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Abstract

In this work, we describe man-made structures via an ap-

propriate structure assumption, called Atlanta world, which

contains a vertical direction (typically the gravity direction)

and a set of horizontal directions orthogonal to the vertical

direction. Contrary to the commonly used Manhattan world

assumption, the horizontal directions in Atlanta world are

not necessarily orthogonal to each other. While Atlanta

world permits to encompass a wider range of scenes, this

makes the solution space larger and the problem more chal-

lenging. Given a set of inputs, such as lines in a calibrated

image or surface normals, we propose the first globally op-

timal method of inlier set maximization for Atlanta direc-

tion estimation. We define a novel search space for Atlanta

world, as well as its parameterization, and solve this chal-

lenging problem by a branch-and-bound framework. Exper-

imental results with synthetic and real-world datasets have

successfully confirmed the validity of our approach.

1. Introduction

Man-made structures, such as buildings and room lay-

outs, consist of a set of parallel and orthogonal planes or

lines. These structures are commonly approximated by the

Manhattan world (MW) assumption [7], which is defined by

three orthogonal directions. By virtue of its orthogonality

and simplicity, MW assumption has been exploited in many

vision applications [1, 5, 3, 8, 18]. On the other hand, MW

assumption is not verified for a wide range of man-made

structures whose horizontal directions are not orthogonal to

each other (Fig. 1), for example, non-orthogonal walls [31].

To alleviate this limitation, Schindler et al. [26] proposed

Atlanta world (AW): the horizontal directions are orthogo-

nal to the vertical (typically gravity) direction, but contrary
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Top-down view

Figure 1: Atlanta frame estimation from surface normals (top) and

line normals in a calibrated image (bottom). Left: Examples of 3D

point clouds (defining surface normals) from NYUv2 dataset [28]

and lines from York urban dataset [8]. Middle: Distribution of the

input normals and the estimated Atlanta directions on the sphere.

Right: Visualization of the clustered surface normals (segmenta-

tion) and lines with respect to the estimated Atlanta directions.

to MW [7], these horizontal directions do not have to be or-

thogonal to each other. Therefore AW permits to handle a

wider range of scenes. However, AW has been surprisingly

explored only little [26, 1] and requires specific methods.

In addition, MW allows taking advantage of the full orthog-

onality constraint to greatly reduce the search space. This

constraint does not exist in AW, which makes the problem

more challenging.

In this paper, we want to estimate the Atlanta world di-

rections. We consider two kinds of input data: surface nor-

mals (e.g., from RGBD cameras and laser scanners) and

line normals in intrinsically calibrated images, as shown in

Fig. 1. To estimate the Atlanta world directions, we need

to know which normal verifies the AW (inlier/outlier de-

tection) and which normal belongs to which Atlanta world

direction (clustering). To handle outliers and estimate the

clustering, we follow the popular strategy of inlier set max-

imization [14], which aims to maximize the number of in-

liers (the number of clustered normals) and estimate the un-

derlying model (the Atlanta directions). Several methods

have been proposed for inlier set maximization, but none

of them is fully satisfactory because they might return a

local optimum or are not designed for AW. For example,

RANSAC [9] is the most popular method of this strategy

but is non-deterministic and does not guarantee to return

the optimal solution (in terms of inlier set cardinality).
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In contrast to existing methods, our key contribution is

the first globally optimal approach for inlier set maximiza-

tion in AW. Concretely, given a set of input normals, our

approach can (1) determine the normal clustering (i.e. find

which normal belongs to which unknown-but-sought At-

lanta direction), (2) estimate these associated Atlanta direc-

tions verifying the AW structure and (3) identify the out-

lier normals (i.e. which normals do not belong to any of

these Atlanta directions), in such a way that (4) the inlier

set of clustered normals is maximized. Our approach runs

on a spherical representation of the normals and applies a

branch-and-bound framework over the definition space of

Atlanta world directions on the sphere (Fig. 1). It can be

applied to a large range of surface normals (from RGBD

cameras, laser scanners, etc.) and lines (images such as per-

spective, central catadioptric, fisheye and omnidirectional).

2. Related Work

Structure assumptions Various structure assumptions

have been studied in the literature [7, 31, 26, 30] (see de-

tailed review in [30]). The Manhattan world (MW) as-

sumption [7] is defined by three orthogonal directions and

is widely used [1, 5, 3, 8, 18, 19]. However, the MW

assumption is not verified for a wide range of man-made

structures such as non-orthogonal walls. Straub et al. pro-

posed a mixture of Manhattan frames (MMF) [31], which

consists of multiples MWs. While their method provides

a more flexible representation, it cannot enforce constraints

between the MWs, such as sharing a common vertical di-

rection. Schindler et al. proposed the Atlanta world assump-

tion (AW) [26], where the horizontal directions are orthogo-

nal to the vertical direction but not necessarily orthogonal to

each other. AW can be seen as a relaxed version of MW, or a

case of MMF where the multiple MWs share a common ver-

tical direction. In this work, we follow the AW assumption

because it can encompass a wide range of man-made struc-

tures, such as buildings with different orientations and/or

with non-orthogonal walls, while constraining a common

vertical direction.

