
Learning Deep Descriptors with Scale-Aware Triplet Networks

Michel Keller Zetao Chen Fabiola Maffra Patrik Schmuck Margarita Chli

Vision for Robotics Lab, ETH Zurich, Switzerland

michel.keller@alumni.ethz.ch, {chenze, pschmuck, chlim}@ethz.ch, fmaffra@mavt.ethz.ch

γ = 0: Siamese loss
(FPR95 = 7.6%)

γ = 0.5: mixed-context
(FPR95 = 4.8%)

γ = 1: triplet loss
(FPR-95 = 12.5%)

siamese

mixed-context

triplet

0.8 recall 1.0

0
.8

p
re

ci
si

o
n

1
.0

Figure 1: Two-dimensional descriptors obtained with our mixed-context loss approach (center) in comparison with a Siamese

(left) and a triplet loss (right) evaluated on the MNIST test set. A normal distribution has been fit to each cluster and its

confidence ellipses plotted. The triplet network shows clear signs of the localized-context problem (Section 3.2), resulting

in inconsistently scaled descriptors. While the Siamese loss does not show this effect, it does not properly take advantage

of context and therefore still learns rather poor descriptors. Our mixed-context loss (Section 4.1) in contrast shows neither

problem, yielding consistently scaled descriptors and the lowest false positive rate at 95% recall (FPR95) and best PR curves.

Abstract

Research on learning suitable feature descriptors for

Computer Vision has recently shifted to deep learning where

the biggest challenge lies with the formulation of appro-

priate loss functions, especially since the descriptors to be

learned are not known at training time. While approaches

such as Siamese and triplet losses have been applied with

success, it is still not well understood what makes a good

loss function. In this spirit, this work demonstrates that

many commonly used losses suffer from a range of prob-

lems. Based on this analysis, we introduce mixed-context

losses and scale-aware sampling, two methods that when

combined enable networks to learn consistently scaled de-

scriptors for the first time.

1. Introduction

Local feature descriptors are a key in a plethora of

tasks in Computer Vision and in fact, the quality of a fea-

ture descriptor, which is typically measured in terms of

the distinctiveness and the descriptability of the image re-

gion it summarizes, is of vital importance to the perfor-

mance of the task at hand. It is, therefore, not surpris-

ing that considerable effort has been undertaken to im-

prove on hand-crafted descriptors such as SIFT [17] and

SURF [5] in order to make them more robust to common

image changes, such as viewpoint and illumination varia-

tions. In the last ten years, features obtained with machine

learning techniques have become increasingly popular, a

development that was partly driven by the introduction of

high-quality labelled datasets [7, 27, 3]. While in earlier ap-

proaches [1, 7, 13, 20], learning was limited to selecting the

hyper-parameters of otherwise hand-crafted descriptors, re-

search focus has gradually shifted towards models that have

more learnable degrees of freedom (e.g. [25, 26]). Driven

by the recent advances in deep learning, attention has now

almost completely turned to learning descriptors with neu-

ral networks [30, 4, 2, 23, 18] an approach that is entirely

data-driven.

The main challenge encountered in this context is that

the descriptors to be learned are not known at training time,

making the formulation of loss functions difficult. This

is most commonly addressed by first propagating multiple

patches through a network and then comparing the obtained

descriptors relative to one another. Generally, the goal is to

encourage similar patches to have descriptors that are closer

to each other in the descriptors’ space than dissimilar ones.

While this leads to losses that are simple and concise, it

2762

leaves a lot of freedom to the networks in the way that the

descriptors are organized. In this paper, we show that ad-

ditional constraints are necessary if we want to guarantee

that descriptors with consistent scaling are learned. Fur-

thermore, we illustrate that it is important to align the scale

of the loss and the descriptor. Our main contributions are:

(1) new mixed-context losses that learn fast and yield con-

sistently scaled descriptors, (2) a framework to scale losses

which we combine with a novel way to visualize losses, and

(3) a scale-aware sampling strategy that reduces the impact

of badly scaled losses.

