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Abstract

Person re-identification is a challenging task mainly due

to factors such as background clutter, pose, illumination

and camera point of view variations. These elements hin-

der the process of extracting robust and discriminative rep-

resentations, hence preventing different identities from be-

ing successfully distinguished. To improve the representa-

tion learning, usually local features from human body parts

are extracted. However, the common practice for such a

process has been based on bounding box part detection.

In this paper, we propose to adopt human semantic pars-

ing which, due to its pixel-level accuracy and capability

of modeling arbitrary contours, is naturally a better alter-

native. Our proposed SPReID integrates human semantic

parsing in person re-identification and not only consider-

ably outperforms its counter baseline, but achieves state-

of-the-art performance. We also show that, by employing

a simple yet effective training strategy, standard popular

deep convolutional architectures such as Inception-V3 and

ResNet-152, with no modification, while operating solely

on full image, can dramatically outperform current state-

of-the-art. Our proposed methods improve state-of-the-art

person re-identification on: Market-1501 [48] by ∼17% in

mAP and ∼6% in rank-1, CUHK03 [24] by ∼4% in rank-1

and DukeMTMC-reID [50] by ∼24% in mAP and ∼10% in

rank-1.

1. Introduction

Given a query image, person re-identification is the prob-

lem of retrieving all the images of the same identity from a

large gallery, where query and gallery images are captured

*Authors contributed equally

by distinctively different cameras which may or may not

have any field-of-view overlap. Hence it can be seen as a

cross-camera data association problem.

Person re-identification is a very challenging task. First,

when a single person is captured by two different cameras,

the illumination conditions, background clutter, occlusion,

observable human body parts, and perceived posture of the

person can be dramatically different. Second, even within

a single camera, the aforementioned conditions can vary

through time as the person moves and engages in different

actions (e.g suddenly taking something out of a bag while

walking). Third, gallery itself usually consists of diverse

images of a single person from multiple cameras, which

given the above factors, generates a huge intra-class vari-

ation impeding the generalization of the learned representa-

tions. Fourth, compared to problems such as object recogni-

tion or detection, images in person re-identification bench-

marks are usually of lower resolution, making it difficult

to extract distinctive attributes to distinguish one identity

from another. Considering the above challenges, an effec-

tive person re-identification system is obliged to learn rep-

resentations that are identity-specific, context-invariant and

agnostic with respect to the camera point of view.

In recent past, improving global (image-level) repre-

sentation by leveraging local (part-level) features extracted

from human body parts has been the main theme of per-

son re-identification research. While an image-level rep-

resentation is prone to background clutter and occlusion,

part-level representations are supposed to be more robust.

However, part detection in low resolution images has its

very own challenges and any error in that stage can prop-

agate to the entire person re-identification system. That is

why some research works prefer to simply extract represen-

tations from multiple image patches, often horizontal strips,

that are loosely associated to human body parts. On the
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other hand, almost all of the previous works which involve

body parts begin with an often off-the-shelf pose estimation

model and infer corresponding bounding boxes from pre-

dicted joint locations. The person re-identification systems

then process the global and local representations in what can

be coarsely seen as multi-branch deep convolutional neural

network (CNN) architectures. These models while deliver-

ing very good results, usually consist of many sub-models

that are trained in multiple stages, tailored specifically for

person re-identification problem. By studying recent litera-

ture, we raise two major questions, in this paper. First, are

such complex models necessary to improve the performance

of person re-identification? Second, are the local features

best captured using bounding boxes on human body parts?

Addressing the first question, we show that a simple

model based on Inception-V3 [37] with no bells and whis-

tles, operating solely on full body images and optimized in

a straightforward training procedure can outperform current

state-of-the art. Unlike recent research works which com-

monly adopt, binary or triplet losses, we train our model

using softmax cross-entropy at two different input resolu-

tions. Using re-ranking as a post processing technique, the

improvement margin further increases.

To address the second question, we propose using se-

mantic segmentation, more specifically human semantic

parsing, as an alternative to bounding boxes in order to ex-

tract local features from human body parts. While bound-

ing boxes are coarse, can include background, and cannot

capture deformable nature of human body, semantic seg-

mentation is able to precisely localize arbitrary contours

of various body parts even under severe pose variations.

