
Image Generation from Scene Graphs

Justin Johnson1,2∗ Agrim Gupta1 Li Fei-Fei1,2

1Stanford University 2Google Cloud AI

Abstract

To truly understand the visual world our models should

be able not only to recognize images but also generate them.

To this end, there has been exciting recent progress on gen-

erating images from natural language descriptions. These

methods give stunning results on limited domains such as

descriptions of birds or flowers, but struggle to faithfully

reproduce complex sentences with many objects and rela-

tionships. To overcome this limitation we propose a method

for generating images from scene graphs, enabling explic-

itly reasoning about objects and their relationships. Our

model uses graph convolution to process input graphs, com-

putes a scene layout by predicting bounding boxes and seg-

mentation masks for objects, and converts the layout to an

image with a cascaded refinement network. The network is

trained adversarially against a pair of discriminators to en-

sure realistic outputs. We validate our approach on Visual

Genome and COCO-Stuff, where qualitative results, abla-

tions, and user studies demonstrate our method’s ability to

generate complex images with multiple objects.

1. Introduction

What I cannot create, I do not understand

– Richard Feynman

The act of creation requires a deep understanding of the

thing being created: chefs, novelists, and filmmakers must

understand food, writing, and film at a much deeper level

than diners, readers, or moviegoers. If our computer vision

systems are to truly understand the visual world, they must

be able not only recognize images but also to generate them.

Aside from imparting deep visual understanding, meth-

ods for generating realistic images can also be practically

useful. In the near term, automatic image generation can

aid the work of artists or graphic designers. One day, we

might replace image and video search engines with algo-

rithms that generate customized images and videos in re-

sponse to the individual tastes of each user.

As a step toward these goals, there has been exciting re-

∗Work done during an internship at Google Cloud AI.

Sentence Scene Graph

OursStackGAN
[59]

[47]

sheep

grass skyocean

tree

sheep

boat in

by

by

behind

standing on

above

Figure 1. State-of-the-art methods for generating images from

sentences, such as StackGAN [59], struggle to faithfully depict

complex sentences with many objects. We overcome this limita-

tion by generating images from scene graphs, allowing our method

to reason explicitly about objects and their relationships.

cent progress on text to image synthesis [41, 42, 43, 59] by

combining recurrent neural networks and Generative Ad-

versarial Networks [12] to generate images from natural

language descriptions.

These methods can give stunning results on limited do-

mains, such as fine-grained descriptions of birds or flowers.

However as shown in Figure 1, leading methods for generat-

ing images from sentences struggle with complex sentences

containing many objects.

A sentence is a linear structure, with one word follow-

ing another; however as shown in Figure 1, the information

conveyed by a complex sentence can often be more explic-

itly represented as a scene graph of objects and their rela-

tionships. Scene graphs are a powerful structured represen-

tation for both images and language; they have been used

for semantic image retrieval [22] and for evaluating [1] and

improving [31] image captioning; methods have also been

developed for converting sentences to scene graphs [47] and

for predicting scene graphs from images [32, 36, 57, 58].

In this paper we aim to generate complex images with

many objects and relationships by conditioning our genera-

tion on scene graphs, allowing our model to reason explic-

itly about objects and their relationships.

With this new task comes new challenges. We must de-

velop a method for processing scene graph inputs; for this

we use a graph convolution network which passes informa-

tion along graph edges. After processing the graph, we must

11219



bridge the gap between the symbolic graph-structured in-

put and the two-dimensional image output; to this end we

construct a scene layout by predicting bounding boxes and

segmentation masks for all objects in the graph. Having pre-

dicted a layout, we must generate an image which respects

it; for this we use a cascaded refinement network (CRN) [6]

which processes the layout at increasing spatial scales. Fi-

nally, we must ensure that our generated images are realistic

and contain recognizable objects; we therefore train adver-

sarially against a pair of discriminator networks operating

on image patches and generated objects. All components of

the model are learned jointly in an end-to-end manner.

We experiment on two datasets: Visual Genome [26],

which provides human annotated scene graphs, and COCO-

Stuff [3] where we construct synthetic scene graphs from

ground-truth object positions. On both datasets we show

qualitative results demonstrating our method’s ability to

generate complex images which respect the objects and re-

lationships of the input scene graph, and perform compre-

hensive ablations to validate each component of our model.

Automated evaluation of generative images models is a

challenging problem unto itself [52], so we also evaluate

our results with two user studies on Amazon Mechanical

Turk. Compared to StackGAN [59], a leading system for

text to image synthesis, users find that our results better

match COCO captions in 68% of trials, and contain 59%

more recognizable objects.

2. Related Work

Generative Image Models fall into three recent cate-

gories: Generative Adversarial Networks (GANs) [12, 40]

jointly learn a generator for synthesizing images and a dis-

criminator classifying images as real or fake; Variational

Autoencoders [24] use variational inference to jointly learn

an encoder and decoder mapping between images and la-

tent codes; autoregressive approaches [38, 53] model likeli-

hoods by conditioning each pixel on all previous pixels.

Conditional Image Synthesis conditions generation on

additional input. GANs can be conditioned on category la-

bels by providing labels as an additional input to both gen-

erator and discriminator [10, 35] or by forcing the discrim-

inator to predict the label [37]; we take the latter approach.

