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Abstract

We propose a new error measure for matching pixels that

is based on co-occurrence statistics. The measure relies

on a co-occurrence matrix that counts the number of times

pairs of pixel values co-occur within a window. The error

incurred by matching a pair of pixels is inversely propor-

tional to the probability that their values co-occur together,

and not their color difference. This measure also works with

features other than color, e.g. deep features. We show that

this improves the state-of-the-art performance of template

matching on standard benchmarks.

We then propose an embedding scheme that maps the in-

put image to an embedded image such that the Euclidean

distance between pixel values in the embedded space re-

sembles the co-occurrence statistics in the original space.

This lets us run existing vision algorithms on the embedded

images and enjoy the power of co-occurrence statistics for

free. We demonstrate this on two algorithms, the Lucas-

Kanade image registration and the Kernelized Correlation

Filter (KCF) tracker. Experiments show that performance

of each algorithm improves by about 10%.

1. Introduction

Measuring similarity between pixels is a basic task in

computer vision. Stereo matching algorithms, for example,

use template matching to measure the similarity of potential

matches. Texture synthesis algorithms rely on patch simi-

larity to fill in holes, and tracking algorithms need to match

the appearance of the object from one frame to the next.

Let us focus on template matching as a canonical ap-

plication that relies on a pixel similarity measure. Ar-

guably the most popular measure is the Sum-of-Squared-

Differences (SSD) that is based on the Euclidean distance

between corresponding pixel values in the template and the

candidate window.

But SSD is very sensitive to small deformations. To deal

with this problem one often use patch level representations

such as SIFT [18], HOG [3], or the first layers of a deep net-

work [26]. These representations use a small neighborhood

to collect local statistics that increase the robustness of pixel

representation to small misalignment and deformations, at

the cost of losing precise pixel localization. The metric used

to compare these features often remains the Euclidean met-

ric.

The key contribution of this paper is the introduction of

a new similarity measure between pixel values that is based

on co-occurrence statistics. Co-occurrence statistics are col-

lected over the entire image plane and measure the proba-

bility of a pair of pixel values to co-occur within a small

window. We take the cost of matching pixels to be inversely

proportional to the probability of their values co-occurring.

Why?

Because co-occurrence statistics has long been used to

capture texture. Pixel values that co-occur frequently in the

image are probably a part of textured region. Therefore, this

measure implicitly captures some notion of texture similar-

ity. This has nothing to do with the actual pixel values, only

their co-occurrence statistics. In other words, we learn pixel

similarity from data instead of imposing the Euclidean dis-

tance on it.

Co-occurrence statistics differ from the patch based rep-

resentations mentioned earlier. Patch based methods collect

local statistics whereas co-occurrence collects global statis-

tics. The two approaches complement each other and we

can collect co-occurrence statistics of RGB values, as well

as other, more involved features, such as deep features. Ex-

periments show that combining both approaches greatly en-

hances the performance of template matching on standard

template matching benchmarks.

We then propose an embedding scheme that maps the

pixel values of the input image to a new space. The embed-

ding maps pixel values that co-occur frequently to nearby

points in the embedded space, where proximity is based on

the Euclidean distance. There are several reasons for do-

ing that. First, it allows us to run existing template match-

ing implementations on the embedded images without any

modifications. Second, because existing template match-

ing algorithms achieve sub-pixel accuracy, we get this accu-
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racy for free. The alternative, of achieving sub-pixel accu-

racy by working directly with co-occurrence statistics, is not

straightforward to achieve. Third, working with sub-pixel

accuracy lets us extend our template matching algorithm

to work with more general transformations that do not fall

on integer pixel coordinates (i.e., rotations, 2D affine). On

the downside, we find that working in the embedded space

degrades the accuracy of template matching, compared to

working directly with co-occurrence statistics. Still, work-

ing with embedded images yields results that are substan-

tially better than working with SSD.

Finally, there is no need to limit ourselves to template

matching. We can run any vision algorithm on the embed-

ded images. We demonstrate this on two algorithms. The

Lucas-Kanade (LK) image registration algorithm [19] and

the Kernelized Correlation Filter (KCF) tracker [11].