We begin by training a human semantic parsing model that

learns to segment human body into multiple semantic re-

gions and then use them to exploit local cues for person

re-identification. We analyze two variations for integrating

human semantic parsing into re-identification and show that

they provide complementary representations. The contribu-

tions of this paper are as follows:

• Through extensive set of experiments, we show that,

our simple yet effective training procedure can signif-

icantly outperform current state-of-the-art. We ver-

ify our observations using two standard deep convo-

lutional architectures, namely Inception-V3 [37] and

ResNet-152 [16] on three different benchmarks.

• We propose SPReID, where human semantic parsing

is employed to harness local visual cues for person re-

identification. To do so, we train our very own seman-

tic segmentation model and show that it not only helps

improving person re-identification, but also achieves

state-of-the-art performance on human semantic pars-

ing problem, demonstrating the quality of our model.

• We improve state-of-the-art person re-identification

performance on: Market-1501 [48] by ∼17% in mAP

and ∼6% in rank-1, CUHK03 [24] by ∼4% in rank-

1 and DukeMTMC-reID [50] by ∼24% in mAP and

∼10% in rank-1.

The remainder of this paper is organized as follows. Sec-

tion 2 offers a brief overview of the person re-identification

literature. We then present our method in Section 3. Exper-

imental results are discussed in Section 4, followed by the

implementation details in Section 5. Finally, we conclude

the paper in Section 6.

2. Related Work

In recent years, significant progress has been achieved

in different computer vision areas, including in person re-

identification, thanks to the emergence of deep learning,

and in particular deep convolutional neural networks. Chal-

lenges due to variations in pose and illumination, occlusion

and background clutter in the person re-identification prob-

lem have resulted in the research community to focus on

two major sub-problems, namely feature representation and

similarity or distance metrics. Improvements in feature rep-

resentation have mainly been achieved by leveraging local

cues while in the latter, similarity measures such as con-

trastive or triplet loss have been studied. Next, we briefly

survey the person re-identification literature.

To obtain robust representations, authors in [21, 45] aug-

ment a global representation by employing human body

parts. Specifically, Li et al. [21] learn the body parts

roughly as head-shoulder, upper-body and lower-body us-

ing a spatial transformer network [19]. Then multiple

streams, with shared weights, through a multi-scale CNN

structure process these parts and ultimately concatenate

them with a global representation. Zhao et al. [45] use re-

gion proposal network, trained on an auxiliary pose dataset,

to detect body parts. Part representations are then gradu-

ally combined and finally fused with the global representa-

tion. Their proposed model is very complex and is trained

through multiple non-trivial stages. While avoiding to ex-

plicitly detect human body parts, authors in [52, 11] try

to benefit from local cues by extracting multiple patches

from image which are loosely associated to human body

parts. Such frameworks cannot address the part misalign-

ment properly. Taking a slightly different approach, in

[26, 30], authors develop attention-based models where re-

spectively, a Long Short-Term Memory (LSTM) [18] and

a gradient-based attention model dynamically focus on dis-

tinctive regions in the image. Some works [47, 34] have

tried to address the misalignment issue by explicitly inte-

grating pose estimation into person re-identification where

off-the-shelf pose estimation models are used to initialize

part locations as quadrilaterals which then are aligned via
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affine transformation or spatial transformer network [19].

Also, there has been some attempts [33, 35] to im-

prove person re-identification performance using person at-

tributes. These attributes usually contain high-level seman-

tic information that are supposedly invariant to pose, illu-

mination and camera point of view. However, one should

note that the exact same conditions make reliable detection

of those attributes very challenging.

Several loss functions have been adopted for person re-

identification. Some like [38, 39, 24, 1] have used posi-

tive and negative image pairs through contrastive and binary

(verification) losses to train their neural network models.

Others [12, 9, 11] have employed triplet loss which requires

a tuple of anchor, positive and negative images where the

training objective is to simultaneously pushing the positive

image towards the anchor while pulling the negative image

away from it. These loss functions are very suitable for per-

son re-identification due to its retrieval nature. However,

their effectiveness is highly dependent on how the training

pairs/triplets are chosen. Easy to distinguish pairs/triplets

do not help the learning since no error signal will be back-

propagated while the hard ones can result in the training

process to diverge. Unlike the aforementioned approaches,

Zhao et al. [45], adopt simple multi-class classification loss

while [49, 29] use a combination of both classification and

verification losses.