Reed et al. [42] generate images from text using a GAN;

Zhang et al. [59] extend this approach to higher resolutions

using multistage generation. Related to our approach, Reed

et al. generate images conditioned on sentences and key-

points using both GANs [41] and multiscale autoregressive

models [43]; in addition to generating images they also pre-

dict locations of unobserved keypoints using a separate gen-

erator and discriminator operating on keypoint locations.

Chen and Koltun [6] generate high-resolution images of

street scenes from ground-truth semantic segmentation us-

ing a cascaded refinement network (CRN) trained with a

perceptual feature reconstruction loss [9, 21]; we use their

CRN architecture to generate images from scene layouts.

Related to our layout prediction, Chang et al. have inves-

tigated text to 3D scene generation [4, 5]; other approaches

to image synthesis include stochastic grammars [20], prob-

abalistic programming [27], inverse graphics [28], neural

de-rendering [55], and generative ConvNets [56].

Scene Graphs represent scenes as directed graphs,

where nodes are objects and edges give relationships be-

tween objects. Scene graphs have been used for image

retrieval [22] and to evaluate image captioning [1]; some

work converts sentences to scene graphs [47] or predicts

grounded scene graphs for images [32, 36, 57, 58]. Most

work on scene graphs uses the Visual Genome dataset [26],

which provides human-annotated scene graphs.

Deep Learning on Graphs. Some methods learn em-

beddings for graph nodes given a single large graph [39, 51,

14] similar to word2vec [34] which learns embeddings for

words given a text corpus. These differ from our approach,

since we must process a new graph on each forward pass.

More closely related to our work are Graph Neural Net-

works (GNNs) [11, 13, 46] which generalize recursive neu-

ral networks [8, 49, 48] to operate on arbitrary graphs.

GNNs and related models have been applied to molecular

property prediction [7], program verification [29], model-

ing human motion [19], and premise selection for theorem

proving [54]. Some methods operate on graphs in the spec-

tral domain [2, 15, 25] though we do not take this approach.

3. Method

Our goal is to develop a model which takes as input

a scene graph describing objects and their relationships,

and which generates a realistic image corresponding to the

graph. The primary challenges are threefold: first, we must

develop a method for processing the graph-structured input;

second, we must ensure that the generated images respect

the objects and relationships specified by the graph; third,

we must ensure that the synthesized images are realistic.

We convert scene graphs to images with an image gen-

eration network f , shown in Figure 2, which inputs a scene

graph G and noise z and outputs an image Î = f(G, z).
The scene graph G is processed by a graph convolution

network which gives embedding vectors for each object; as

shown in Figures 2 and 3, each layer of graph convolution

mixes information along edges of the graph.

We respect the objects and relationships from G by us-

ing the object embedding vectors from the graph convolu-

tion network to predict bounding boxes and segmentation

masks for each object; these are combined to form a scene

layout, shown in the center of Figure 2, which acts as an

intermediate between the graph and the image domains.

The output image Î is generated from the layout using a

cascaded refinement network (CRN) [6], shown in the right

1220



man right	of man

boy behind

patioonfrisbee

throwing

Input:	Scene	graph

Graph	

Convolution

Object	

features

Scene	

layout
Output:	Image

Layout	prediction

Conv Upsample Conv

Downsample

Cascaded	Refinement	Network

Noise

Figure 2. Overview of our image generation network f for generating images from scene graphs. The input to the model is a scene graph

specifying objects and relationships; it is processed with a graph convolution network (Figure 3) which passes information along edges to

compute embedding vectors for all objects. These vectors are used to predict bounding boxes and segmentation masks for objects, which

are combined to form a scene layout (Figure 4). The layout is converted to an image using a cascaded refinement network (CRN) [6]. The

model is trained adversarially against a pair of discriminator networks. During training the model observes ground-truth object bounding

boxes and (optionally) segmentation masks, but these are predicted by the model at test-time.

half of Figure 2; each of its modules processes the layout at

increasing spatial scales, eventually generating the image Î .

We generate realistic images by training f adversarially

against a pair of discriminator networks Dimg and Dobj

which encourage the image Î to both appear realistic and

to contain realistic, recognizable objects.

Each of these components is described in more detail be-

low; the supplementary material describes the exact archite-

cures used in our experiments.

Scene Graphs. The input to our model is a scene

graph [22] describing objects and relationships between ob-

jects. Given a set of object categories C and a set of rela-

tionship categories R, a scene graph is a tuple (O,E) where

O = {o1, . . . , on} is a set of objects with each oi ∈ C, and

E ⊆ O × R × O is a set of directed edges of the form

(oi, r, oj) where oi, oj ∈ O and r ∈ R.

As a first stage of processing, we use a learned embed-

ding layer to convert each node and edge of the graph from

a categorical label to a dense vector, analogous to the em-

bedding layer typically used in neural language models.

Graph Convolution Network. In order to process scene

graphs in an end-to-end manner, we need a neural network

module which can operate natively on graphs. To this end

we use a graph convolution network composed of several

graph convolution layers.