Lines and vanishing points As a structure representation

in the 2D image space, vanishing point (VP) estimation

has been actively researched [27, 8, 25, 17, 16]. Without

structure assumptions, the VPs can be estimated indepen-

dently [33, 35, 23, 21]. Since information about the scene

structure can increase the accuracy, most VP estimation

methods rely on the structure assumption, especially the

MW assumption [7, 20, 10, 34]. Among them, the branch-

and-bound based VP estimation methods [5, 6], which guar-

antee a globally optimal solution, are closely related to our

work. However, they are specifically designed only for

MW assumption and thus cannot be applied for AW. Under

AW assumption, Schindler et al. [26] estimate VPs by EM

method and Lee et al. [22] by a greedy approach for a highly

non-linear cost function. Therefore their results depend on

the initialization and might not be the global optimum.

Surface normals Similar to the 2D image domain, the

MW assumption has been commonly exploited for sur-

face normals in 3D space to represent man-made struc-

ture [28, 12, 11, 18]. There are works [32, 36, 12] that

simplify the structural assumption with a dominant ground

plane normal, i.e., gravity direction, for efficient struc-

ture understanding. Straub et al. [31] introduce Manhattan

frame (MF) which jointly captures the directions of the MW

in the space of surface normal, and extend to a mixture of

MF. Ghanem et al. [11] propose a robust and a non-convex

MF estimation utilizing the inherent sparsity of data distri-

bution. Straub et al. [29] propose a real-time MF estimation.

Recently, Joo et al. [18] propose globally optimal MF esti-

mation in real-time using a branch-and-bound framework.

However, all these methods are sub-optimal and/or limited

to MW assumption. In contrast, the proposed approach is

globally optimal and is applicable for Atlanta worlds.

3. Problem Statement

3.1. Atlanta Frame

Under AW assumption [26], the horizontal directions are

orthogonal to the vertical (typically gravity) direction and

do not have to be orthogonal to each other. Therefore we

can represent an AW structure as a set of unit direction

vectors V={vv,vh1
,· · ·,vhM

}={vj}M+1
j=1 that consists of a

vertical vector vv=v1 (without lack of generality) and a set

of M horizontal vectors vhm
=vm+1, where vv⊥vhm

(AW

constraint) for all m = 1, · · ·,M where M is the number of

horizontal vectors. In the rest of this paper, we call Atlanta

frame (AF), or Atlanta directions, this direction set V .

3.2. Mathematical Formulation

Our input normals can be a set of surface normals or a

set of lines, where a line is represented as the normal of the

associated great circle in spherical representation [3] (see

Fig. 1). Thus, for simplicity, we can consider the input of

our problem as a normal set N={ni}Ni=1, where ni ∈ R
3×1

is a unit normal and N is the number of input normals.

Our proposed approach follows the popular strategy

of inlier set maximization. Given the set of input nor-

mals N , the aim is to maximize the number of clustered

normals with respect to the unknown-but-sought Atlanta

directions V . Let S represent the set of normal-Atlanta

direction pairs: S={(ni,vj), i=1· · ·N, j=1· · ·M+1} and

the set S be partitioned into an inlier set SI⊆S and an

outlier set SO⊆S with SO=S−SI . To distinguish in-

liers/outliers, we follow the popular “residual tolerance

method” [9]. Concretely, we consider that the normal-

Atlanta direction pair (ni,vj) is an inlier if their geomet-

ric (geodesic) distance is lower than a residual tolerance τ ,

i.e. dn(ni,vj)=|∠(ni,vj)|<τ for a surface normal and
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dl(ni,vj)=|∠(ni,vj) − π/2|<τ for a line normal, where

∠(·, ·) is the angle distance between two unit vectors. For

simplicity, we will represent both distances as d(ni,vj) in

the paper. This τ is the inlier threshold and can be set eas-

ily (e.g. 3◦). This inlier pair is noted (ni,vj)∈SI and ni

is clustered to vj . The outlier set SO contains the normals

that do not belong to any Atlanta directions. The problem

can be formulated as an inlier set maximization:

max
V

card(SI) (1a)

s.t. d(ni,vj) < τ, ∀(i, j) ∈ SI ⊆ S (1b)

and ‖vj‖=1, ∀j and v
⊤
1 vk=0, ∀k = 2 · · ·M + 1, (1c)

where card(·) is the cardinality of a set. This formula-

tion (1) aims to find the largest inlier set (i.e. maximize the

number of clustered inliers) (Eq. (1a)) under an unknown

Atlanta frame V , given an inlier threshold τ on the geomet-

ric distance (Eq. (1b)), and such that the AF verify the AW

constraint (Eq. (1c)). Solving system (1) provides not only

the AF maximizing the number of clustered inliers but also

the inlier/outlier identification and the clustering informa-

tion (i.e. which normal belongs to which direction). Sys-

tem (1) is challenging to solve due to the quadratic con-

straints (orthogonality and unit norm) and non-linearities

(for the geometric distance).