2. Related work

Descriptors such as [7], DAISY [24], and FREAK [1]

are examples of early learned descriptors. These were still

largely hand-crafted and machine learning was only used

to find an optimal set of parameters. Gradually, research

shifted towards descriptors that were explicitly designed to

be used with machine learning, for example D-BRIEF [26]

or Bin-Boost [25] and recently, neural networks were in-

troduced, which can learn almost any descriptors. A major

difficulty here is that the descriptors are not known a priori

which renders formulating loss functions difficult.

To avoid this problem, CNNH [29] and FastHash [14]

deploy a two-step procedure, where suitable descriptors (or

parts of them) are inferred first and these descriptors then

learned by a regressor network. An alternative approach

that avoids explicitly working with descriptors at training

time is taken by Deep Hashing (DH) [16] and, more re-

cently, by DeepBit [15]. The idea here is to take advantage

of the observation that the hidden layers of neural networks

tend to be good feature extractors, even when not explicitly

trained for this purpose.

Recent work, however, has primarily focused on learn-

ing descriptors directly and in a supervised manner, where

most approaches build in one way or another on an idea

first introduced by Bromley et al. [6] with their Siamese

network. In a Siamese network, two patches xr and xl are

propagated through two copies of a network, yielding float-

ing point descriptors yr and yl. The goal is to obtain similar

descriptors for similar input patches and dissimilar descrip-

tors otherwise, where descriptor similarity is measured in

terms of the Euclidean distance d = ||yr − yl||2. Formally,

a Siamese loss has the following structure:

LSiam(d) =

{

Lp(d) if patches similar

Ln(d) if patches not similar
(1)

Note that this is a general formula. For example, the

semi-truncated Siamese loss in [22] can be modelled with

Lp(d) = d and Ln(d) = [α− d]
+

. Several approaches that

train neural networks for descriptor learning [8, 30, 22, 19]

use such a loss. While Siamese losses perform well in

general, they have been reported to learn relatively slowly,

which can be partially attributed to a lack of contextual

information [9]. Triplet losses build on this insight by

juxtaposing a patch (called the anchor xa) with both a

positive example xp (similar to the anchor) and a nega-

tive example xn (not similar to the anchor). After prop-

agation through the network, one obtains descriptors ya,

yp, and yn, respectively, from which a positive distance

dp = ||ya−yp||2 and a negative distance dn = ||ya−yn||2
are computed. A triplet loss encourages dn to become

larger than dp. Several researchers have formulated this ob-

jective in terms of the softmax function smax(dp, dn) :=
exp(dp)/(exp(dp) + exp(dn)), for example in the log loss

and the sum-of-squared-errors (SSE) loss:

Llog = − log smax(−dp,−dn), (2)

Lsse = smax(dp, dn)
2. (3)

Both of those losses were empirically evaluated by Hoffer

and Ailon [9], where they observed that Lsse performs better

in their specific scenario. Consecutively, Lsse has been used

in PN-Net [2] and T-Feat [4] which set new standards on

the UBC dataset. An alternative approach to formulating a

triplet loss that has been taken is to introduce a margin α and

encourage dp + α < dn, giving the (squared) subtractive

hinge loss [4, 21, 11]:

Lsub = [dp − dn + α]
+
, (4)

Lsub2 =
[

d2p − d2n + α
]

+
, (5)

where we define [x]+ := max{0, x}. A loss with com-

pletely different properties is the division loss [28, 10] that

expresses the relationship between dp and dn as a quotient

rather than a difference:

Ldiv =

[

1−
dn

dp + ǫ

]

+

=
1

dp + ǫ
[dp − dn + ǫ]

+
, (6)

where ǫ is set to a small positive value to prevent divisions

by zero.

3. The importance of scale in triplet losses

In the following, we introduce the concept of perfor-

mance functions with the help of which we then show that

triplet losses suffer from the localized-context problem that

sometimes leads to a distorted descriptor space. Further-

more, we illustrate that triplet losses can act highly differ-

ently depending on the scale of the descriptor space.