A traditional 2D convolution layer takes as input a spatial

grid of feature vectors and produces as output a new spa-

tial grid of vectors, where each output vector is a function

of a local neighborhood of its corresponding input vector;

in this way a convolution aggregates information across lo-

cal neighborhoods of the input. A single convolution layer

can operate on inputs of arbitrary shape through the use of

weight sharing across all neighborhoods in the input.

Our graph convolution layer performs a similar function:

given an input graph with vectors of dimension Din at each

node and edge, it computes new vectors of dimension Dout

for each node and edge. Output vectors are a function of

a neighborhood of their corresponding inputs, so that each

graph convolution layer propagates information along edges

of the graph. A graph convolution layer applies the same

function to all edges of the graph, allowing a single layer to

operate on graphs of arbitrary shape.

Concretely, given input vectors vi, vr ∈ R
Din for all ob-

jects oi ∈ O and edges (oi, r, oj) ∈ E, we compute output

vectors for v′i, v
′

r ∈ R
Dout for all nodes and edges using

three functions gs, gp, and go, which take as input the triple

of vectors (vi, vr, vj) for an edge and output new vectors

for the subject oi, predicate r, and object oj respectively.

To compute the output vectors v′r for edges we simply set

v′r = gp(vi, vr, vj). Updating object vectors is more com-

plex, since an object may participate in many relationships;

as such the output vector v′i for an object oi should depend

on all vectors vj for objects to which oi is connected via

graph edges, as well as the vectors vr for those edges. To

this end, for each edge starting at oi we use gs to compute

a candidate vector, collecting all such candidates in the set

V s
i ; we similarly use go to compute a set of candidate vec-

tors V o
i for all edges terminating at oi. Concretely,

V s
i = {gs(vi, vr, vj) : (oi, r, oj) ∈ E} (1)

V o
i = {go(vj , vr, vi) : (oj , r, oi) ∈ E}. (2)

The output vector for v′i for object oi is then computed as

v′i = h(V s
i ∪ V o

i ) where h is a symmetric function which

pools an input set of vectors to a single output vector. An

example computational graph for a single graph convolution

layer is shown in Figure 3.

In our implementation, the functions gs, gp, and go are

implemented using a single network which concatenates

its three input vectors, feeds them to a multilayer percep-

tron (MLP), and computes three output vectors using fully-

connected output heads. The pooling function h averages

its input vectors and feeds the result to a MLP.

1221



v1 vr1
v2 vr2

v3

v’1 v’r1 v’2 v’r1 v’3

gs gp go gs gp go

h h h

Figure 3. Computational graph illustrating a single graph convo-

lution layer. The graph consists of three objects o1, o2, and o3 and

two edges (o1, r1, o2) and (o3, r2, o2). Along each edge, the three

input vectors are passed to functions gs, gp, and go; gp directly

computes the output vector for the edge, while gs and go compute

candidate vectors which are fed to a symmetric pooling function

h to compute output vectors for objects.

Scene Layout. Processing the input scene graph with a

series of graph convolution layers gives an embedding vec-

tor for each object which aggregates information across all

objects and relationships in the graph.

In order to generate an image, we must move from the

graph domain to the image domain. To this end, we use

the object embedding vectors to compute a scene layout

which gives the coarse 2D structure of the image to gener-

ate; we compute the scene layout by predicting a segmenta-

tion mask and bounding box for each object using an object

layout network, shown in Figure 4.

The object layout network receives an embedding vector

vi of shape D for object oi and passes it to a mask regression

network to predict a soft binary mask m̂i of shape M ×
M and a box regression network to predict a bounding box

b̂i = (x0, y0, x1, y1). The mask regression network consists

of several transpose convolutions terminating in a sigmoid

nonlinearity so that elements of the mask lies in the range

(0, 1); the box regression network is a MLP.

We multiply the embedding vector vi elementwise with

the mask m̂i to give a masked embedding of shape D×M×
M which is then warped to the position of the bounding box

using bilinear interpolation [18] to give an object layout.

The scene layout is then the sum of all object layouts.

During training we use ground-truth bounding boxes bi
to compute the scene layout; at test-time we instead use pre-

dicted bounding boxes b̂i.

Cascaded Refinement Network. Given the scene lay-

out, we must synthesize an image that respects the object

positions given in the layout. For this task we use a Cas-

caded Refinement Network [6] (CRN). A CRN consists of

a series of convolutional refinement modules, with spatial

resolution doubling between modules; this allows genera-

tion to proceed in a coarse-to-fine manner.

Each module receives as input both the scene layout

(downsampled to the input resolution of the module) and the

output from the previous module. These inputs are concate-

nated channelwise and passed to a pair of 3× 3 convolution

Mask 
regression 
network

Box regression 
network Box

Mask: M x M Masked embedding: 
D x M x M

Object Layout:
D x H x W

Scene Layout:
D x H x W

Object Layout 
Network

Object Layout 
Network

Object Layout 
Network

Object 
Embedding 
Vector: D

Figure 4. We move from the graph domain to the image domain

by computing a scene layout. The embedding vector for each ob-

ject is passed to an object layout network which predicts a layout

for the object; summing all object layouts gives the scene layout.