4. Atlanta Frame Parameterization

4.1. Parametrization

The optimization variables of system (1) are the Atlanta

directions V . A naive parametrization is to work directly

on the Cartesian coordinates of these directions (i.e. x, y,

z). However this complicates the optimization drastically

because the M+1 directions would be encoded by 3(M+1)
real values, and it would also require to deal with M+1 unit

length constraints plus M orthogonality constraints.

To overcome these limitations, we propose an alternative

efficient parametrization of the Atlanta frame. Our main

idea (see Fig. 2) is based on the fact that, first, all the hori-

zontal directions lie on a great circle (called horizon) whose

normal is the vertical direction vv; and second, these hori-

zontal directions can be represented by “walking” a certain

distance from a starting location along this horizon. To de-

fine the horizon and this starting location, we use a rota-

tion: by applying a rotation R to the axis e1=(1, 0, 0) and

e2=(0, 1, 0), we obtain two vectors r1=Re1 and r2=Re2

of unit length and orthogonal. Without lack of generality,

we set vv=r1 and vh1
=r2, and we consider vh1

as the

starting location. We write Rα the rotation around the ver-

tical direction vv by the angle α. Then each additional hor-

izontal direction can be defined by vhm
=Rαm

vh1
where

2 ≤ m ≤ M . We note the angle set {α} = {α2, . . . ,αM}.

In terms of parametrization, the rotation R∈SO(3),
which defines vv and vh1

, has 3 DoF and can be encoded

Figure 2: Parametrization of Atlanta frame V . Left: a vertical di-

rection vv and first horizontal direction vh1
are defined by a rota-

tion R. Right: each additional horizontal directions vhm
(m≥2)

can be obtained by rotating vh1
around vv by an angle αm.

by 3 parameters by the angle-axis representation. The addi-

tional directions {vhm
}Mm=2 have 1 DoF rotation angle αm

each. Compared to the naive parametrization, ours has thus

only 3+(M−1)=M+2 parameters and just one constraint

(i.e. R∈SO(3)).

4.2. Reformulation

Using the proposed parameterization, system (1) can

now be reformulated in an equivalent manner as:

argmaxR∈SO(3),{α} card(SI) (2a)

s.t. d(ni,vj) < τ, ∀(i, j) ∈ SI ⊆ S. (2b)

Thanks to our parametrization, the reformulation (2) in-

volves fewer parameters and allows to avoid the multiple

explicit AW constraints of the original formulation (1c).

Unfortunately, system (2) is intractable to solve directly by

numerical optimization (known to be NP-hard) [5, 24].

Following the approach of Bazin et al. [4], we introduce

the auxiliary binary variable yij to indicate whether the i-th
normal is an inlier to the j-th Atlanta direction (with yij=1)

or an outlier (with yij=0). We note {y} the set of all the

yij . We can now rewrite system (2) as an equivalent mixed-

integer programming problem:

argmax
{y},R∈SO(3),{α}

∑N

i=1

∑M+1

j=1
yij (3a)

s.t. yijd(ni,vj) ≤ yijτ, ∀i, j (3b)

yij ∈ {0, 1}, ∀i, j, (3c)

where v1 = vv = Re1, v2 = vh1
= Re2, and vm+1 =

vhm
=Rαm

vh1
=Rαm

Re2, as defined in Secs. 3.1 and 4.1.

While system (3) is a challenging non-convex problem, we

will show in Sec. 5 how to optimize it in a globally optimal

way by a branch-and-bound framework.

4.3. Search Space

In our parametrization (Sec. 4.1), the AF search space is

composed of first, a rotation search space (i.e. R∈SO(3))
and second, an angle search space (i.e. the set of 1D angles

{α}={α2, . . ., αM}). For the rotation search space, we em-

ploy the angle-axis form to represent a rotation R, that is a

three-dimensional vector r in a ball Bπ of radius π, whose

direction r/‖r‖ and norm ‖r‖ respectively specify the axis

and angle of the rotation R [13]. In the angle-axis form, any

rotation can be represented by a point in the ball Bπ . As
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for the angle space, we use 1D angle space Lπ with ranges

(−π, π]. Due to the symmetry of the problem (antipodal

points indicate the same direction), we consider just half of

the rotation ball Bπ and limit the range of 1D angle space

to (−π/2, π/2].

5. Branch-and-Bound

Branch-and-bound (noted BnB) is a general framework

for global optimization [15]. The basic idea of BnB is to

divide the search space into smaller sub-spaces (i.e. branch-

ing) and remove the spaces that cannot contain a solution

better than the current one. This removing decision is made

by a feasibility test and the associated bounds. Iteratively,

the size of the sub-spaces decreases and the estimated solu-

tion converges to the optimal solution.