3.1. Performance functions

In order to facilitate our treatment of the losses, we in-

troduce the notion of a performance function that assesses

how well the descriptors of a triplet perform. In short, the

2763

Figure 2: Illustration of ρsub = dn − dp.

smaller dp and the larger dn, the better the performance.

Hence, we define a performance to be a function ρ(dp, dn) :
R

2 −→ R that satisfies ρ(dp + ǫ, dn) < ρ(dp, dn) and

ρ(dp, dn + ǫ) > ρ(dp, dn) for all ǫ > 0. All of the five

losses that we introduced above can be rewritten in terms of

one of the following three performance functions:

ρsub(dp, dn) : = dn − dp, (7)

ρsub2(dp, dn) : = d2n − d2p, (8)

ρdiv(dp, dn) : = (dn)/(dp + ǫ). (9)

In particular:

Llog(ρsub) = − log smax(ρsub, 0), (10)

Lsse(ρsub) = smax(−ρsub, 0)
2, (11)

Lsub(ρsub) = [α− ρsub]+ , (12)

Lsub2(ρsub2) = [α− ρsub2]+ , (13)

Ldiv(ρdiv) = [1− ρdiv]+ . (14)

Please see the additional material for a derivation of these

alternative formulations. The choice of the performance

function has a fundamental impact on the descriptors that

are learned because they determine what we consider a

well-trained model. The three performances we introduced

above do this quite differently. For instance, we have

ρsub(1, 2) = ρsub(0.9, 1.9), but ρsub2(1, 2) > ρsub2(0.9, 1.9)
and ρdiv(1, 2) < ρdiv(0.9, 1.9). In order to get an intuitive

understanding of how a specific performance function af-

fects the descriptors, we can picture dp and dn in descriptor

space which is illustrated in 2D in Figure 2. In the case of

feature descriptors that we are considering here, our goal

can be described as clustering the descriptors of patches

that stem from the same classes. Hence, the performance

function affects the trade-off between getting intra-cluster

distances small and inter-cluster distances large. From this

point of view, the choice of the performance function is of

minor importance as long as the clustering works well.

However, our goal is not primarily to cluster the training

data in descriptor space, but rather to learn networks that

generalize well to new examples. This implies that the scale

of the descriptor space should be consistent in some sense

with the performance function. On the right-hand side in

Figure 2 we illustrate that ρsub = dp−dn and the Euclidean

distance in descriptor space conform in a more natural way

Triplet Loss Siamese Loss

distance distance

Figure 3: At the top, the conceptual threshold is shown in

the case of both a triplet (left) and a Siamese (right) loss.

At the bottom, the localized-context problem is illustrated

in a two-dimensional descriptor space. The blue cluster is

expanded (increasing dp) and pushed away from the other

clusters (increasing dn). Therefore, the performance ρsub =
dn − dp increases slightly even though the scaling of the

descriptors has deteriorated.

than ρdiv and ρsub2. In our experiments, we indeed observed

that ρsub performs the best, although it is not clear whether

this is really due to the choice of performance function or

due to other design choices such as the actual formulation

of the loss. Still, based on this intuition we will focus on

losses in ρsub in the remainder of this paper. We will also

see several times that thanks to this consistency between

descriptor space and performance function, losses in ρsub

are significantly easier to understand and work with.

3.2. The localizedcontext problem

Triplet losses are generally reported to outperform

Siamese losses, sometimes by a large margin. Hoffer and

Ailon [9] report that Siamese losses failed completely in

their experiments while triplet losses performed just well.

They suspect that this is due to the lack of context when

provided only pairs of patches. To illustrate this, suppose

we are given two photos of distinct people, one smiling, the

other with a sad expression and we are told that the two im-

ages are not similar. The question that arises here is what

aspect makes them dissimilar. Is it because the images show

two different people or the different emotions? This ques-

tion can simply not be answered without additional infor-

mation. Were we additionally told that the image with a

smiling person is similar to an image depicting a third per-

son who is laughing, it would be clear that we are interested

in clustering faces by the emotion they express. Hence,

triplets add context and remove ambiguity.