The LK algorithm performs gradient descent, a step that

is easy to do in Euclidean space, but not as easy when work-

ing with co-occurrence statistics directly. The KCF tracker

treats tracking as a binary classification problem and solves

it efficiently by working in the frequency domain. Again,

it is easy to perform FFT on a Euclidean space but it is not

clear how to compute the Fourier transform of a space en-

dowed with a co-occurrence error measure.

These problems go away once we embed the images. Ex-

periments show that both algorithms enjoy a 10% boost in

performance just by working on the embedded images, with

no modification to the actual algorithms themselves.

To summarize, we introduce a new error measure that

is based on co-occurrence statistics. The new measure is

robust to misalignment and deformations, fast to compute,

and can work with different pixel values such as RGB color

or deep features. We then suggest an embedding scheme

and show that other vision algorithms can benefit from the

co-occurrence error measure. Results of extensive experi-

ments on several data sets demonstrate the potential of our

method.

2. Background

We use template matching to demonstrate the power of

co-occurrence statistics as a similarity measure. Because

template matching is a vast topic, we cover here only the

relevant work related to ours. We focus on the simple

case of 2D translation, but the principles presented here

can be extended to other parametric transformations. For

an overview see [23].

Template matching seeks to find a candidate window

in a target image that matches a given template. This re-

quires the definition of a similarity measure between the

window and the template, such as the Sum-of-Squared-

Differences (SSD) or Sum-of-Absolute-Differences (SAD).

To deal with illumination changes one might use Normal-

ized Cross-Correlation (NCC) or the more elaborate Gener-

alized Laplacian Distance [8]. To handle noise and outliers

one might use robust measures such as M-estimators [1].

When tracking a deformable object it might be better to

represent the template as a histogram and use an appropriate

similarity measure between histograms [2].

In the medical image literature, the use of information

theoretic criteria is very popular. For example, two images

of different modality are aligned by maximizing their mu-

tual information [20, 29]. However, it is important to point

out that mutual information used in these cases is between

the different modalities, whereas we are dealing with im-

ages of the same modality. See [24] for a recent survey.

Egnal [7] proposed to use Mutual Information (MI) as

a stereo correspondence measure to handle illumination

changes. Each patch in the source image is matched to sev-

eral candidate patches in the target image and the match

that maximizes the MI is selected. There is no global in-

formation sharing in the process. Each patch is processed

independently.

Kim et al. [17] later extended the idea to work on a

Markov Random Field (MRF). The basic idea is to use

Graph-Cuts to find a disparity field that maximizes the MI

between the warped source image and the target image, in-

stead of trying to minimize a SSD or SAD error measure.

See also the follow up work by Hirschmuller [13]. These

works differ from ours because they measure the MI be-

tween the entire warped source and target images. We, on

the other hand, focus on learning the co-occurrence statis-

tics at the pixel level and from the entire image.

The Lucas-Kanade algorithm was adopted to work with

MI by Dowson and Bowden [6] by changing the equations

to maximize the MI between the two images instead of min-

imizing the standard SSD error. As with previous work,

they demonstrate their algorithm on images with different

modalities or different illumination.

Co-occurrence statistics was first introduced by Haralick

et al. [10] for the purpose of texture analysis. Recently, co-

occurrence data (termed mutual pointwise information) was

used for crisp boundary detection by Isola et al. [15]. They

use Normalized Cuts [25] to find edges. However, instead of

using pixel differences when constructing the Affinity ma-

trix, they use co-occurrence statistics. Co-occurrence statis-

tics was also used to extend the Bilateral Filter to deal with

texture [16]. The core idea there was to replace the range

Gaussian of the bilateral filter with a co-occurrence statis-

tics measure, thus capturing texture properties instead of

differences in pixel value.

The idea of using co-occurrence statistics for image

matching was also suggested by Hseu et al. [14]. How-

ever, they only considered the case of gray scale images

and the simple case of 2D translation. There is no discus-

sion of color, or patch based features, and no discussion of

the embedding idea presented here. The only experiment
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they present is a synthetic one on the image of Lena.