5.1. Branching Operations

As discussed in Sec. 4.3, our search space consists of a

rotation search space by angle-axis form and a set of angle

search spaces. Following the convention of the angle-axis

form [13], let Dπ be an initial cube of half-length π that

tightly encloses the ball Bπ . The cube representation makes

the BnB subdivision operation simple because it is axis-

aligned. We divide the rotation search space into smaller

congruent sub-spaces by octal subdivision of the cube for

branching. Each rotation sub-space can be defined as:

Cr(r̄, σ) = {x ∈ R
3 | (x− r̄) ∈ [−σ, σ]3}, (4)

where r̄ is the center of the cube (i.e. in angle-axis

parametrization) and σ is the half side length of the cube.

In 1D angle space Lπ , the angle search space is bi-divided

to angle sub-space and can be defined as:

Ca(ᾱ, σ) = {x ∈ R | (x− ᾱ) ∈ [−σ, σ]}, (5)

where ᾱ is the center of the angle sub-space and σ is the

half side length of the 1D space.

Then, an Atlanta search cube can be represented as

C(σ) = Cr(r̄, σ)×Ca(ᾱ2, σ)×· · ·×Ca(ᾱM , σ). Any point

in C corresponds to specific values for angle-axis r and for

the angles {αm}, and thus uniquely defines an AF. Without

loss of generality, we assume in the following that each of

the parameter σ in an Atlanta search cube C have the same

value for rotation and angle spaces. For writing simplifica-

tion, we write C = Cr(r̄)× Ca(ᾱ2)× · · · × Ca(ᾱM ).

5.2. Bounding Operations

The BnB feasibility test aims to compute a lower and

upper bounds of the optimal value of the objective function

that can be obtained in a given search cube. In the follow-

ing, we explain how to compute the bounds for our problem.

5.2.1 Computation of bounds

We want to answer the question: how to compute the lower

and upper bounds of the optimal number of inlier clus-

tered normals that can be obtained in a given Atlanta search

cube C. The answer is: the lower and upper bounds are the

solutions of the below systems (8) and (9) respectively. In

these systems, V̄ is the (known) AF corresponding to the

center of the cube C=Cr(r̄)× Ca(ᾱ2)× · · · × Ca(ᾱM ), i.e.

by using r̄, ᾱ2 · · · ᾱM , we have

V̄ = {v̄j}M+1
j=1 = {v̄v, v̄h1

, v̄h2
, . . . , v̄hM

} (6)

= {R̄e1, R̄e2, R̄α2
R̄e2, · · · , R̄αM

R̄e2}, (7)

where R̄ = Rr̄ corresponds to the rotation at the center

of Cr(r̄) and R̄αm
=Rᾱm

is the rotation around the vertical

direction v̄v=R̄e1 by the angle ᾱm at the center of Ca(ᾱm).
The system for the lower bound is:

max
{y}

∑N

i=1

∑M+1

j=1
yij

(8a)

s.t. yijd(ni, v̄j) ≤ yijτ, ∀i, j (8b)

yij ∈ {0, 1}, ∀i, j (8c)

The system for the upper bound is:

max
{y}

∑N

i=1

∑M+1

j=1
yij

(9a)

s.t. yijd(ni, v̄j)≤yij(τ+
√
3σ), ∀i, j = 1, 2 (9b)

yijd(ni, v̄j)≤yij(τ+(1+
√
3)σ), ∀i, j = 3· · ·M+1 (9c)

yij ∈ {0, 1}, ∀i, j, (9d)

where Eq. (9b) is for v̄1 = v̄v and v̄2 = v̄h1
(depending

only on Cr(r̄)), while Eq. (9c) is for v̄m+1 = v̄hm
with

2≤m≤M (depending on Cr(r̄) and Ca(ᾱm)).

Proof. Proofs for systems (8) and (9) are in Sec. 5.2.2.

The unknowns of the systems (8) and (9) are just the bi-

nary yij (note that the Atlanta frame V̄ is known here, from

the given cube center). While the values of yij could be

obtained by integer programming, they can be obtained by

simply checking whether a normal verifies the inlier dis-

tance constraint or not. Therefore given an Atlanta search

cube C, we now have a method to compute the lower and

upper bounds of the optimal number of inlier clustered nor-

mals that can be obtained by any AF contained in C. These

bounds can then be used in a branch-and-bound framework.

5.2.2 Proof of bounds

In this section, we prove that systems (8) and (9)

provide valid lower and upper bounds in the current

cube C, that is to say that the optimal inlier cardi-

nality c∗ that can be obtained in C is between these

lower l and upper u bounds, i.e. l≤c∗≤u. Here the

values l and u are the sum of yij , i.e. the objective

value of the two systems. For writing simplification, let

us note V∗={R∗
e1,R

∗
e2,R

∗
α2
R

∗
e2, · · ·,R∗

αM
R

∗
e2} the

AF of C providing the optimal number of c∗ inliers.