In contrast to the above works, we propose to employ hu-

man semantic parsing to extract local regions from human

body. We argue that semantic segmentation, due to its pixel-

level accuracy, is naturally more suitable than bounding box

part localization to cope with person re-identification chal-

lenges. To the best of our knowledge, we are the first to

propose the integration of human semantic parsing into per-

son re-identification.

3. Methodology

In this work, unless specified otherwise, we use

Inception-V3 [37] as the CNN backbone for both human se-

mantic parsing and person re-identification models. There-

fore, we begin by briefly describing the Inception-V3 [37]

architecture. Then, we provide details for our human se-

mantic parsing model and finally explain how to integrate it

into our proposed person re-identification framework.

3.1. Inception­V3 Architecture

Inception-V3 [37] is a 48-layers deep convolutional ar-

chitecture. Since it employs global average pooling instead

of fully-connected layer, it can operate on arbitrary input

image sizes. While being shallower than different variations

of popular ResNet [16], our experiments show that it gives

competitive and in cases even better results than ResNet-

152 [16], while being dramatically less computationally ex-

pensive. We will provide quantitative comparison between

different choices of the backbone architecture.

The Inception-V3 [37] has an output stride of 32, where

the activation size quickly reduces to 1

8
of the input image

resolution within the first seven layers. Such reduction is

achieved by two convolution and one max pooling layer that

operate with the stride of 2. The network follows by three

blocks of Inception layers separated by two grid reduction

modules. Spatial resolution of the activations remains in-

tact within the Inception blocks, while grid reduction mod-

ules halve the activation size and increase the number of

channels. Then, the output of the last Inception block is

aggregated via global average pooling to produce a 2048-D

feature vector. For more details on the architecture, readers

are encouraged to refer to [37].

3.2. Human Semantic Parsing Model

In order to exploit local cues for person re-identification,

we propose to employ human semantic parsing. We ar-

gue that semantic segmentation due to its pixel-level accu-

racy and robustness to pose variation is naturally superior to

bounding box part detection.

We use Inception-V3 [37] as the backbone architecture

of our human semantic parsing model. However, we make

two modifications to adopt it for the semantic segmentation

task. The quality of human semantic parsing heavily relies

on the final activations to be of sufficient resolution. Hence,

we change the stride of the last grid reduction module in the

Inception-V3 [37] from 2 to 1 resulting in an output stride

of 16 compared to 32 in the original architecture. To cope

with the extra computation that consequently is added to the

last Inception block, corresponding convolution filters are

replaced with the dilated convolution [43]. We then remove

the global average pooling and add an atrous spatial pyra-

mid pooling (rates=3,6,9,12)[7] followed by a 1×1 convo-

lution layer as the classifier. This would allow us to perform

multi-class classification in pixel-level and is a standard ap-

proach, commonly used in semantic segmentation architec-

tures [6, 7].

3.3. Person Re­identification Model

Our person re-identification model, illustrated in Figure

1 consists of a convolutional backbone, a human seman-

tic parsing branch and two aggregation heads. From now

on, we refer to it as SPReID: Human Semantic Parsing for

Person Re-identification. The person re-identification back-

bone in SPReID is exactly Inception-V3 [37] with a mi-

nor modification of removing global average pooling layer.

Hence, it generates a tensor of 2048 channels with the out-

put stride of 32.

Our baseline person re-identification model simply ag-

gregates the output activations of the convolutional back-

bone using global average pooling. Corresponding aggre-

gation head, shown in Figure 1 generates a 2048-D global
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Figure 1: SPReID framework: our proposed person re-identification model first transforms the input RGB image into a tensor

of activations via a convolutional backbone while simultaneously generating probability maps associated to different semantic

regions of human body using the human semantic parsing branch. Note that the Inception-V3 module in the lower branch is

denoted as Inception-V3*. That refers to the modifications which we applied (ref. Section 3.2) to the original Inception-V3

[37] architecture. SPReID then uses the aforementioned probability maps to aggregate the convolutional activations from

different semantic regions of human body.

representation. To train the network, we pass it to a multi-

class classification (over different identities) objective with

softmax cross-entropy loss. To avoid clutter, we are not

showing the loss in Figure 1. At the test time, final represen-

tations before the classifier layer are used to retrieve correct

matches of a given query from the gallery. In Section 4,

we show how the performance of the baseline model varies

if we change the backbone architecture from Inception-V3

[37] to ResNet-50 [16] and ResNet-152 [16].