Internally the object layout network predicts a soft binary segmen-

tation mask and a bounding box for the object; these are combined

with the embedding vector using bilinear interpolation to produce

the object layout.

layers; the output is then upsampled using nearest-neighbor

interpolation before being passed to the next module.

The first module takes Gaussian noise z ∼ pz as input,

and the output from the last module is passed to two final

convolution layers to produce the output image.

Discriminators. We generate realistic output images

by training the image generation network f adversarially

against a pair of discriminator networks Dimg and Dobj .

A discriminator D attempts to classify its input x as real

or fake by maximizing the objective [12]

LGAN = E
x∼preal

logD(x) + E
x∼pfake

log(1−D(x)) (3)

where x ∼ pfake are outputs from the generation network f .

At the same time, f attempts to generate outputs which will

fool the discriminator by minimizing LGAN .1

The patch-based image discriminator Dimg ensures that

the overall appearance of generated images is realistic;

it classifies a regularly spaced, overlapping set of image

patches as real or fake, and is implemented as a fully convo-

lutional network, similar to the discriminator used in [17].

The object discriminator Dobj ensures that each object

in the image appears realistic; its input are the pixels of an

object, cropped and rescaled to a fixed size using bilinear

interpolation [18]. In addition to classifying each object as

real or fake, Dobj also ensures that each object is recog-

nizable using an auxiliary classifier [37] which predicts the

object’s category; both Dobj and f attempt to maximize the

probability that Dobj correctly classifies objects.

Training. We jointly train the generation network f and

the discriminators Dobj and Dimg . The generation network

is trained to minimize the weighted sum of six losses:

1In practice, to avoid vanishing gradients f typically maximizes the

surrogate objective Ex∼pfake
logD(x) instead of minimizing LGAN [12].

1222



G
ra

p
h

hassky cloud

sheep

grass

eating eating

mountain

behindrock

tree

in front ofstone

sheep

aboveskycloud

person

wave

riding riding background

edge

by water

board

on top of grassboy

looking at

field

sky kite brick

mountain

standing on

under

building

next to bus

has

windshield

behind

x4

bus

has

windshield

tree

behindsky line

sign

left ofcar car

above

playingfield

grass

above

person

below

person

left of

left of tree

above

cage
broccoli

carrot

broccoli

belowleft of

vegetable

inside

person

person

person

inside

left of

fence

inside

sky-other

skateboard

tree

surrounding

below

inside

above

person

T
ex

t Two sheep, one eat-

ing grass with a tree

in front of a mountain;

the sky has a cloud.

A person riding a wave

and a board by the wa-

ter with sky above.

A boy standing on

grass looking at a kite

and the sky with the

field under a mountain

Two busses, one be-

hind the other and a

tree behind the second;

both busses have win-

shields.

A person above a play-

ingfield and left of an-

other person left of

grass, with a car left of

a car above the grass.

One broccoli left of

another, which is

inside vegetables and

has a carrot below it.

Three people with the

first two inside a fence

and the first left of the

third.

A person above the

trees inside the sky,

with a skateboard sur-

rounded by sky.

L
a

y
o

u
t

Im
a

g
e

(a) (b) (c) (d) (e) (f) (g) (h)

G
ra

p
h car

parked on

in front ofwindow

along

roof

has

house

street

housetree

bush car

sky

horse

short

man leg

tail

riding

has

above

hill leg

hashas

hill

boat

water

on top of rock

sky

bird

food

plate

byon top of

glass glass

on top of

plate

tie

clothes

person

surrounding

above

inside

wall-panel

surrounding

clouds

horseabove

person

left of

tree

abovegrass

right of elephant

above

grass

inside

surrounding

tree

elephant clouds

above

boat

building

river

above

below

tree left of

T
ex

t

Two cars, one parked

on a street with a tree

along it, and a window

in front of a house and

a house with a roof.

Sky above a man rid-

ing a horse; the man

has a leg and the horse

has a leg and a tail.

A boat on top of water;

there is also sky, rock,

and a bird.

A glass by a plate with

food on it, and another

glass by a plate.

A tie above clothes

and inside a person,

with a wall panel sur-

rounding the person.

A tree right of a

person left of a horse

above grass, with

clouds above the

grass.

An elephant above

grass and inside trees

surrounding another

elephant.

Clouds above a boat

and a building above a

river, with trees left of

the river.

L
a

y
o

u
t

Im
a

g
e

G
T

L
a

y
o

u
t

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 5. Examples of 64× 64 generated images using graphs from the test sets of Visual Genome (left four columns) and COCO (right

four columns). For each example we show the input scene graph and a manual translation of the scene graph into text; our model processes

the scene graph and predicts a layout consisting of bounding boxes and segmentation masks for all objects; this layout is then used to

generate the image. We also show some results for our model using ground-truth rather than predicted scene layouts. Some scene graphs

have duplicate relationships, shown as double arrows. For clarity, we omit masks for some stuff categories such as sky, street, and water.