There has also been a considerable amount of work on

embedding using co-occurrence data. Globerson et al. dis-

cuss Euclidean embedding of co-occurring data of differ-

ent types, such as text and images [9]. This is a general-

ization of the Stochastic Neighborhood Embedding (SNE)

of Hinton and Roweis [12] and its extension tSNE by Van

Der Maaten and Hinton [28]. Common to these works is

that they attempt to preserve neighborhood structure such

that data that co-occur in the original space should co-occur

in the embedding space. This is in contrast with our goal

where we wish to embed the data such that Euclidean dis-

tance in the embedded space will match the co-occurrence

statistics in the original space. We therefore use Multi-

Dimensional-Scaling (MDS) for our embedding.

Most recently, Dekel et al. [4] and Talmi et al. [27] have

been working on the same problem of Template Matching.

Dekel et al. proposed the Best-Buddies Similarity (BBS)

measure. BBS maps the pixels of the template and the can-

didate window into a spatial-appearance space and then de-

fines a similarity measure between the two point sets. In

particular, they compute the mutual nearest neighbors be-

tween the two point sets and show that this measure is ro-

bust to outliers. This comes at a higher computational cost.

This work was later extended by Talmi et al. [27] that

introduced two key ideas: The first is to enforce diversity in

the mutual nearest-neighbor matching and the second is to

explicitly consider the deformation of the nearest-neighbor

field. To reduce the computational burden they use Approx-

imate Nearest Neighbor.

Both methods do not achieve sub-pixel accuracy and do

not generalize to other parametric transformations such as

rotations. Our method, in contrast, is simpler, fits with

existing template matching pipeline, and can generalize to

other parametric transformations. In addition, our embed-

ding scheme allows any other vision algorithm to benefit

from co-occurrence error measure.

3. Method

SSD based template matching minimizes the following

objective function:
∑

p(Tp−Rp)
2 where T is the template,

R ⊆ I is a region in image I , with the same size as T , and

p is pixel location.

Co-occurrence based template matching (CoTM)

maximizes the following objective function instead:
∑

p M(Tp, Rp), where M is a (normalized) co-occurrence

matrix that is learned from the image data. Once we have

computed M , we can use it to give the cost of matching

pixel value Tp with pixel value Rp. In case of multi-channel

images (i.e., color or deep features), we quantize the image

to a fixed number of k clusters using k-means. In what

follows we define the co-occurrence matrix and discuss its

properties.

3.1. Co­occurrence Matrix

A co-occurrence matrix C(a, b) counts the number of

times that the two pixel values a and b appear together in

an image. Each pair contributes to C relative to their dis-

tance in the image plane. Formally:

C(a, b) =
1

Z

∑

p,q

exp(
−d(p, q)2

2σ2
)[Ip = a][Iq = b] (1)

where p and q are pixel location, Ip is the value of pixel p in

image I , and Z is a normalization factor. σ is a user speci-

fied parameter and [·] equals 1 if the value inside the bracket

is true and 0 otherwise. The use of a Gaussian weight cap-

tures our belief that pixel pairs that are close in the image

plane matter more. In practice, we only consider pixels

within a window proportional to σ.

Co-occurrence as described by Eq. 1 promotes pixel val-

ues that occur often in the image. To preserve pixel values

that rarely occur in the image (and therefore we believe are

important) we divide C by their prior probabilities to get the

Pointwise Mutual Information (PMI) matrix:

M(a, b) =
C(a, b)

h(a)h(b)
(2)

where h(a) is the probability of observing pixel value a in

the image (i.e., h is a normalized histogram of pixel values).

While co-occurrence promotes pixel values that frequently

appear in the image, PMI penalizes them.

Fig. 1 shows a query image and its PMI matrix M .

For better visualization we show only the meaningful

rows/columns of the matrix. The color patches along the

axis of the PMI matrix indicate the cluster’s color. The en-

tries of the matrix are given in inverse grayscale, so bright

colors mean a low PMI score and dark colors mean a high

score. M(A) specifies the PMI of brown and blue colors.

Since brown and blue rarely co-occur, their PMI is low. On

the other hand, orange and white co-occur frequently, hence

their PMI value, M(B), is high. This has nothing to do with

the intensity differences between brown and blue vs orange

and white. The only factor that affects M is how often pixel

values co-occur. Another interesting entry in the matrix is

the one of light and dark green, M(C). Even though they

co-occur frequently, their PMI value is low. This is because

the prior probabilities of light and dark green are fairly high

in the image.

