680 × 4320), but the contents that match such high reso-

lution are still scarce.

With the success of deep learning in computer vision

as in image classification [19] and image segmentation

[25], the deep learning based single-image super-resolution

(SISR) methods have emerged [3, 17, 31, 21, 33, 20, 35, 30].

These methods are showing state-of-the-art performances

in terms of the peak signal-to-noise ratio (PSNR) and the
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Figure 1. ×4 VSR for the scene ferriswheel. To visualize the tem-

poral consistency in 2D, we also plot the transition of the dotted

orange horizontal scanline over time in the orange box with the

x−t axis. We can observe that our method produces much sharper

and temporally consistent HR frames compared with VSRnet [16].

structural similarity index (SSIM) [37].

A straightforward way to perform VSR is to run SISR

frame by frame. However, since the SISR methods do not

consider the temporal relationship between frames, there is

a high possibility that consecutive frames are not connected

naturally, resulting in the flickering artifact.

Traditional VSR (or multi-image super-resolution) algo-

rithms take multiple LR frames as inputs and output HR

frames by taking into account subpixel motions between the

neighboring LR frames [28, 4, 23, 26]. All deep learning

based VSR methods follow similar steps and are composed

of two steps: a motion estimation and compensation proce-

dure followed by an upsampling process [16, 22, 1, 24, 34].

One problem with this two-step approach is that the results

rely heavily on the accurate motion estimation. Another

potential problem with this type of approach is that the HR

output frame is produced by mixing the values from multi-

ple motion compensated input LR frames through a convo-

lutional neural networks (CNN), which can lead to a blurry

output HR frame.
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In this paper, we propose a novel end-to-end deep neural

network that is fundamentally different from the previous

methods. Instead of explicitly computing and compensat-

ing for motion between input frames, the motion informa-

tion is implicitly utilized to generate dynamic upsampling

filters. With the generated upsampling filters, the HR frame

is directly constructed by local filtering to the input center

frame (Fig. 2). As we do not rely on explicit computation

of motions and do not directly combine values from multi-

ple frames, we can generate much sharper and temporally

consistent HR videos.

Using a large number of training videos with a new data

augmentation process, we achieve the state-of-the-art per-

formance compared to the previous deep learning based

VSR algorithms. Fig. 1 shows one example where our

method produces much sharper frames with less flickering

compared to one of the state-of-the-art methods, VSRnet

[16].

2. Related Works

Single-Image Super-Resolution. Dong et al. [3] pro-

posed SRCNN, which is one of the earliest works to apply

deep learning to SISR. SRCNN is a relatively shallow net-

work that consists of 3 convolutional layers. Kim et al. [17]

later developed a deeper network with 20 convolutional lay-

ers called VDSR that employs residual learning. SRGAN

proposed by Ledig et al. [21] and EnhanceNet proposed by

Sajjadi et al. [30] produced plausible high-frequency details

by using the structure of ResNet [9] with the generative ad-

versarial network [6]. Also, Tai et al. [33] proposed DRRN,

which beats previous SISR methods in terms of PSNR and

SSIM using recursive residual blocks. Recently, Tong et

al. [35] proposed SRDenseNet, which showed good perfor-

mance by using DenseNet [10].

Video Super-Resolution. Non deep learning based

traditional VSR methods modelled the VSR problem by

putting the motion between HR frames, the blurring pro-

cess, and the subsampling altogether into one framework

and focused on solving for sharp frames using an optimiza-

tion [28, 4, 23, 26]. Liu and Sun [23] proposed a Bayesian

approach to estimate HR video sequences that also com-

putes the motion fields and blur kernels simultaneously.

Recently, deep learning based VSR methods that exploit

motion information in videos have been proposed. Huang

et al. [11] proposed BRCN using recurrent neural networks

to model long-term contextual information of temporal se-

quences. Specifically, they used bidirectional connection

between video frames with three types of convolutions: the

feedforward convolution for spatial dependency, the recur-

rent convolution for long-term temporal dependency, and

the conditional convolution for long-term contextual infor-

mation.

Liao et al. [22] proposed DECN, which reduces com-

putational load for motion estimation by employing a non-

iterative framework. They generated SR drafts by several

hand-designed optical flow algorithms, and a deep network

produced final results. Likewise, Kappeler et al. [16] pro-

posed VSRnet, which compensates motions in input LR

frames by using a hand-designed optical flow algorithm as

a preprocessing before being fed to a pretrained deep SR

network.