Proof of the lower bound Since c∗ is the optimal cardi-

nality with an inlier threshold τ among all V ∈ C and since
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V̄ (the cube center) is a particular element of C, then it is

obvious that the cardinality l obtained by V̄ with the same

inlier threshold is such that l ≤ c∗.

Proof of the upper bound This proof is more challenging.

First, we write a rotation as Rr in matrix form and as r in

its associated angle-axis form (in R
3). To bound the un-

certainty angle by rotation, we recall the following Lemma.

Lemma 1. [13] For any vector u and two rotations, repre-

sented as Rr1
and Rr2

in matrix form and as r1 and r2 in

angle-axis form,

∠(Rr1
u,Rr2

u) ≤ ‖r1 − r2‖. (10)

Based on Lemma 1, we can now derive uncertainty

angles for our rotation sub-space Cr(r̄) and angle sub-

space Ca(ᾱ).
Lemma 2 (Uncertainty angle of rotation space). Given a

rotation cube Cr(r̄, σr) of half side length σr centered at r̄,

then for any vector u and ∀r ∈ Cr(r̄, σr),

∠(Rru,Rr̄u) ≤
√
3σr. (11)

Proof. Inequality (11) can be derived as follows:

∠(Rru,Rr̄u) ≤ ‖r− r̄‖ (by Lemma 1) (12)

≤
√
3σr, (13)

where Eq. (13) follows from maxr ‖r−r̄‖ =
√
3σr (the half

space diagonal of the rotation cube) for r ∈ Cr(r̄, σr).

Lemma 3 (Uncertainty angle of 1D angle space). Given an

angular cube Ca(ᾱ, σα) of half side length σα centered at

ᾱ, then for any vector u and ∀α ∈ Ca(ᾱ, σα),

∠(Rαu,Rᾱu) ≤ σα, (14)

where Rα and Rᾱ are calculated from angle-axis forms

which share a same rotation axis (e.g., vertical direction vv)

but different rotation angles α and ᾱ.

Proof. Inequality (14) can be derived as follows:

∠(Rαu,Rᾱu) ≤ ‖α− ᾱ‖ (15)

≤ σα, (16)

since Rα and Rᾱ have the same rotation axis but different

rotation angles α and ᾱ, the Euclidean distance between

their angle-axis forms is ‖α−ᾱ‖, and by Lemma 1, Eq. (15)

is satisfied. Eq. (16) follows from maxα‖α−ᾱ‖=σα (the

half space of 1D angle space) for α∈Ca(ᾱ, σα).

For the proof of the upper bound, we prove the first

constraint (Eq. (9b)) in system (9), i.e. uncertainty an-

gle for v1=vv=Re1 and v2=vh1
=Re2 (depending only

on R, not α). Let (ni,R
∗
ej) be an inlier match, i.e.

∠(ni,R
∗
ej) ≤ τ . Then, by triangle inequality

∠(ni, R̄ej) ≤ ∠(ni,R
∗
ej) + ∠(R̄ej ,R

∗
ej) (17)

≤ τ +
√
3σ. (by Lemma 2) (18)

We now prove the second constraint (Eq. (9c)) in sys-

tem (9), i.e. uncertainty angle for the additional horizontal

directions vm+1=vhm
=Rαm

vh1
=Rαm

Re2. Similarly to

the first constraint, we can write by triangle inequality

∠(ni, R̄αm
R̄e2) (19)

≤ ∠(ni,R
∗
αm

R
∗
e2) + ∠(R̄αm

R̄e2,R
∗
αm

R
∗
e2) (20)

≤ ∠(ni,R
∗
αm

R
∗
e2) + ∠(R̄αm

R̄e2, R̄αm
R

∗
e2)

+ ∠(R∗
αm

R
∗
e2, R̄αm

R
∗
e2) (21)

≤ τ +
√
3σr + σαm

(by Lemmas 2 and 3) (22)

= τ + (1 +
√
3)σ. (σ = σr = σαm

) (23)

These two constraints mean that if a match is an inlier

by the Atlanta frame V∗ ∈ C w.r.t. the residual threshold τ ,

then it is also an inlier by V̄ (the center of C) w.r.t. the

threshold τ +
√
3σ for (v̄v, v̄h1

) and τ + (1 +
√
3)σ for

v̄hm
(with m ≥ 2). Therefore if V∗ provides c∗ inliers,

then system (9) provides u ≥ c∗ inliers, which concludes

the proof of the upper bound.

Finally, we have proved the validity of our lower and up-

per bounds. Throughout the BnB iterations, the cube size σ
decreases (by cube subdivision). Therefore the gap between

the lower and upper bounds decreases, i.e. the lower and

upper bounds converge, and in turn BnB converges to the

globally optimal solution since the bounds are valid. This

concludes the proof. �

5.3. Search Procedure

Our BnB procedure is formalized in Alg. 1 using a

breadth-first search (depth-first search is also applicable).