This property of M will come in handy when trying to

match a template with a lot of background pixels in it (see

Fig. 2). In this case we match two templates with different

size to the same image. The result shows that in both cases

only pixels that belong to the object have a high weight and

the matching result is almost the same.

3.2. Template Matching

Given a template T and a region R ⊆ I , what is the prob-

ability that R matches T ? Assuming Gaussian independent
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Query M

Figure 1. Co-occurrence Statistics: (Left) Query image.

(Right) It’s corresponding PMI matrix M . For better visualiza-

tion we show only the important rows/columns of M . We collect

co-occurrence statistics from the query image according to Eq. 2.

M (A) has a low score because brown and blue rarely co-occur

in the image. On the other hand, white and orange co-occur fre-

quently, therefore their corresponding entry, M (B), is high. Light

and dark green co-occur frequently but their score M (C) is low

because each of them appear frequently in the image.

pixel noise, the (log) probability is:

logPr(R|T ; Θ)
=
∑

p logPr(Rp|Tp; Θ)

=
∑

p logG(Tp −Rp|0;σ)

= − 1

2
|T |log(2πσ2)− 1

2σ2

∑

p ||Tp −Rp||
2

(3)

where G(x|µ, σ) = 1√
2πσ

exp(− 1

2σ2 (x− µ)2) is the Gaus-

sian density function. The last expression is the sum-of-

squared-differences (SSD). Minimizing it maximizes the

probability of region R matching T .

The Gaussian noise assumption is very strong. It as-

sumes that the geometric transformation used to warp the

template to the image is sufficient and hence all noise is

due to intensity errors (that are modeled with a Gaussian).

In practice, the transformation model we use might not be

sufficient to capture the true deformations of the template.

Another problem with the Gaussian noise assumption is

that it is very sensitive to outliers. For example, if some of

the pixels in T or R belong to the background or are oc-

cluded then their error will have a very strong and negative

effect on the outcome of the match.

We use co-occurrence statistics to address these issues.

Specifically, we maximize the same objective function, but

assume a different noise model. Assuming that pixels move

locally and independently, we have that:

logPr(R|T )
=
∑

p log(Pr(Rp|Tp))

=
∑

p log(Pr(Rp, Tp))−
∑

p log(Pr(Tp))

=
∑

p log(Pr(Rp, Tp))

(4)

where we drop
∑

p log(Pr(Tp)) because it depends only on

the template which is fixed. As can be seen, in the Gaussian

model we minimize the sum of squared distances, while in

Eq. 4 we maximize the sum of joint probabilities. An out-

line of the algorithm is given in Algorithm 1.

(a) (b) (c)

Figure 2. Background Influence: (a) small (top) and large (bot-

tom) templates. (b) query image, we mark by solid (dashed) line

the patch that best matches the small (large) template. (c) The

per-pixel score M(Tp, Qp). Notice that adding more background

pixels doesn’t changes the overall score significantly.

Algorithm 1: Co-Occurrence Template Matching (CoTM)

Input : Template (T ), Query Image (I)

Output: Matching Region (R̂)

1 Iidx ← Quantize( I ); Tidx ← Quantize( T ) ;

2 C ← Collect Co-occurrence(Iidx, Tidx) % Eq. 1 ;

3 M ← Normalize(C) % Eq. 2 ;

4 Compute SR =
∑

p M(Tidx(p), Ridx(p)) ∀ Ridx ⊆ Iidx ;

5 Return R̂ = argmax
R

(SR)

3.3. Embedding

In Sec. 3.2 we have shown how to use co-occurrence

statistics to match a template to an image. We now extend

this approach to address some of its limitations. First, it is

not clear how to use this scheme to match with sub-pixel ac-

curacy. Naively, one might suggest interpolating the input

image and use the interpolated values in the co-occurrence

matrix. Since co-occurrence is not a linear operation, this is

clearly wrong. Second, sub-pixel accuracy will allow us to

extend template matching to deal with more general trans-

formations that do not work on integer pixel coordinates

(i.e., rotations, 2D affine). Third, we would like to make

use of existing template matching algorithms and not have

to modify them.