Caballero et al. [1] proposed VESPCN, an end-to-end

deep network, which learns motions between input LR

frames and improves HR frame reconstruction accuracy in

real-time. VESPCN estimates the optical flow between in-

put LR frames with a learned CNN to warp frames by a

spatial transformer [13], and finally produces an HR frame

through another deep network.

In Liu et al. [24], the method also learns and compen-

sates the motion between input LR frames. But after the

motion compensation, they adaptively use the motion in-

formation in various temporal radius by temporal adaptive

neural network. The network is composed of several SR in-

ference branches for each different temporal radius, and the

final output is generated by aggregating the outputs of all

the branches.

Tao et al. [34] used motion compensation transformer

module from VESPCN [1] for the motion estimation, and

proposed a subpixel motion compensation layer for simulta-

neous motion compensation and upsampling. For following

SR network, an encoder-decoder style network with skip-

connections [27] is used to accelerating training and Con-

vLSTM module [32] is used since video is sequential data.

Previous end-to-end CNN based VSR methods focus on

explicit motion estimation and compensation to better re-

construct HR frames. Unlike the previous works, we do

not have explicit motion estimation and compensation steps.

Using the adaptive upsampling with dynamic filters that de-

pend on input frames, we achieve a VSR performance that

goes beyond those of existing works.

3. Method

The goal of the VSR is to estimate HR frames {Ŷt} from

given LR frames {Xt}. The LR frames {Xt} are down-

sampled from the corresponding GT frames {Yt}, where t

denotes the time step. With the proposed VSR network G

and the network parameters θ, the VSR problem is defined

as

Ŷt = Gθ(Xt−N :t+N ), (1)

where N is the temporal radius. An input tensor shape for

G is T ×H ×W × C, where T = 2N + 1, H and W are

the height and the width of the input LR frames, and C is

the number of color channels. Corresponding output tensor

shape is 1× rH × rW ×C, where r is the upscaling factor.

As shown in Fig. 3, our network produces two outputs to
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Figure 2. Dynamic upsampling without explicit motion compen-

sation. The figure illustrates an example of upscaling a pixel at

location (3, 3) in the center input frame Xt by the upscaling fac-

tor r = 4. 16 generated filters from F
3,3,0,0

t to F
3,3,3,3

t are used

to create 16 pixels in the region (12, 12) to (15, 15) of the filtered

HR frame Ỹt.

generate a final HR frame Ŷt from a set of input LR frames

{Xt−N :t+N}: the dynamic upsampling filters Ft and the

residual Rt. The input center frame Xt is first locally fil-

tered with the dynamic upsampling filters Ft and then the

residual Rt is added to upsampled result Ỹt for the final

output Ŷt.

3.1. Dynamic Upsampling Filters

The filter kernels for traditional bilinear or bicubic up-

sampling are basically fixed, with the only variation being

the shift of the kernel according to the location of newly

created pixel in an upsampled image. For the ×4 upsam-

ling, a set of 16 fixed kernels are used for those traditional

upsampling process. They are fast but hardly restore sharp

and textured regions.

Contrary to this, we propose to use dynamic upsampling

filters inspired by the dynamic filter network (DFN) [15].

The upsampling filters are generated locally and dynam-

ically depending on the spatio-temporal neighborhood of

each pixel in LR frames.

The overview of the proposed dynamic upsampling pro-

cedure for VSR is shown in Fig. 2. First, a set of input LR

frames {Xt−N :t+N} (7 frames in our network: N = 3) is

fed into the dynamic filter generation network. The trained

network outputs a set of r2HW upsampling filters Ft of a

certain size (5 × 5 in our network), which will be used to

generate new pixels in the filtered HR frame Ỹt
1. Finally,

each output HR pixel value is created by local filtering on

an LR pixel in the input frame Xt with the corresponding

filter F
y,x,v,u
t as follows:

1We use the same upsampling kernel for all the color channels

Ỹt(yr + v, xr + u)

=

2
∑

j=−2

2
∑

i=−2

F
y,x,v,u
t (j + 2, i+ 2)Xt(y + j, x+ i),

(2)

where y and x are the coordinates in LR grid, and v and u

are the coordinates in each r × r output block (0 ≤ v, u ≤
r − 1). Note that this operation is similar to deconvolution

(or transposed convolution), thus our network can be trained

end-to-end as it allows back-propagation.