The cube list L is initialized with the bounded search space

of the parameters (Sec. 4). At each BnB iteration, each cube

of L is subdivided into 2M+2 sub-cubes of half size along

each dimension and the associated bounds are computed.

Then we remove from the list all the cubes whose upper

bound is lower than the maximum lower bound l∗ obtained

so far because it means that, even in the best case, it is sure

that these cubes cannot obtain an inlier cardinality higher

than l∗. The procedure stops when at least one cube whose

lower bound equals the maximum upper bound is obtained

or when it reaches a desired accuracy. Finally the AF corre-

sponding to the center of that cube is returned, i.e. this AF

globally maximizes the number of inliers.

5.4. Efficient Bound Computation

Most of the BnB execution time is spent on verifying the

inlier constraints in systems (8) and (9), for the lower and

upper bound computations. For the line case, the number

of input normals is typically only up to a few hundreds (i.e.

number of lines extracted in an image), which is compu-

tationally inexpensive. In contrast, the number of surface

normals can be orders of magnitude higher: for example, a

VGA depth map provides around 300, 000 surface normals,

and laser scanners in the order of millions, which will dras-

tically increase the execution time.
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Algorithm 1 BnB for inlier set maximization in Atlanta world

Initialize the cube list L with the bounded search space (Sec. 4)

repeat

Subdivision (σ ← σ/2) of each cube Ci of L
for each cube Ci of L do

Get the Atlanta frame V̄ of the cube center (Eq. (6))

Compute the lower li and upper ui bounds (Sec. 5.2)

end for

l∗ = maxi li, i
∗ = argmaxi ui, u

∗ = ui∗ , V∗ = VCi∗

Remove all the cubes from L such that ui < l∗

until ∃i such that li = u∗ (i.e. at least one cube whose lower-

bound is u∗) or it reaches a desired accuracy level.

Return: V∗ (i.e. the AF maximizing the number of inliers)

To speed up the bound computation for large-scale sur-

face normals, we apply the relaxation method of Joo et

al. [18], which achieves a constant time bound computa-

tion with respect to the number of input normals. Their

method was originally developed in the context of Man-

hattan frame, but we can adapt it for Atlanta frame using

our proposed bound derivations (Sec. 5.2.2) and our At-

lanta frame parametrization (Sec. 4.1). Due to space lim-

itation, the formal definition of our relaxation is available in

the supplementary material. In the context of surface nor-

mals, the basic idea of the relaxation is to relax the circular

inlier region (geodesic distance up to τ on the sphere) by

a bounded rectangular region along azimuth and elevation

axes. It allows us to leverage the integral image technique

on a 2D domain with azimuth and elevation axes rather than

3D sphere, i.e. to compute the bounds in constant time.

Relationship with original problem Let the distance

dAF (V,V ′) denote a distance metric between two Atlanta

frames V and V ′, and S={V∗} denote the set of globally

optimal solutions obtained by solving the problem like sys-

tem (3). We write Hd the Hausdorff distance which mea-

sures the distance between two sets and is defined over a

distance d. Then, we have the following relationship.

Lemma 4. Given any fixed input measurements, let So(τ)
and Sr(τ) respectively be the sets of the globally optimal so-

lutions obtained by solving system (3) and its relaxed ver-

sion, with the inlier threshold τ . For ǫ>0, suppose there

exists So(τ
#) such that HdAF

(Sr(τ),So(τ
#)) ≤ ǫ, then

∀V ∈ Sr(τ),
∣

∣

∣
dAF (V, So(τ))−HdAF

(So(τ), So(τ
#))

∣

∣

∣
≤ǫ. (24)

Formal definitions and the detailed proof can be found

in the supplementary material. Lemma 4 elucidates that, re-

gardless of input data, the relaxation gap between the orig-

inal and relaxed problems can be approximated alternately

by the gap of the solutions So(τ) and So(τ
#), if So(τ

#)
represents the relaxed problem close enough (ǫ-gap). This

provides an alternative way to represent the relaxation gap

by the gap between the same class of two problems, i.e.

HdAF
(So(τ), So(τ

#)). For instance, the original problem

has a circular inlier region Ro
τ for a direction v on a sphere,

and suppose its relaxed inlier region Rr
τ forms a rectangu-

lar shape circumscribing the circle. Then, we can derive

another original problem that has a circular inlier region

Ro
τ# but circumscribing Rr

τ ; Area(Ro
τ ) ⊂ Area(Rr

τ ) ⊂
Area(Ro

τ#). If the data distribution is “simple” enough

such that Sr(τ) is close to So(τ
#), then instead of mea-

suring the relaxation gap, we can deduce the gap from the

difference between So(τ) and So(τ
#). If the data distribu-

tion is “complicated” such that solutions of the problems

are sensitively changed according to even a small change

of inlier threshold, then ǫ may be increased; it loosens the

tightness of Eq. (24), i.e. ǫ is data dependent.