• Box loss Lbox =
∑n

i=1
‖bi − b̂i‖1 penalizing the L1 dif-

ference between ground-truth and predicted boxes

• Mask loss Lmask penalizing differences between ground-

truth and predicted masks with pixelwise cross-entropy;

not used for models trained on Visual Genome

• Pixel loss Lpix = ‖I − Î‖1 penalizing the L1 difference

between ground-truth generated images

• Image adversarial loss Limg
GAN from Dimg encouraging

generated image patches to appear realistic

• Object adversarial loss Lobj
GAN from the Dobj encourag-

ing each generated object to look realistic

• Auxiliarly classifier loss Lobj
AC from Dobj , ensuring that

each generated object can be classified by Dobj

Implementation Details. We augment all scene graphs

with a special image object, and add special in image rela-

tionships connecting each true object with the image object;

this ensures that all scene graphs are connected.

1223



car on street

line on street

sky above street

bus on street

line on street

sky above street

car on street

bus on street

line on street

sky above street

car on street

bus on street

line on street

sky above street

kite in sky

car on street

bus on street

line on street

sky above street

kite in sky

car below kite

car on street

bus on street

line on street

sky above street

building behind street

car on street

bus on street

line on street

sky above street

building behind street

window on building

sky above grass

zebra standing on grass

sky above grass

sheep standing on grass

sky above grass

sheep standing on grass

sheep’ by sheep

sky above grass

sheep standing on grass

sheep’ by sheep

tree behind sheep

sky above grass

sheep standing on grass

tree behind sheep

sheep’ by sheep

ocean by tree

sky above grass

sheep standing on grass

tree behind sheep

sheep’ by sheep

ocean by tree

boat in ocean

sky above grass

sheep standing on grass

tree behind sheep

sheep’ by sheep

ocean by tree

boat on grass

Figure 6. Images generated by our method trained on Visual Genome. In each row we start from a simple scene graph on the left and

progressively add more objects and relationships moving to the right. Images respect relationships like car below kite and boat on grass.

We train all models using Adam [23] with learning rate

10−4 and batch size 32 for 1 million iterations; training

takes about 3 days on a single Tesla P100. For each mini-

batch we first update f , then update Dimg and Dobj .

We use ReLU for graph convolution; the CRN and dis-

criminators use discriminators use LeakyReLU [33] and

batch normalization [16]. Full details about our architec-

ture can be found in the supplementary material, and code

will be made publicly available.

4. Experiments

We train our model to generate 64 × 64 images on the

Visual Genome [26] and COCO-Stuff [3] datasets. In our

experiments we aim to show that our method generates im-

ages of complex scenes which respect the objects and rela-

tionships of the input scene graph.

4.1. Datasets

COCO. We perform experiments on the 2017 COCO-

Stuff dataset [3], which augments a subset of the COCO

dataset [30] with additional stuff categories. The dataset an-

notates 40K train and 5K val images with bounding boxes

and segmentation masks for 80 thing categories (people,

cars, etc.) and 91 stuff categories (sky, grass, etc.).

We use these annotations to construct synthetic scene

graphs based on the 2D image coordinates of the objects,

using six mutually exclusive geometric relationships: left

of, right of, above, below, inside, and surrounding.

We ignore objects covering less than 2% of the image,

and use images with 3 to 8 objects; we divide the COCO-

Stuff 2017 val set into our own val and test sets, leaving us

with 24,972 train, 1024 val, and 2048 test images.

Visual Genome. We experiment on Visual Genome [26]

version 1.4 (VG) which comprises 108,077 images anno-

tated with scene graphs. We divide the data into 80% train,

10% val, and 10% test; we use object and relationship cate-

gories occurring at least 2000 and 500 times respectively in

the train set, leaving 178 object and 45 relationship types.

We ignore small objects, and use images with between 3

and 30 objects and at least one relationship; this leaves us

with 62,565 train, 5,506 val, and 5,088 test images with an

average of ten objects and five relationships per image.

Visual Genome does not provide segmentation masks, so

we omit the mask prediction loss for models trained on VG.

4.2. Qualitative Results

Figure 5 shows example scene graphs from the Visual

Genome and COCO test sets and generated images using

our method, as well as predicted object bounding boxes and

segmentation masks.

From these examples it is clear that our method can gen-

erate scenes with multiple objects, and even multiple in-

stances of the same object type: for example Figure 5 (a)

shows two sheep, (d) shows two busses, (g) contains three

people, and (i) shows two cars.

These examples also show that our method generates im-

ages which respect the relationships of the input graph; for

example in (i) we see one broccoli left of a second broccoli,

with a carrot below the second broccoli; in (j) the man is

riding the horse, and both the man and the horse have legs

which have been properly positioned.