It is interesting to observe how the triplets are handled

by the losses. Principally, a triplet loss could treat the

2764

positive and the negative distances as if they were from

two separate and unrelated pairs in which case the loss

could be formulated as L(dp, dn) = LSiam(dp | similar) +
LSiam(dn | not similar). This is a pure Siamese loss with no

information exchange between the positive and the nega-

tive pairs. However, none of the five losses we have dis-

cussed above can actually be written in this form, simply

because those losses do not treat positive and negative pairs

in isolation. Instead, they are formulated in terms of how

the positive and negative distances relate to one another, as

expressed by the performance function. Siamese and triplet

losses are therefore more different than it might seem at first

glance.

To make this a little more intuitive, we can conceptually

express the performance of a pair with respect to a distance

threshold. A positive pair performs well if its distance is

far smaller than that threshold. Similarly, a negative pair

performs well if its distance is far greater. For a Siamese

loss, this threshold would be the same for all pairs since

the loss is formulated on pairs in isolation. Differently, a

triplet loss is formulated based on how dp an dn relate to

one another, and consequently the threshold is different for

every single triplet. This is illustrated at the top in Figure 3.

We believe that it is this dynamic behavior that causes

triplet losses to learn faster than Siamese losses as this guar-

antees that both the positive and the negative distances are

acted on with equal strength. However, it is also clear that

there is nothing that encourages triplet losses to agree on

a global threshold that separates all positive from negative

distances, not only those inside a triplet. For instance, we

have ρsub(dp, dn) = ρsub(dp+∆, dn+∆). This means that

increasing positive and the negative distances by the same

amount does not change the loss, but it has a significant im-

pact on the scale of the clusters as illustrated in Figure 3 on

the blue cluster. Note that this behavior applies to all per-

formance functions: increasing dp can be compensated by

increasing dn (and vice versa), potentially leading to an in-

consistent scaling of the clusters that is not mirrored by the

loss.

The reason for the problem we just described is a lit-

tle ironic: on the one hand, triplet losses generally perform

well which we attribute to a better usage of the context con-

tained in the data inside of the triplet. At the same time,

triplet losses neglect to exchange contextual information

about their scale amongst each other. For this reason, we

refer to this behavior as the localized-context problem. In

Section 4.1, we address this problem by introducing mixed-

context losses that combine the desired properties of both

Siamese and triplet losses.

3.3. Scale of the losses

Most works in the literature normalize their descriptors

to unit length, leading to a maximum ℓ2-distance between

two descriptors of dmax = 2. Besides, simply using a sig-

moid or hyperbolic tangent activation at the output layer

is quite common too, leading to much larger distances be-

tween descriptors (for example dmax = 32 with the tanh-

descriptors of size 256 in PN-Net [2]). If we use the same

loss for different dmax, we can expect very different behav-

ior during training. If our loss is Lsub with α = 5, the triplet

condition dp + α < dn is never going to be satisfied in the

case of dmax = 2, simply because the descriptors cannot

be five units of distance apart. Conversely, α = 5 seems

reasonable when dmax = 32.

Another aspect that the scale affects in non-scale-

invariant losses is how strongly it acts. If we increase the

size of the descriptors, the derivatives of the loss might

change too. For losses in ρsub, we can show using the chain

rule that multiplying dp and dn by a factor δ also scales the

derivatives by the same factor. We can compensate this by

dividing the loss by δ. We want to investigate this a little

further and therefore introduce generalized scale versions

of Llog and Lsse (marked by a tilde):

L̃log(ρsub;α, δ) := 1/δLlog(δ(ρsub − α)), (15)

L̃sse(ρsub;α, δ) := 1/δLsse(δ(ρsub − α)). (16)