6. Experimental Results

In this section, we present experimental results for syn-

thetic and real-world datasets. Our algorithm has been im-

plemented in MATLAB and runs on a laptop equipped with

an Intel i7-4790K 4.0GHz CPU and 32GB RAM. Given

the inlier threshold τ in degrees and the number of targeted

(horizontal) Atlanta directions M set by the user, our algo-

rithm runs in a fully automatic manner.

6.1. Synthetic Data

We now study the behavior of our algorithm, especially

in terms of optimality and convergence. For this, we ran-

domly generated N input normals (both lines and surface

normals) in AW containing M + 1 Atlanta directions. We

applied a Gaussian noise of 3◦ to the orientations of the

normals to mimic data noise. We also corrupted a certain

percentage p of the input data to create outliers, i.e. normals

that do not belong to any Atlanta directions. Unless specif-

ically mentioned, we set M = 2 (i.e. 3 directions in total),

N = 100 normals, τ = 3◦ and p = 20% of outliers.

RANSAC techniques For comparison purpose, we imple-

mented some RANSAC techniques: 4-line RANSAC for lines

and 2-normal RANSAC for surface normals.1 For 4-line

RANSAC, at each iteration we randomly select four lines.

We hypothesize the two horizontal directions vh1
and vh2

by intersecting two lines each, and then compute the verti-

cal direction vv by cross-product of vh1
and vh2

. As for 2-

normal RANSAC, we randomly select two surface normals

and use them as hypothesis for the horizontal directions vh1

and vh2
. The vertical directions vv is then computed by

cross-product of these two horizontal directions.

Procedure We compared our method to the above

RANSAC techniques, and the quality of the results is mea-

sured by the number of inliers. The number of RANSAC iter-

1The described RANSAC techniques are designed for 3 Atlanta direc-

tions (M = 2), but their process is easily generalizable to different num-

ber of Atlanta directions, as detailed in the supplementary material.
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Figure 3: Representative results obtained for synthetic data on lines (top row) and surface normals

(bottom row). (a, e): Convergence of the lower and upper bounds of the number of inliers. (b, f):

Distribution of the number of inliers detected by RANSAC (4-line and 2-normal RANSAC) on the same

problem instance. (c, g): Convergence of the volume of the BnB search space. (d, h): Evolution of the

number of BnB cubes.
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Figure 4: Execution time (log

scale) of the original and relaxed

problems w.r.t. (a) the number

of surface normals and (b) the

number of Atlanta directions.

ations is automatically computed with the true outlier ratio,

a guaranteed accuracy of 99% and the minimal sampling

(i.e. 4lines or 2 normals) [14]. As RANSAC is not deter-

ministic, we repeated the experiments 1,000 times with the

same input data to obtain the inlier cardinality distribution.

Analysis Fig. 3 shows representative results for synthetic

data on lines and surface normals. Figs. 3(a) and 3(e)

show that the lower and upper bounds converge for both

line and surface normal, which illustrate the convergence

of the proposed algorithm and prove the bounds are valid.

For comparison, Figs. 3(b) and 3(f) show the distribution

of the number of inliers obtained by RANSAC. They show

that RANSAC is not guaranteed to return the optimal result.

We performed extensive experiments with different data

amounts (from N=20 to 1, 000 normals), different numbers

of Atlanta directions (from 2 to 6), and outlier ratios (from

p=0% to 80%). Our approach always returns the globally

optimal number of inliers, and this number is always higher

than or equal to the RANSAC results.

We also show the evolution of the remaining BnB search

space volume (Figs. 3(c) and 3(g)) and the number of cubes

(Figs. 3(d) and 3(h)). It shows the volume drops continu-

ously and the number of cubes remains limited. Note that

the number of cubes does not have to be strictly decreasing

but must remain reasonable, which is our case.

We also measure the execution time of our method with

respect to the number of surface normals (Fig. 4(a)) and the

number of Atlanta directions (Fig. 4(b)), and also compare

it to that of the relaxed problem on the same data. With

various data amounts (from N=100 to 100,000 normals and

M=2), our original method shows sub-linear complexity

and the relaxed one reveals efficient computation time: less

than 10s even for 100,000 normals. Note that although the

solution of the relaxed one for surface normals would differ

from the solution of the original one, the number of inliers

by the relaxed one is always better than or equal to the one

obtained by RANSAC in all our experiments.

6.2. Real­world Dataset

We now show experimental results of our method on

real-world datasets composed of lines and surface normals.

6.2.1 Line dataset

York urban database We tested our method on the York

urban database [8]. It is composed of 102 images acquired

in indoor and outdoor man-made environments, and pro-

vides the camera intrinsic parameters, a set of line segments

manually extracted as well as the ground truth line cluster-

ing. For robustness, we removed the small line segments

shorter than 5% of the image height. In addition, we in-

cluded 50 outlier lines in each image. Our algorithm takes

the set of lines as input and returns the AF and its associated

line clustering. We applied our method to each image of

the database and compared our results to the ground truth.