To exploit the local visual cues, we use the probability

maps associated to five different body regions, namely fore-

ground, head, upper-body, lower-body and shoes. These

probability maps are generated by the human semantic pars-

ing model and are ℓ1-normalized per channel. In SPReID,

we pool the output activations of the CNN backbone multi-

ple times, each time using one of the five probability maps.

This is in contrast with global average pooling, which is

agnostic with respect to where in the spatial domain acti-

vations occur. It is not hard to see that exclusively pooling

activations within different semantic regions associated to

human body parts can be seen as a weighted sum operation

where the probability maps are used as weights. From an

implementation point of view, this is equal to a matrix mul-

tiplication between the output of re-identification backbone

and human semantic parsing where their corresponding spa-

tial domain is flattened. Such a procedure results in five

2048-D feature vectors each exclusively representing one

human body region. Next, we perform element-wise max

operation over representations of head, upper-body, lower-

body and shoes and concatenate the outcome with the fore-

ground and previously described global representation from

the full image. Our proposed technique is applicable to any

convolutional backbone choice and adds minimal computa-

tion to the naive global average pooling which serves as our

baseline person re-identification model. Note that since the

human semantic parsing model usually operates on higher

resolution images, the re-identification backbone, as shown

in Figure 1 uses bilinear interpolation to initially scale down

the input images and then scale up the final activations to

match the ones in human semantic parsing branch.

4. Experiments

4.1. Datasets and Evaluation Measures

To evaluate our proposed methods, we use three publicly

available large-scale person re-identification benchmarks

namely Market-1501 [48], CUHK03 [24] and DukeMTMC-

reID [50]. Market-1501 [48] dataset consists of 32,668 im-

ages of 1,501 subjects captured by 5 high-resolution and

one low-resolution camera. In this dataset, to obtain the per-

son bounding boxes, Deformable Part Model (DPM) [13] is

used. Therefore, there are misaligned detected boxes within

the dataset. In its standard evaluation protocol, the training

set consists of 751 identities and has a total of 12,936 im-

ages. In the test set, images of 750 identities which have not

appeared in the training are used to create gallery and query

sets. These sets respectively contain 19,734 and 3,368 im-

ages.

DukeMTMC-reID [50] dataset consists of the person im-

ages which are extracted from the DukeMTMC [31] track-

ing dataset. DukeMTMC contains images taken from 8

high-resolution cameras, and person bounding boxes are

hand-annotated. The standard evaluation protocol [50] of

DukeMTMC-reID dataset is in the same format as Market-

1501. Specifically, 16,522 images of 702 persons are re-

served as training set. For gallery and probe, respectively
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16,522 and 2,228 images associated to 702 identities that

do not appear in the training set are used. In CUHK03 [24]

dataset, there are 13,164 images with a total of 1,467 identi-

ties. These images were recorded by 6 surveillance cameras

and each person is viewed by 2 different cameras. For the

experiments conducted on this benchmark, both manually

annotated and DPM-detected bounding boxes can be used.

The evaluation protocol of CUHK03 is in a different format

than the other two datasets. In our experiments, we are fol-

lowing the standard protocol detailed in [24] and reporting

the results on the manually annotated images.

In addition to these datasets that were used in evaluation,

we utilize 3DPeS [4], CUHK01 [23], CUHK02 [22], PRID

[17], PSDB [41], Shinpuhkan [20] and VIPeR [15] datasets

to augment our training data. The training splits of these

datasets, in addition to Market-1501 [48], CUHK03 [24]

and DukeMTMC-reID [50], are aggregated to create a large

training set which consists of ∼111,000 images. We evalu-

ate the quality of different person re-identification models

using Cumulative Matching Characteristic (CMC) curves

and mean average precision (mAP). All the experiments are

performed in single query setting.