On top of that, we would like other vision applications to

take advantage of the co-occurrence measure. For example,

Lucas-Kanade [19] uses a first order Taylor approximation

to derive a gradient descent process to register a pair of im-

ages. This assumes the images are differentiable. Unfortu-

nately, the matrix M is not differentiable which complicates

things.

Another example is the Kernelized Correlation Filter

(KCF) tracker [11]. KCF treats tracking as a binary clas-

sification problem that is solved efficiently in the frequency

domain. However, it is not clear how to apply the Fourier

transform to a space endowed with a co-occurrence similar-
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ity measure, and not a Euclidean distance.

To address these problems we propose to embed the pixel

values in a new space that is endowed with a regular Eu-

clidean metric. We can then perform Lucas-Kanade, KCF

tracking, or any other vision algorithm, for that matter, in

the new space. To do that, we assume that the co-occurrence

matrix is an affinity matrix. Our goal is to map points

with high affinity (i.e., high co-occurrence value) to nearby

points in the embedded Euclidean space.

We use Multi-dimensional scaling (MDS) for the em-

bedding. MDS takes a distance matrix as an input. It

then uses eigenvalues decomposition to find a mapping to

a given d-dimensional space such that L2 distance in this

space produces a distance matrix that is as close as possible

to the input distance matrix. Formally, we look for points

{y1, ..., yk}, yi ∈ Rd such that:

argmin
{y}

∑

a,b

(D(a, b)− ||y
a
− y

b
||2)

2 (5)

where the distance matrix is:

D(a, b) = −log

(

C(a, b)
√

C(a, a) · C(b, b)

)

(6)

Manipulating C in this fashion ensures that D is symmetric

with zeros across its diagonal 1.

Given the distance matrix D defined in Eq. 6 we use

MDS to embed it in a d-dimensional space. Each pixel is

now assigned the corresponding vector. Fig. 3 illustrates the

embedding process. We show the embedding results to 1D

(i.e., grayscale) and 3D (i.e., RGB images). Observe how

textured regions in the input image are mapped to constant

colors in the embedded space. In particular, in the 3D case,

the different textures are mapped to Red, Green and Blue

colors, which are far apart in color space.

Any vision algorithm can now operate on the embed-

ded images. We demonstrate this using Template matching,

Lucas-Kanade, and KCF tracking. The advantage of the

embedding is that existing vision pipelines remain intact.

4. Results

We evaluated CoTM on two public benchmark datasets.

The first, created by Dekel et al. [5] from 35 annotated color

video sequences of the OTB dataset [31]. Those videos

are challenging because of occlusions, nonrigid deforma-

tions, in-plane/out-plane rotation, luminance changes, scale

differences and more. The dataset contains 105 template-

image pairs. Each image pair consist of frames f and f+20,

where f was randomly chosen. For each pair of frames,

the template is the annotated ground-truth bounding box in

frame f and the query image is frame f + 20.

1The matrix D is not guaranteed to be a distance matrix because the tri-

angle inequality is not guaranteed to hold. In practice, we did not observe

any problems with the embedding.

(a) input (b) 1D embedding (c) 3D embedding

Figure 3. Embedding: The input image (a) is embedded either

to 1D (b) or 3D (c) space. Observe how the checkerboard texture

is mapped to an almost constant color both in (b) and in (c). Vision

algorithms that assume images are piecewise constant will benefit

from working on the embedded images.

We also evaluate our method on a similar but larger

dataset due to Oron et al. [21]. This benchmark was gen-

erated from the OTB dataset and includes both color and

grayscale videos. The dataset consists of three data sets.

Each dataset includes 270 template-image pairs and each

image pair consist of frames f and f + ∆f , where f was

randomly chosen and ∆f ∈ {25, 50, 100}2.

The evaluation metric is based on the standard Intersec-

tion over Union (IoU). The area-under-curve (AUC) is used

to compare between the different methods.