This comparison show that, for the entire database, each

line clustered by our method corresponds to its ground truth

clustering, which successfully demonstrates the validity of

our approach. An example is shown in Fig. 1 and additional

results are available in the supplementary material.

Ricoh Theta VR database We created a novel omnidirec-

tional VR (monoscopic) image dataset acquired by a hand-

held omnidirectional Ricoh Theta camera (Fig. 5). We cap-

tured a total of 100 omnidirectional VR images with differ-

ent characteristics: indoor/outdoor urban scenes, low/high

number of lines, with/without vertical lines and horizontal

lines, straight/tilted camera, etc. Moreover, the camera is

not exactly central (no single center of projection). We ex-

tracted the lines using the method of Bazin et al. [2] on the
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Figure 5: AF estimation results on the Ricoh Theta VR dataset.

Left: Input lines on the images. Middle: Line clustering and VPs

obtained by the proposed method. Right: Upright adjustment of

the images using the estimated AF.

Figure 6: AF estimation for a different number of horizontal direc-

tions on NYUv2 dataset [28]. Top: A set of input scene images.

Middle&bottom: AW segmentation based on the estimated AF for

2 and 4 horizontal directions, respectively. Each color indicates

each Atlanta direction (green indicates the vertical directions and

the other colors indicate the other horizontal directions).

equivalent sphere space. Our AF estimation method suc-

cessfully estimates the AF as shown in Fig. 5. In addition,

our method provides the vertical direction (vertical VP), and

therefore it is able to rectify the vertical orientation of the

pictures.2 To rectify the picture, we rotate the (spherical)

image such that the estimated vertical direction is mapped

to the gravity direction (last column of Fig. 5). The results

are visually satisfying: the images look as if they were ac-

quired by a straight camera, the world vertical lines appear

as straight vertical lines and are aligned with the y-axis of

the images. This demonstrates the robustness of our method

to real-world images. It also shows that our method can

be successfully applied for automatic upright adjustment of

omni-VR images, even with severe mis-orientations.

6.2.2 Surface normal dataset

NYUv2 dataset We qualitatively evaluated the proposed

method on the NYUv2 dataset [28], which contains

2Note that the vertical direction is seamlessly estimated by our method

no matter if vertical lines exist in the scene or not. In the presence of

vertical lines, the vertical direction is defined by the vertical lines. In the

absence of vertical lines, the vertical direction corresponds the normal of

the horizon defined by the horizontal VPs.

Figure 7: AF estimation on the large-scale 3D point cloud Bremen

dataset. Left: A global view of the dataset. Middle: The esti-

mated 6 Atlanta directions (on top-left sphere) and top-down view

overlapped with Google map. Right: Enlarged 3D views of the

top-down views (left column is input point clouds and right col-

umn is clustered point clouds). Each colored rectangle indicates a

region of the top-down view.

1449 RGBD images of various indoor scenes. To validate

our approach for a different number of horizontal directions

(both M=2 and M=4 horizontal directions), we tested

our method on the images which are labeled as multiple

MF [31]. As shown in Fig. 6, our method successfully

estimated AF for the different numbers of horizontal

directions. Specifically, for M=2 horizontal directions,

the estimated AF does not represent the whole man-made

structure of the scene, while AF with M=4 represents all

the supporting structures of the scene.

Bremen dataset To validate our method on a large num-

ber of normals and several Atlanta directions, we used the

point clouds captured in the city center of Bremen, Ger-

many, from Robotic 3D scan repository.3 This dataset con-

sists of around 81 million 3D points (thus surface normals)

and we considered 6 Atlanta directions in total (M=5). The

results are available in Fig. 7. Our method successfully es-

timated the dominant Atlanta directions and clustered the

point cloud accordingly. It shows our method can be applied

on large-scale dataset composed of millions of normals and

with several Atlanta directions.

7. Conclusion

We have presented a novel approach for Atlanta frame

estimation. We formulate this task as an inlier set maxi-

mization problem (i.e. maximizing the number of clustered

inlier normals) over the definition space of Atlanta frame.

In contrast to existing techniques, our algorithm solves this

inlier set maximization in a globally optimal way and is

designed for Atlanta worlds. Moreover, the proposed ap-

proach can handle a different number of Atlanta directions

(i.e. 2, 3 and more), be applied for a large range of images

(e.g. perspective and omnidirectional) and efficiently deals

with outliers. Our algorithm has been validated successfully

on both synthetic data and challenging real-world dataset.

Since our approach is globally optimal, we believe that our

approach can be especially useful for cases where the accu-

racy of the returned results must be guaranteed.

3http://kos.informatik.uni-osnabrueck.de/3Dscans/
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