Our approach is essentially different from the previous

deep learning based SR methods, where a deep neural net-

work learns to reconstruct HR frames through a series of

convolution in the feature space. Instead, we use the deep

neural network to learn the best upsampling filters, which

is then used to directly reconstruct HR frames from given

LR frames. Conceptually, the dynamic filters are created

depending on the pixel motions as the filters are generated

by looking at spatio-temporal neighborhoods of pixels, en-

abling us to avoid explicit motion compensation.

3.2. Residual Learning

The result after applying the dynamic upsampling filters

alone lacks sharpness as it is still a weighted sum of input

pixels. There may be unrecoverable details through linear

filtering. To address this, we additionally estimate a residual

image to increase high frequency details. In [17], a residual

was added to the bicubically upsampled baseline to produce

a final output. Our approach is different from [17] as the

residual image is made from multiple input frames rather

than a single input frame, and we use the dynamically up-

sampled frame as a better baseline which is then added with

the computed residual. By combining these complementary

components, we are able to achieve spatial sharpness and

temporal consistency in the resulting HR frames.

3.3. Network Design

As shown in Fig. 3, our filter and residual generation

network are designed to share most of the weights thus

we can reduce the overhead coming from producing the

two different outputs. The shared part of our network is

designed inspired by a dense block [10] and it is modi-

fied properly to our problem. Specifically, we replace 2D

convolutional layers with 3D convolutional layers to learn

spatio-temporal features from video data. A 3D convolu-

tional layer is known to be more suitable than a 2D convo-

lutional layer in human action recognition [14] and generic

spatio-temporal feature extraction [36] on video data. Each

part of the dense block is composed of batch normalization

(BN) [12], ReLU [5], 1×1×1 convolution, BN, ReLU, and

3×3×3 convolution in order. As done in [10], each part
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Figure 3. Network architecture. The weights of filter and residual generation networks are shared for efficiency. The dynamic upsampling

filters Ft are generated adaptively to local motion, and residual Rt adds high-frequency details.

takes all preceding feature maps as input.

Each input LR frame is first processed by a shared 2D

convolutional layer and concatenated along temporal axis.

The resulting spatio-tempral feature maps go through our

3D dense block, and are then processed at separate branches

that consist of several 2D convolutional layers to generate

the two outputs. To produce the final output Ŷt, the filtered

output Ỹt is added with the generated residual Rt.

3.4. Temporal Augmentation

In order to make the proposed network to fully under-

stand various and complex real-world motions, we need

corresponding training data. To create such training data,

we apply a data augmentation in the temporal axis on top

of the general data augmentation like random rotation and

flipping. Here, we introduce the variable TA that de-

termines sampling interval of the temporal augmentation.

With TA = 2, for example, we will sample every other

frames to simulate faster motion. We can also create a new

video sample in the reverse order when we set the TA value

Forward direction

� − ͳ � � + ͳ� − ૛ � + ૛� − ૚ � � + ૚� − ʹ � + ʹ
(a) TA = 1.

Forward direction

� − ͳ � � + ͳ� − ૛ � + ૛� − ૚ � � + ૚� − ʹ � + ʹ
Backward direction

(b) TA = {−2, 2}.

Figure 4. Sampling data from a video with the temporal radius

N = 1. Training data with faster or reverse motion can be sampled

with the temporal augmentation.

as negative (Fig. 4). Using various sizes of TA (from -3 to

3 in our work), we can create training data with rich mo-

tion. Note that the VSR performance decreases in case of

|TA|> 3 as the displacement of an object gets too large.

4. Implementation

Datasets. One of the most important elements of deep

learning is the quantity and the quality of training data. To

achieve good generalization, videos in the training dataset

must contain various and complex real-world motions. But

for the VSR task, a dataset like ImageNet [29] does not ex-

ist. Therefore, we collected a total of 351 videos from the

Internet with various contents including wildlife, activity,

and landscape. The collected videos also include various

textures and motions. We sample 160, 000 ground truth

training data with the spatial resolution of 144 × 144 by

selecting areas with sufficient amount of motion. For the

validation set, we use 4 videos, coastguard, foreman, gar-

den, and husky from the Derf’s collection2, which we name

as Val4. For the test set, Vid4 from [23] is used to compare

with other methods.