We use pre-trained VGG network [26] to generate deep

features in a way similar to [21] and [27]. Specifically, we

concatenate the 64 features of conv1 2 with the 256 fea-

tures of conv3 4, which amounts to 320 features per pixel.

conv3 4’s size is 1/4 of the original image, in both dimen-

sions. We used bilinear interpolation to resize it back to the

image size.

4.1. Evaluation

We compare CoTM, on both color and deep feature im-

ages, to two state-of-the-art measures for template match-

ing: Deformable Diversity Similarity [27] (DDIS) and Best-

Buddies Similarity [5] (BBS). In addition, we compare

our method to SSD. The success plots for all methods on

the 105 template-image pairs benchmark are presented in

Fig. 4.

Some comments are in order. The AUC score of tem-

plate matching using color pixel values and standard SSD

measure is quite poor at 0.43. Replacing color features with

deep features, but keeping the SSD error measure, increases

the score to 0.55. However, replacing the SSD similar-

ity measure with co-occurrence statistics, while keeping the

color features, increases the score to 0.62. In other words,

using co-occurrence statistics of simple RGB values leads

to better results than using deep features with standard SSD

measure. Combining deep features and co-occurrence sim-

ilarity measure brings the score to 0.67.

Examples of CoTM are shown in Fig. 5. As can be seen,

2The dataset for ∆f = 100 consists of only 252 video sequences.
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Figure 4. Accuracy: Evaluation on the benchmark of [5]: 105 template-image pairs. Left: evaluation on deep features. Right: evaluation

on color features. AUC is shown in the legend.

Template Query Image BBS DDIS CoTM

(a) (b) (c) (d) (e)

Figure 5. Results on real data using color features: (a) The template marked in green (b) Detection results in the query

image of 6 different methods: CoTM, DDIS, BBS, SSD. (c-e) The corresponding likelihood maps of BBS, DDIS and CoTM

respectively. Observe how sharp and localized are our heat maps.
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Method 25 50 100 Mean

CoTM-DC 0.69 0.61 0.59 0.63

CoTM-D 0.68 0.60 0.59 0.62

DDIS-D 0.68 0.60 0.58 0.62

BBS-D 0.60 0.51 0.53 0.55

SSD-D 0.58 0.51 0.52 0.54

DDIS-C 0.65 0.59 0.54 0.59

CoTM-C 0.60 0.54 0.45 0.53

BBS-C 0.59 0.50 0.45 0.51

SSD-C 0.43 0.36 0.31 0.37

CoTM-DU 0.63 0.54 0.51 0.56

CoTM-CU 0.61 0.53 0.46 0.53

Table 1. Results on [22]: 270 pairs with ∆frame ∈
{25, 50, 100}. We compare our method (CoTM) to that

of [27] (DDIS). “-C” denote color features, “-D” denotes

deep features. We also run our method on a concatenated

feature vector of color and deep features (denoted “-DC”).

For the last two rows (-DU, -CU) we have computed the k-

means prototypes on an external image set, instead of com-

puting them per-image. As can be seen, performance does

not change much.

the heat map of CoTM is usually clean with a very strong

and localized peak at the correct location.

We repeated our experiment on the (larger) data set of

[22] and report results in Table 1. As can be seen, Talmi et

al. [27] outperforms us on color features and we outperform

them on deep features. Concatenating color and deep fea-

tures per pixel and using co-occurrence statistics we achieve

an AUC score of 0.69 which is the highest reported score on

this benchmark.

We have also evaluated the importance of prototypes

(i.e., the cluster centers of the k-means quantization step) on

performance. To this end, we have computed a universal set

of k-means prototypes from some external image dataset,

and used them instead of running k-means on each image.

Results are reported in Table 1 as CoTM-DU and CoTM-

CU. As can be seen, the accuracy does not change much.

Our method is fast, straightforward to implement and

does not require the use of Approximate Nearest Neighbor

packages. Our un-optimized MATLAB code takes on av-

erage 2.7 seconds to process a single template-image pair

using color features on an i7 Windows machine with 32GB

of memory. This excludes the k-means step that takes a

couple of seconds.

4.2. Evaluation of CoTM Embedding

Next, we evaluated the MDS embedding scheme for tem-

plate matching using Eq. 6 on the 105 data set. In partic-

ular we evaluate embedding into a 3 as well as 256 dimen-

sional space. Once we embed the template and image we

use the standard SSD error measure for template matching.