4.2. Training the Networks

To train our person re-identification models, we aggre-

gate 10 different person re-identification benchmarks, de-

tailed in Section 4.1, which results in a total of ∼111,000

images of ∼17,000 identities. The baseline models solely

operate on full image with no use of semantic segmentation.

We begin by training them for 200K iterations using input

images of size 492×164. Then, we fine-tune each one for

an additional 50K iteration but on higher input resolution

of 748×246. Fine-tuning is conducted on Market-1501,

CUHK03 and DukeMTMC-reID datasets separately. Train-

ing of SPReID is done on the aggregation of 10 datasets

with the exact same setting as above. The input image res-

olution in its associated experiments is set to 512×170.

We train the human semantic parsing model on Look

into Person (LIP) [14] dataset which consists of ∼30,000

images with 20 semantic labels1 . The probability of pre-

dictions for different regions are then grouped together to

create 5 coarse labels2 in order to parse human body for the

person re-identification. Our experiments indicate that the

human semantic parsing model is capable of decently lo-

calizing various human body parts even under severe pose

variation and occlusion. Despite being out of the scope of

this work, to demonstrate the quality of our human seman-

tic parsing, we show in Table 1 that, on the validation set

of LIP [14], our model outperforms the current state-of-the-

1Background, Hat, Hair, Glove, Sunglasses, Upper-clothes, Dress,

Coat, Socks, Pants, Jumpsuits, Scarf, Skirt, Face, Right-arm, Left-arm,

Right-leg, Left-leg, Right-shoe and Left-shoe
2Foreground, Head, Upper-body, Lower-body and Shoes

Figure 2: Examples of the segmentation masks generated by

our human semantic parsing model on random images from

DukeMTMC-reID [50] person re-identification benchmark.

method overall acc. mean acc. mean IoU

SegNet [2] 69.04 24.00 18.17

FCN-8s [28] 76.06 36.75 28.29

DeepLabV2 [6] 82.66 51.64 41.64

Attention [8] 83.43 54.39 42.92

DeepLabV2 + SSL [14] 83.16 52.55 42.44

Attention + SSL [14] 84.36 54.94 44.73

Ours 85.07 60.54 48.16

Table 1: Performance (%) comparison of human semantic

parsing on the validation split of LIP [14].

art. Figure 2 illustrates how our human semantic parsing

model segments example images from DukeMTMC-reID

[50] person re-identification benchmark.

4.3. Person Re­identification Performance

In this section, we begin by analyzing the performance of

our baseline person re-identification models. We will show

the effect of input image resolution, fine-tuning on large

image size, different choices for the re-identification back-

bone, and finally weight sharing among aggregation heads.

We show that the baseline models, thanks to our simple yet

well designed training strategy, can outperform the current

state-of-the-art with large margin. Then, we quantitatively

illustrate the effectiveness of SPReID in harnessing human

semantic parsing for person re-identification. We conclude

this section by comparison with the state-of-the-art person

re-identification on three large-scale benchmarks.

Effect of input image resolution: In Table 2, we show

quantitative results from our Inception-V3 baseline model

when different input resolutions are used to train the net-

work. Other than that, the rest of settings/parameters are the

same for all models. We observe that on all three datasets,

training on higher resolution input images yields a better

performance measured by either mAP or re-identification

rate. Though such gap tends to shrink when we consider

rank-10 versus rank-1, as it is expected. Model-S, Model-M
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Market-1501

model input size mAP(%) rank-1 rank-10

Model-S 246×82 64.45 84.06 95.55

Model-M 375×125 72.14 88.18 96.64

Model-L 492×164 73.06 88.87 97.00

Model-Lft 748×246 76.56 90.8 97.71

CUHK03

model input size mAP(%) rank-1 rank-10

Model-S 246×82 – 81.78 98.12

Model-M 375×125 – 85.66 98.90

Model-L 492×164 – 87.91 98.41

Model-Lft 748×246 – 88.73 98.94

DukeMTMC-reID

model input size mAP(%) rank-1 rank-10

Model-S 246×82 53.73 74.87 88.51

Model-M 375×125 59.98 79.85 90.89

Model-L 492×164 59.87 79.08 90.26

Model-Lft 748×246 63.27 80.48 91.65

Table 2: Effect of input image resolution on Inception-

V3 baseline model, measured by mAP and re-identification

rate. We observe that higher input image resolution and

fine-tuning can provide considerable performance gain.