Training. To obtain LR inputs, the ground truth training

data are first smoothed with a Gaussian filter and then sub-

sampled with respect to the upscaling factor r. The spatial

resolution of the input patch is fixed as 32× 32. We set the

size of mini-batch to 16, and all variables are initialized by

using the method in [8].

To train our network Gθ, we use the Huber loss as the

cost function for stable convergence:

L = H(Ŷt, Yt) =

{

1

2
||Ŷt − Yt||

2
2 ||Ŷt − Yt||1≤ δ,

δ||Ŷt − Yt||1−
1

2
δ2 otherwise.

(3)

2https://media.xiph.org/video/derf/
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Figure 5. Synthetic motion experiments for ×4 VSR. Two videos

with the same object but different motion are synthesized to verify

that our method can implicitly handle motion for VSR task. (a)

The results indicate that our network exploits the temporal infor-

mation properly. See text for details. (b) Our method can maintain

temporal consistency. Best viewed in zoom.

and set the threshold δ = 0.01. We use Adam optimizer

[18] and initially set learning rate to 0.001 and multiply by

0.1 after every 10 epochs. Initial accuracy of our approach

is quite high due to the direct upsample filtering and we

get a good starting point for the training. Combined with

the residual learning, the convergence speed is very fast and

we can complete the training in only 22 epochs. In the test

phase, we zero padded inputs in the temporal axis to prevent

the number of frames from decreasing.

5. Experimental Results

5.1. Visualization of Learned Motion

Synthetic Motion Test. In order to verify that the pro-

posed method exploits temporal information of a given

video properly without the explicit motion compensation,

videos with a vertical bar moving to the left and to the right

t−1

t−1

t
t−1

t+1

(a) Learned filters from the first 3×3×3 convolutional layer.

t−1

t−1

t
t−1

t+1

(b) Learned filters from the last 3×3×3 convolutional layer.

Figure 6. Example learned filters of our filter and residual gener-

ation network. They can bring information from front and rear as

well as center of an input tensor since the weights are evenly high

at all time steps. Each 3×3 filter represents spatial weight and total

3 filters to temporal axis are shown in each column. Each 3×3×3

filter is normalized to better visualization.

by 1 pixel per frame in GT frames are synthesized. For the

same input patch, the activation maps of both videos should

be different since each bar has different motions. But the

HR frame to be generated is the same, so the upsampling

filters should be same. In Fig. 5(a), we plot the activation

maps of the first 3×3×3 convolutional layer and the gen-

erated dynamic filters for the different two regions. As ex-

pected, our learned network shows different activations for

different motions in the same input patches and the weights

of the generated dynamic filters are almost the same.

We also plot the transition of the dotted orange horizon-

tal scanline over time in Fig. 5(b) to see whether the tem-

poral consistency is well preserved. Since VDSR [17] does

not consider temporal information, it shows a bumpy result.

The reconstructed bar of VSRnet [16] also shows zig-zag

artifacts, and both will cause severe flickering artifact when

playing video. In comparison, our result looks sharper and

shows the ability to maintain the temporal consistency, and

closest to the ground truth. We recommend the readers to

see our supplementary video for better comparisons.3

Learned Filters. Another way to check our method can

learn and use temporal information is seeing learned filters.

To do this, learned filters in 3×3×3 convolutional layers of

our method should fetch some values from front and rear

as well as center of inputs to temporal axis. We can see

that our network can evenly fetch some values from front

and rear as well as center of inputs to temporal axis with

various structures since the filters have higher weights at

time steps t − 1 and t + 1 as well as t as shown in Fig. 6.

This shows our method is capable to learn and use temporal

information between input frames implicitly for generating

3Codes and the video are available on our project page https://

github.com/yhjo09/VSR-DUF
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Figure 7. Examples of upsampling process in detail. The direction of the colored arrows indicates the direction of local motion. Two sets

of 16 upsampling filters are for the center pixel of each input patch, and they are different since each input has different texture and local

motion.

Ours-16L Ours-52L GT

Figure 8. With our algorithm, increasing the number of layers pro-

vide better result. The scene from [34].

accurate output frame.