Figure 5 also shows examples of images generated by

our method using ground-truth rather than predicted object

layouts. In some cases we see that our predicted layouts can

1224



Inception

Method COCO VG

Real Images (64× 64) 16.3± 0.4 13.9± 0.5
Ours (No gconv) 4.6± 0.1 4.2± 0.1
Ours (No relationships) 3.7± 0.1 4.9± 0.1
Ours (No discriminators) 4.8± 0.1 3.6± 0.1
Ours (No Dobj) 5.6± 0.1 5.0± 0.2
Ours (No Dimg) 5.6± 0.1 5.7± 0.3

Ours (Full model) 6.7± 0.1 5.5± 0.1
Ours (GT Layout, no gconv) 7.0± 0.2 6.0± 0.2
Ours (GT Layout) 7.3± 0.1 6.3± 0.2

StackGAN [59] (64× 64) 8.4± 0.2 -

Table 1. Ablation study using Inception scores. On each dataset

we randomly split our test-set samples into 5 groups and report

mean and standard deviation across splits. On COCO we gen-

erate five samples for each test-set image by constructing differ-

ent synthetic scene graphs. For StackGAN we generate one im-

age for each of the COCO test-set captions, and downsample their

256× 256 output to 64× 64 for fair comparison with our method.

vary significantly from the ground-truth objects layout. For

example in (k) the graph does not specify the position of the

bird and our method renders it standing on the ground, but

in the ground-truth layout the bird is flying in the sky. Our

model is sometimes bottlenecked by layout prediction, such

as (n) where using the ground-truth rather than predicted

layout significantly improves the image quality.

In Figure 6 we demonstrate our model’s ability to gen-

erate complex images by starting with simple graphs on the

left and progressively building up to more complex graphs.

From this example we can see that object positions are influ-

enced by the relationships in the graph: in the top sequence

adding the relationship car below kite causes the car to shift

to the right and the kite to shift to the left so that the re-

lationship is respected. In the bottom sequence, adding the

relationship boat on grass causes the boat’s position to shift.

4.3. Ablation Study

We demonstrate the necessity of all components of our

model by comparing the image quality of several ablated

versions of our model, shown in Table 1; see supplementary

material for example images from ablated models.

We measure image quality using Inception score2 [45]

which uses an ImageNet classification model [44, 50] to

encourage recognizable objects within images and diversity

across images. We test several ablations of our model:

No gconv omits graph convolution, so boxes and masks

are predicted from initial object embedding vectors. It can-

not reason jointly about the presence of different objects,

and can only predict one box and mask per category.

No relationships uses graph convolution layers but ig-

nores all relationships from the input scene graph except

2Defined as exp(E
Î
KL(p(y|Î)‖p(y))) where the expectation is taken

over generated images Î and p(y|Î) is the predicted label distribution.

R@0.3 R@0.5 σx σarea

COCO VG COCO VG COCO VG COCO VG

Ours (No gconv) 46.9 20.2 20.8 6.4 0 0 0 0

Ours (No rel.) 21.8 16.5 7.6 6.9 0.1 0.1 0.2 0.1

Ours (Full) 52.4 21.9 32.2 10.6 0.1 0.1 0.2 0.1

Table 2. Statistics of predicted bounding boxes. R@t is object

recall with an IoU threshold of t, and measures agreement with

ground-truth boxes. σx and σarea measure box variety by com-

puting the standard deviation of box x-positions and areas within

each object category and then averaging across categories.

for trivial in image relationships; graph convolution allows

this model to jointly about objects. Its poor performance

demonstrates the utility of the scene graph relationships.

No discriminators omits both Dimg and Dobj , relying

on the pixel regression loss Lpix to guide the generation

network. It tends to produce overly smoothed images.

No Dobj and No Dimg omit one of the discriminators.

On both datasets, using any discriminator leads to signifi-

cant improvements over models trained with Lpix alone. On

COCO the two discriminators are complimentary, and com-

bining them in our full model leads to large improvements.

On VG, omitting Dimg does not degrade performance.

In addition to ablations, we also compare with two GT

Layout versions of our model which omit the Lbox and

Lmask losses, and use ground-truth bounding boxes during

both training and testing; on COCO they also use ground-

truth segmentation masks, similar to Chen and Koltun [6].

These methods give an upper bound to our model’s perfor-

mance in the case of perfect layout prediction.

Omitting graph convolution degrades performance even

when using ground-truth layouts, suggesting that scene

graph relationships and graph convolution have benefits be-

yond simply predicting object positions.

4.4. Object Localization

In addition to looking at images, we can also inspect

the bounding boxes predicted by our model. One mea-

sure of box quality is high agreement between predicted and

ground-truth boxes; in Table 2 we show the object recall of

our model at two intersection-over-union thresholds.

Another measure for boxes is variety: predicted boxes

for objects should vary in response to the other objects and

relationships in the graph. Table 2 shows the mean per-

category standard deviations of box position and area.

Without graph convolution, our model can only learn to

predict a single bounding box per object category. This

model achieves nontrivial object recall, but has no variety

in its predicted boxes, as σx = σarea = 0.

Using graph convolution without relationships, our

model can jointly reason about objects when predicting

bounding boxes; this leads to improved variety in its predic-

tions. Without relationships, this model’s predicted boxes

have less agreement with ground-truth box positions.

1225



Caption StackGAN [59] Ours Scene Graph

A person

skiing down a

slope next to

snow covered

trees

above

below

person

above

tree

above

sky

snow

Which image matches the caption better?

User 332 / 1024 692 / 1024

choice (32.4%) (67.6%)

Figure 7. We performed a user study to compare the semantic in-

terpretability of our method against StackGAN [59]. Top: We use

StackGAN to generate an image from a COCO caption, and use

our method to generate an image from a scene graph constructed

from the COCO objects corresponding to the caption. We show

users the caption and both images, and ask which better matches

the caption. Bottom: Across 1024 val image pairs, users prefer

the results from our method by a large margin.