Small, medium and large models are respectively indicated

as Model-S, Model-M and Model-L.

and Model-L are trained on ∼111K images of ∼17K iden-

tities when we merge 10 different person re-identification

datasets. Since training on high resolution images is com-

putationally expensive, in order to further push the perfor-

mance boundaries, we take a trained Model-L and fine-tune

it with input images of 748×246 which is ∼1.5 times larger

than what Model-L has been originally trained with. Table

2 shows that such a fine-tuning practice, denoted as Model-

Lft, yields an average of 4.75% mAP, and 1.71% rank-1

score on the top of Model-L. Hence, we confirm the ad-

vantages of training person re-identification models using

large input image sizes.

Choice of re-identification backbone architecture:

Table 3 shows the effect of varying the re-identification

backbone architecture in our baseline model. Inception-

V3 [37] despite its considerably shallower architecture,

provides a very competitive performance with ResNet-152

[16], while significantly outperforming ResNet-50 [16],

which is of approximately the same depth. Table 3 also

shows that the performance gain achieved by fine-tuning on

high resolution images (ref. Table 2) is valid across variety

of the architecture choices. In our experiments, we observe

Market-1501

model mAP(%) rank-1 rank-10

Inception-V3 73.06 88.87 97.00

ResNet-50 66.32 85.10 95.75

ResNet-152 72.95 88.33 96.88

Inception-V3ft 76.56 90.80 97.71

ResNet-50ft 72.97 87.92 96.76

ResNet-152ft 77.96 90.71 97.65

CUHK03

model mAP(%) rank-1 rank-10

Inception-V3 – 87.91 98.41

ResNet-50 – 85.88 99.19

ResNet-152 – 88.01 99.27

Inception-V3ft – 88.73 98.94

ResNet-50ft – 89.08 99.15

ResNet-152ft – 90.38 99.46

DukeMTMC-reID

model mAP(%) rank-1 rank-10

Inception-V3 59.87 79.08 90.26

ResNet-50 54.77 73.70 88.02

ResNet-152 62.42 79.62 90.80

Inception-V3ft 63.27 80.48 91.65

ResNet-50ft 59.72 77.74 90.84

ResNet-152ft 67.02 83.26 92.95

Table 3: Effect of backbone architecture in our baseline

person re-identification model, measured by mAP and re-

identification rate.

that ResNet-152 is 3 times more computationally expensive

(measured by forward+backward time) than Inception-V3.

Hence, given their relatively similar performance, we chose

Inception-V3 as our main backbone architecture.

SPReID Performance: Table 4 compares the perfor-

mance of our proposed SPReID against the Inception-

V3 baseline person re-identification. All the models are

trained using the settings detailed in Section 4.2. We ob-

serve that both with and without foreground variations, re-

spectively denoted as SPReIDw/fg and SPReIDwo/fg, out-

perform Inception-V3 baseline while their combination

(ℓ2-normalization+concatenation) results in further perfor-

mance gains. Exploiting human semantic parsing through

SPReID improves the baseline re-identification model on:

Market-1501 [48] by 6.61% in mAP and 2.58% in rank-1,

CUHK03 [24] by 3.33% in rank-1 and DukeMTMC-reID

[50] by 8.91% in mAP and 4.22% in rank-1. Since the only

difference between Inception-V3 baseline and SPReID is
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Market-1501

model mAP(%) rank-1 rank-10

Inception-V3 73.06 88.87 97.00

SPReIDw/fg 78.66 90.97 97.71

SPReIDwo/fg 78.06 90.74 97.80

SPReIDcombined 79.67 91.45 98.1

CUHK03

model mAP(%) rank-1 rank-10

Inception-V3 – 87.91 98.41

SPReIDw/fg – 89.57 99.19

SPReIDwo/fg – 91.29 98.93

SPReIDcombined – 91.21 99.2

DukeMTMC-reID

model mAP(%) rank-1 rank-10

Inception-V3 59.87 79.08 90.26

SPReIDw/fg 67.20 82.32 92.32

SPReIDwo/fg 67.11 82.14 92.24

SPReIDcombined 68.78 83.3 92.91

Table 4: Effect of utilizing human semantic parsing by

SPReID to improve Inception-V3 person re-identification

baseline, measured by mAP and re-identification rate.