Detection results are summarized in Fig 6. We found that

Co-occurrence Embedding Template Matching (CoETM)

works better than the Best-Buddies-Similarity measure of

Dekel et al. [5]. Our method is simpler to implement and

faster to compute. The embedding can be done as a pre-

processing stage and the embedded images can be used in

existing template matching software.
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Figure 6. CoTM Embedding (CoETM): evaluation on [5]

shows that CoETM performs simillarly to CoTM.

To demonstrate the power of embedding we have cou-

pled it with the Lucas-Kanade registration algorithm and

evaluated it on the 105 data set. For each pair, we generated

an initial guess within half bounding box distance from the

ground truth. We used this guess to initialize a 4-level pyra-

mid LK algorithm. The exact same algorithm was tested on

color as well as embedded images. We used the same IoU

metric to measure success. For the embedding we use MDS

scheme of dimension 3.

Fig. 7 shows that LK with CoE (i.e., CoTM on embedded

images) converges to final bounding boxes that are better

than regular LK. Some example are shown in Fig. 8. In

particular, observe that the last example in the figure shows

LK with a 2D Translation+Rotation. It is not obvious how

to extend the work of Dekel et al. [5] or Talmi et al. [27] to

support such motion models.

We also run an out-of-the-box KCF tracker [11] on the

OTB dataset [30] and report results in Fig. 9. As can be

seen, using Co-occurrence embedding improves results by

about 10% with no modifications to the original KCF algo-

rithm. To accelerate run-time, we use only the first frame

in each sequence to compute the co-occurrence embedding

and apply it to the rest of the frames in that sequence.

4.3. Limitations

CoTM suffers from a number of limitations. First, we

found that co-occurrence on gray pixel values does not work

well. We also found that performance degrades when the

pixel values of the template occur frequently in the back-

ground. This is because in such cases background pixels are
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Figure 7. Template matching accuracy using LK: Evaluation

on [5]: 105 template-image pairs. LK with Co-occurrence em-

bedding (LK-CoE) outperforms regular LK.

Figure 8. Co-Occurrance Luckas Kanade: Left: template.

Center: result of regular LK. Dashed white rectangle is initial

guess. Blue rectangle is final result. Right: result of LK on embed-

ded images. Dashed white rectangle is initial guess. Red rectangle

is final result. Our result is far from the initial rectangle, indicating

that the basin of attraction is larger and the convergence is better.

not down-weighted. Finally, we have not addressed illumi-

nation changes and leave this for future research. Failure

examples are shown in Fig. 10. Many of these failure cases

can be mitigated by working on deep features.

5. Conclusions

We presented a new measure for pixel similarity that is

based on the co-occurrence statistics. Instead of measur-

ing the intensity difference between pixel values, we mea-

sure their co-occurrence score. Pixel values that co-occur

often are penalized less than pixel values that co-occur fre-

quently. This is because co-occurrence captures texture to

some degree. Hence, pixel values that come from the same

textured region probably have a high co-occurrence score.
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Figure 9. KCF Tracking: Evaluation on [31]: KCF with Co-

occurrence embedding (KCF-CoE) outperforms regular KCF.

Figure 10. Limitations: shows our failure cases. Left: template.

Right: query image. On the image we mark the ground truth lo-

cation in green and our detection results using color features and

deep features in yellow and red respectively.

Co-occurrence statistics captures global image statistics, as

opposed to local image statistics that are captured by vari-

ous patch representations. Combining co-occurrence statis-

tics (that capture global statistics) with deep features (that

capture local statistics) leads to state of the art results in

template matching on standard datasets.

We then suggest an embedding scheme that maps pixel

values in the input space to a new space such that pixel val-

ues that co-occur often are mapped to nearby points in the

embedded space. This allows any vision algorithm to en-

joy the power of co-occurrence statistics by working on the

embedded images, instead of the original ones. We demon-

strate the power of this embedding on the Lucas-Kanade

image registration algorithm and the Kernelized Correlation

Filter (KCF) tracker. Both algorithms enjoy a 10% boost in

performance just by working on the embedded images in-

stead of the original ones.
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