Our full model with graph convolution and relationships

achieves both variety and high agreement with ground-truth

boxes, indicating that it can use the relationships of the

graph to help localize objects with greater fidelity.

4.5. User Studies

Automatic metrics such as Inception scores and box

statistics give a coarse measure of image quality; the true

measure of success is human judgement of the generated

images. For this reason we performed two user studies on

Mechanical Turk to evaluate our results.

We are unaware of any previous end-to-end methods for

generating images from scene graphs, so we compare our

method with StackGAN [59], a state-of-the art method for

generating images from sentence descriptions.

Despite the different input modalities between our

method and StackGAN, we can compare the two on COCO,

which in addition to object annotations also provides cap-

tions for each image. We use our method to generate images

from synthetic scene graphs built from COCO object an-

notations, and StackGAN3 to generate images from COCO

captions for the same images. Though the methods receive

different inputs, they should generate similar images due to

the correspondence between COCO captions and objects.

For user studies we downsample StackGAN images to

64 × 64 to compensate for differing resolutions; we repeat

all trials with three workers and randomize order in all trials.

Caption Matching. We measure semantic interpretabil-

ity by showing users a COCO caption, an image generated

by StackGAN from that caption, and an image generated

by our method from a scene graph built from the COCO

objects corresponding to the caption. We ask users to se-

lect the image that better matches the caption. An example

image pair and results are shown in Figure 7.

3We use the pretrained COCO model provided by the authors at

https://github.com/hanzhanggit/StackGAN-Pytorch

Caption StackGAN [59] Ours Scene Graph

A man flying

through the

air while

riding a bike.

inside

clouds

surrounding

person

below

motorcycle

Which objects are present? motorcycle, person, clouds

Thing 470 / 1650 772 / 1650

recall (28.5%) (46.8%)

Stuff 1285 / 3556 2071 / 3556

Recall (36.1%) (58.2%)

Figure 8. We performed a user study to measure the number of

recognizable objects in images from our method and from Stack-

GAN [59]. Top: We use StackGAN to generate an image from

a COCO caption, and use our method to generate an image from

a scene graph built from the COCO objects corresponding to the

caption. For each image, we ask users which COCO objects they

can see in the image. Bottom: Across 1024 val image pairs, we

measure the fraction of things and stuff that users can recognize in

images from each method. Our method produces more objects.

This experiment is biased toward StackGAN, since the

caption may contain information not captured by the scene

graph. Even so, a majority of workers preferred the result

from our method in 67.6% of image pairs, demonstrating

that compared to StackGAN our method more frequently

generates complex, semantically meaningful images.

Object Recall. This experiment measures the number of

recognizable objects in each method’s images. In each trial

we show an image from one method and a list of COCO

objects and ask users to identify which objects appear in the

image. An example and results are snown in Figure 8.

We compute the fraction of objects that a majority of

users believed were present, dividing the results into things

and stuff. Both methods achieve higher recall for stuff than

things, and our method achieves significantly higher object

recall, with 65% and 61% relative improvements for thing

and stuff recall respectively.

This experiment is biased toward our method since the

scene graph may contain objects not mentioned in the cap-

tion, but it demonstrates that compared to StackGAN, our

method produces images with more recognizable objects.

5. Conclusion

In this paper we have developed an end-to-end method

for generating images from scene graphs. Compared to

leading methods which generate images from text de-

scriptions, generating images from structured scene graphs

rather than unstructured text allows our method to rea-

son explicitly about objects and relationships, and generate

complex images with many recognizable objects.

Acknowledgments We thank Shyamal Buch, Christo-

pher Choy, De-An Huang, and Ranjay Krishna for helpful

comments and suggestions.

1226

https://github.com/hanzhanggit/StackGAN-Pytorch


References

[1] P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice:

Semantic propositional image caption evaluation. In ECCV,

2016. 1, 2

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral net-

works and locally connected networks on graphs. In ICLR,

2014. 2

[3] H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and

stuff classes in context. arXiv preprint arXiv:1612.03716,

2016. 2, 6

[4] A. Chang, W. Monroe, M. Savva, C. Potts, and C. D. Man-

ning. Text to 3d scene generation with rich lexical grounding.

In ACL, 2015. 2

[5] A. X. Chang, M. Savva, and C. D. Manning. Learning spatial

knowledge for text to 3d scene generation. In EMNLP, 2014.