in how they aggregate the activations of the final convolu-

tion layer, we can confirm the advantage of our proposed

method in effectively harnessing human semantic parsing

to improve person re-identification.

Effect of weight sharing: SPReID model illustrated in

Figure 1 has two aggregation heads. One simply performs

global average pooling while the other uses probability

maps associated to different human body parts as weights

to aggregate convolutional activations. Table 5 compares

two scenarios based on whether or not the two aggrega-

tion heads share the re-identification backbone. We observe

that while exclusive backbone achieves slightly better re-

sults than weight sharing, with the exception of CUHK03

[24] the margin shrinks after fine-tuning on very high im-

age resolutions. It is worth noting that in both scenarios,

SPReID outperforms Inception-V3 baseline (ref. Table 4).

4.4. Comparison with the state­of­the­art

Table 6 shows the performance of our person re-

identification models against the current state-of-the-art.

For each dataset, the corresponding results are divided into

three blocks, first one shows the performance of current

state-of-the-art methods. Second block shows the perfor-

mance of our baseline models with no human semantic pars-

ing cues but trained using our two-stage training procedure.

Market-1501

model weight sharing mAP(%) rank-1

SPReIDw/fg N 78.66 90.97

SPReIDw/fg Y 77.62 90.88

SPReIDw/fg-ft N 80.68 92.40

SPReIDw/fg-ft Y 80.54 92.34

CUHK03

model weight sharing mAP(%) rank-1

SPReIDw/fg N – 89.57

SPReIDw/fg Y – 87.69

SPReIDw/fg-ft N – 92.57

SPReIDw/fg-ft Y – 89.68

DukeMTMC-reID

model weight sharing mAP(%) rank-1

SPReIDw/fg N 67.20 82.32

SPReIDw/fg Y 65.66 81.73

SPReIDw/fg-ft N 69.79 84.02

SPReIDw/fg-ft Y 69.29 83.80

Table 5: Effect of weight sharing in Inception-V3 backbone

between global average pooling, and semantic based pool-

ing branches of SPReID person re-identification architec-

ture.

The third block shows the performance of SPReID.

From Table 6, we observe that the baseline person

re-identification models when trained using our proposed

training procedure outperform the current state-of-the-art.

These results are particularly interesting, since the models

are less complex and are also trained in a straightforward

fashion. When utilizing re-ranking [51], the improvement

margin further increases. Therefore, we confirm that a sim-

ple model with no bells and whistles is sufficient to achieve

state-of-the-art person re-identification performance. Ta-

ble 6 shows that SPReID can effectively harness local vi-

sual cues from human body parts. On all three datasets,

SPReIDcombined-ft outperforms Inception-V3ft baseline with

a large margin. Although, the gap reduces when models are

combined with the strong ResNet-152ft baseline. Similar to

the previous case, the performance will be further improved

by employing re-ranking as post processing.

5. Implementation Details

Person Re-identification: In both training phases, mini-

batch size is set to 15, momentum to 0.9 and we use weight

decay and gradient clipping with 0.0005 and 2.0 for the re-

spective values. Initial learning rate value is set to 0.01 in

the first phase and reduces to 0.001 in the second phase.
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Market-1501