Dynamic Upsampling Filters. The generated upsampling

filters should have different weights for different regions to

adaptively handle local motion. Fig. 7 shows examples of

the proposed upsampling process for two different regions

of the scene Calendar in details, and the filter weights for

each newly created pixel positions are different. For two in-

put patches with different texture and motion direction, our

method adaptively generates upsampling filters for accurate

output reconstruction.

5.2. Comparisons with Other Methods

With our basic network consisting of 16 layers (Ours-

16L), networks with 28 layers (Ours-28L) and 52 layers

(Ours-52L) are also tested. As with most super-resolution

methods, scenes with thin lines that are close together are

quite challenging as shown in Fig. 8. With our algorithm,

increasing the number of layers provide better results for

this type of challenging scenes.

Quantitative Evaluation. Quantitative comparison with

other state-of-the-art VSR methods is shown in Table 1. The

results show the tendency that the network with increased

depth performs better, and the PSNR value of Ours-28L is

increased by 0.18dB from Ours-16L with 0.2M additional

parameters. Our approach works well even when stacking

up to 52 layers and the PSNR value for Vid4 is improved

to 27.34dB, which is 0.53dB higher than that of Ours-16L.

Even with Ours-16L, we outperforms all other methods by a

large margin in terms of PSNR and SSIM for all upscale fac-

tors. For example, the PSNR of Ours-16L is 0.8dB higher

than the second highest result [34] (r = 4).

Qualitative Comparisons. Some qualitative examples

are shown in Fig. 9. Fine details and textures are better

reconstructed using our method. In Fig. 10, we also com-

pare a result from [34] with the results using our network

with different depth. We outperform the previous work and

can also observe the increase in the performance with more

depth. More qualitative comparisons with other state-of-

the-art VSR methods on Vid4 is shown in Fig. 11. Our re-

sults show sharper outputs with more smooth temporal tran-

sition compared to other works. Sharp and smooth edges in

the x− t images indicate that the video has much less flick-

ering.

6. Conclusion

In this paper, we introduce a new deep learning based

framework for VSR that learns to output dynamic upsam-

pling filters and the residual simultaneously. We achieve

the state-of-the-art performance with our new framework

and recover sharp HR frames and also maintain the tempo-

ral consistency. Through experiments, we have shown that

our deep network can implicitly handle the motion without

explicit motion estimation and compensation.

It takes about 2 days to train our network and the run-

times to generate a single 1920 × 1080 output frame from

7 input frames size of 480 × 270 are 0.4030s, 0.8382s,

and 2.8189s for Ours-16L, Ours-28L, and Ours-52L respec-

tively using NVidia GeForce GTX 1080 Ti. About a half of

the runtime is spent on local filtering in our inference pro-

cess. In the future, we would like to focus on accelerating

our method to achieve a real-time performance. We would

also like to extend our work to increase the temporal res-

olution in addition to the spatial resolution, for example,

creating a 60fps UHD video from a 30fps SD video.
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Upscale Metric Bicubic VSRnet[16] VESPCN[1] Tao et al. [34] Liu et al. [24] Ours-16L Ours-28L Ours-52L

×2
PSNR 28.43 31.30 - - - 33.73 - -

SSIM 0.8676 0.9278 - - - 0.9554 - -

×3
PSNR 25.28 26.79 27.25 - - 28.90 - -

SSIM 0.7329 0.8098 0.8447 - - 0.8898 - -

×4
PSNR 23.79 24.84 25.35 26.01 25.24 26.81 26.99 27.34

SSIM 0.6332 0.7049 0.7557 0.7744 - 0.8145 0.8215 0.8327

Table 1. Quantitative comparison with other state-of-the-art VSR methods on Vid4. Mean PSNR and SSIM are measured excluding spatial

border pixels (8 pixels), the first two, and the last two frames as done in [16]. The results for [34] is re-computed from the provided output

images in the same way. All other values are taken from the original papers. The results of our method are shown in bold, and show the

best performance for all the upscale factors.

VSRnet [16] Tao et al. [34] Ours-16L Ours-52L GT

Figure 9. Qualitative comparison on videos from [34].

Tao et al. [34] Ours-16L Ours-28L Ours-52L GT

Figure 10. Qualitative comparison of our methods on videos from [34].
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Figure 11. Qualitative comparison on Vid4.
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