2

[6] Q. Chen and V. Koltun. Photographic image synthesis with

cascaded refinement networks. In ICCV, 2017. 2, 3, 4, 7

[7] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-

barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Con-

volutional networks on graphs for learning molecular finger-

prints. In NIPS, 2015. 2

[8] P. Frasconi, M. Gori, and A. Sperduti. A general framework

for adaptive processing of data structures. IEEE transactions

on Neural Networks, 1998. 2

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, 2016. 2

[10] J. Gauthier. Conditional generative adversarial nets for

convolutional face generation. Class Project for Stanford

CS231N: Convolutional Neural Networks for Visual Recog-

nition, Winter semester, 2014. 2

[11] C. Goller and A. Kuchler. Learning task-dependent dis-

tributed representations by backpropagation through struc-

ture. In IEEE International Conference on Neural Networks,

1996. 2

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014. 1, 2, 4

[13] M. Gori, G. Monfardini, and F. Scarselli. A new model for

learning in graph domains. In IEEE International Joint Con-

ference on Neural Networks, 2005. 2

[14] A. Grover and J. Leskovec. node2vec: Scalable feature

learning for networks. In SIGKDD, 2016. 2

[15] M. Henaff, J. Bruna, and Y. LeCun. Deep convolu-

tional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015. 2

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 6

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

2017. 4

[18] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015. 4

[19] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-

rnn: Deep learning on spatio-temporal graphs. In CVPR,

2016. 2

[20] C. Jiang, Y. Zhu, S. Qi, S. Huang, J. Lin, X. Guo, L.-F.

Yu, D. Terzopoulos, and S.-C. Zhu. Configurable, photo-

realistic image rendering and ground truth synthesis by sam-

pling stochastic grammars representing indoor scenes. arXiv

preprint arXiv:1704.00112, 2017. 2

[21] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In ECCV, 2016.

2

[22] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma,

M. Bernstein, and L. Fei-Fei. Image retrieval using scene

graphs. In CVPR, 2015. 1, 2, 3

[23] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 6

[24] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. In ICLR, 2014. 2

[25] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. In ICLR, 2017. 2

[26] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,

S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Vi-

sual genome: Connecting language and vision using crowd-

sourced dense image annotations. IJCV, 2017. 2, 6

[27] T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and V. Mans-

inghka. Picture: A probabilistic programming language for

scene perception. In CVPR, 2015. 2

[28] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum.

Deep convolutional inverse graphics network. In NIPS, 2015.

2

[29] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated

graph sequence neural networks. In ICLR, 2015. 2

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014. 6

[31] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy. Im-

proved image captioning via policy gradient optimization of

spider. In ICCV, 2017. 1

[32] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual rela-

tionship detection with language priors. In ECCV, 2016. 1,

2

[33] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In ICML,

2013. 6

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and

J. Dean. Distributed representations of words and phrases

and their compositionality. In NIPS, 2013. 2

[35] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[36] A. Newell and J. Deng. Pixels to graphs by associative em-

bedding. In NIPS, 2017. 1, 2

[37] A. Odena, C. Olah, and J. Shlens. Conditional image synthe-

sis with auxiliary classifier gans. In ICML, 2017. 2, 4

[38] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. In ICML, 2016. 2

[39] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online

learning of social representations. In SIGKDD, 2014. 2

1227



[40] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. In ICLR, 2016. 2

[41] S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and

H. Lee. Learning what and where to draw. In NIPS, 2016. 1,

2

[42] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text-to-image synthesis. In

ICML, 2016. 1, 2

[43] S. E. Reed, A. van den Oord, N. Kalchbrenner, S. Gómez,

Z. Wang, D. Belov, and N. de Freitas. Parallel multiscale

autoregressive density estimation. In ICML, 2017. 1, 2

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 2015. 7

[45] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

NIPS, 2016. 7

[46] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. IEEE

Transactions on Neural Networks, 2009. 2

[47] S. Schuster, R. Krishna, A. Chang, L. Fei-Fei, and C. D.

Manning. Generating semantically precise scene graphs

from textual descriptions for improved image retrieval. In

EMNLP Vision and Language Workshop, 2015. 1, 2

[48] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing nat-

ural scenes and natural language with recursive neural net-

works. In ICML, 2011. 2

[49] A. Sperduti and A. Starita. Supervised neural networks for

the classification of structures. IEEE Transactions on Neural

Networks, 1997. 2

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 7

[51] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei.

Line: Large-scale information network embedding. In Pro-

ceedings of the 24th International Conference on World Wide

Web, 2015. 2

[52] L. Theis, A. v. d. Oord, and M. Bethge. A note on the evalu-

ation of generative models. In ICLR, 2016. 2

[53] A. van den Oord, N. Kalchbrenner, L. Espeholt,

k. kavukcuoglu, O. Vinyals, and A. Graves. Condi-

tional image generation with PixelCNN decoders. In NIPS,

2016. 2

[54] M. Wang, Y. Tang, J. Wang, and J. Deng. Premise selection

for theorem proving by deep graph embedding. In NIPS,

2017. 2

[55] J. Wu, J. B. Tenenbaum, and P. Kohli. Neural scene de-

rendering. In CVPR, 2017. 2

[56] J. Xie, Y. Lu, S.-C. Zhu, and Y. Wu. A theory of generative

convnet. In ICML, 2016. 2

[57] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph

generation by iterative message passing. In CVPR, 2017. 1,

2

[58] M. Y. Yang, W. Liao, H. Ackermann, and B. Rosenhahn. On

support relations and semantic scene graphs. ISPRS Journal

of Photogrammetry and Remote Sensing, 2017. 1, 2

[59] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and

D. Metaxas. Stackgan: Text to photo-realistic image synthe-

sis with stacked generative adversarial networks. In ICCV,

2017. 1, 2, 7, 8

1228