method mAP(%) rank-1 rank-5 rank-10

Li et. al. [21] 57.5 80.3 – –

SVDNet [36] 62.1 82.3 92.3 95.2

DPAR [46] 63.4 81.0 92.0 94.7

JLML [25] 65.5 85.1 – –

Basel.+LSRO [50] 66.1 84.0 – –

SSM [3] 68.8 82.2 – –

DaF [44] 72.4 82.3 – –

Chen et. al. [10] 73.1 88.9 – –

Inception-V3ft 76.56 90.8 96.35 97.71

Inception-V3ft* 82.87 93.14 97.27 98.22

+re-ranking[51] 90.66 94.21 96.76 97.3

SPReIDcombined-ft 81.34 92.54 97.15 98.1

SPReIDcombined-ft* 83.36 93.68 97.57 98.4

+re-ranking[51] 90.96 94.63 96.82 97.65

CUHK03

method mAP(%) rank-1 rank-5 rank-10

FT-JSTL+DGD [40] – 75.3 – –

SSM [3] – 76.6 94.6 98

Spindle [45] – 88.5 97.8 98.6

DPAR [46] – 85.4 97.6 99.4

Chen et. al. [10] 82.8 86.7 – –

HydraPlus [27] – 91.8 98.4 99.1

Inception-V3ft – 88.73 97.82 98.94

Inception-V3ft* – 92.81 98.9 99.35

+re-ranking[51] – 95.18 99.18 99.6

SPReIDcombined-ft – 93.89 98.76 99.51

SPReIDcombined-ft* – 94.28 99.04 99.56

+re-ranking[51] – 96.22 99.34 99.7

DukeMTMC-reID

method mAP(%) rank-1 rank-5 rank-10

Basel.+LSRO [50] 47.1 67.7 – –

Basel.+OIM [42] – 68.1 – –

ACRN [33] 52.0 72.6 84.8 88.9

SVDNet [36] 56.8 76.7 86.4 89.9

Chen et. al. [10] 60.6 79.2 – –

Inception-V3ft 63.27 80.48 88.78 91.65

Inception-V3ft* 72 85.37 92.15 94.21

+re-ranking[51] 84.82 89.41 93.18 94.75

SPReIDcombined-ft 70.97 84.43 91.88 93.72

SPReIDcombined-ft* 73.34 85.95 92.95 94.52

+re-ranking[51] 84.99 88.96 93.27 94.75

Table 6: Comparison with the state-of-the-art.*indicates

combination (ℓ2-normalization+concatenation) with

ResNet-152ft.

Throughout training, we decay the learning rate 10 times

using exponential shift with the rate of 0.9. We train the

models using Nesterov Accelarated Gradient [5] and ini-

tialize the weights using pre-trained models on ImageNet

[32].

Human Semantic Parsing: We train our human seman-

tic parsing model for 30K iterations where the initial learn-

ing rates for the Inception-V3 backbone, atrous spatial pyra-

mid pooling and the 1×1 convolution layer are respectively

set to 0.01, 0.1 and 0.1. The rest of the parameters and set-

tings are similar to the ones for person re-identification ex-

cept the input resolution where 512×512 input images are

used.

6. Conclusion

In this paper, we began by raising two major questions.

First, whether to achieve state-of-the-art performance, the

person re-identification models need to be complex. Sec-

ond, whether bounding boxes on human body parts is the

best practice to harness local visual cues. Through this pa-

per, we addressed both of these questions with extensive set

of experiments. We showed that, indeed a simple deep con-

volutional architecture when trained properly on large num-

ber of high resolution images can outperform the current

state-of-the-art. We also demonstrated that, by exploiting

human semantic parsing in our proposed SPReID frame-

work, the performance of an state-of-the-art baseline model

can be further improved. SPReID applies minimal modifi-

cations to the person re-identification backbone and offers

a more natural solution for utilizing human body parts. We

hope that, this work encourages the research community to

invest more in employing human semantic parsing for per-

son re-identification task.

Acknowledgments

This research is based upon work supported in parts

by the U. S. Army Research Laboratory and the U. S.

Army Research Office (ARO) under contract/grant num-

ber W911NF-14-1-0294; and the Office of the Director of

National Intelligence (ODNI), Intelligence Advanced Re-

search Projects Activity (IARPA), via IARPA R&D Con-

tract No. D17PC00345. The views and conclusions con-

tained herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the ODNI,

IARPA, or the U.S. Government. The U.S. Government

is authorized to reproduce and distribute reprints for Gov-

ernmental purposes notwithstanding any copyright annota-

tion thereon. Emrah Basaran was supported by 2214-A

programme of The Scientific and Technological Research

Council of Turkey (TÜBİTAK).
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