These losses are parametrized by the scale δ (which we

call the scale correction parameter) and, inspired by Lsub,

we additionally introduce a margin parameter α that manu-

ally decreases the performance and thus encourages a larger

margin between dp and dn. It is now interesting to consider

the corner cases of δ → 0 and δ → ∞. For the log loss

(consult the additional material for derivations):

lim
δ→0

L̃log(ρsub;α, δ) ∝ −0.5ρsub, (17)

lim
δ→∞

L̃log(ρsub;α, δ) = Lsub(ρsub;α). (18)

Hence, by changing the scale, we transitioned to completely

different losses: either a linear loss that acts with equal

strength on all triplets or the subtractive hinge loss that has

a hard border between active and non-active regions. The

generalized scale losses L̃log and L̃sse are the losses we will

primarily use in the remainder of this text as they are formu-

lated in terms of ρsub. We empirically show in Section 5.2

that varying δ has a significant impact on the performance

of the learned descriptors.

4. Methodology

We discussed above that there are several issues with

triplet losses. In this section, we introduce three tools to

resolve these problems: mixed-context losses, an approach

to choosing the right scale of a loss based on a novel visu-

alization technique, and scale-aware sampling. Further, we

detail our network architecture and training procedure.

2765

4.1. Mixedcontext losses

Ensuring that the learned descriptors are consistently

scaled is of paramount importance for most applications

that rely on descriptors. In image stitching for example,

it should not happen that the matching patches are sep-

arated by a larger descriptor distance than non-matching

patches. We’ve seen that due to the localized-context prob-

lem, triplet losses do not in general achieve this goal. Con-

versely, Siamese losses do not suffer from the localized-

context problem, but still perform worse than triplet losses

in the typical case. We attribute this to them no properly

taking advantage of the context contained in triplets. In

the following, we propose mixed-context losses that bring

the advantages of both together: the fast learning of triplet

losses and the consistent scale of Siamese losses.

As a starting point, recall the thresholds that we intro-

duced conceptually above (compare the top images in Fig-

ure 3) and which we want to formalize now. As already

mentioned, we exclusively focus on losses in the perfor-

mance function ρsub = dn − dp. Notice that such losses are

antisymmetric by which we mean that the loss acts equally

strongly on dp and dn and pushes them in opposite direc-

tions:

∂L(ρsub(dp, dn))

∂dp
= −

∂L(ρsub(dp, dn))

∂dn
. (19)

This can be shown easily using the chain rule (see the addi-

tional material). Based on this property, it seems reason-

able to place the threshold θloc halfway between dp and

dn: θloc := (dp + dn)/2. Note that we have the rela-

tionships dp = 2θloc − dn and dn = 2θloc − dp. Con-

sequently, we can rewrite the triplet loss as L(dp, dn) =
L(ρsub(dp, 2θloc − dp)) = L(ρsub(2θloc − dn, dn)). If we

now define

LSiam(d |m; θ) =

{

1

2
L(ρsub(d, 2θ − d)) if m = 1

1

2
L(ρsub(2θ − d, d)) if m = 0

(20)

(where m indicates whether the pair is similar) we

can rewrite the triplet loss in a Siamese format that is

parametrized by θloc:

L(dp, dn) = LSiam(dp | 1; θloc) + LSiam(dn | 0; θloc). (21)

This is still the original triplet loss, but written in terms of

a threshold-like parameter θloc. We mentioned before that

it is not possible to rewrite a pure triplet loss in a Siamese

format because the dp and dn are not treated independently

by the performance function, but relative to one another. In

the form we’ve just proposed, we made this context explicit

in the form of θloc. It is different for every triplet. For those

reasons, we refer to θloc as the triplet-local context.

We can now immediately convert our triplet loss into a

pure Siamese loss by replacing θloc by a constant global

−2 0 2
ρsub

0.0

0.5

1.0

−
∂
L
lo

g
/
(∂

ρ
s
u
b
)

Llog and Lsub

−2 0 2
ρsub

0.0

0.5

1.0

−
∂
L
s
s
e
/
(∂

ρ
s
u
b
)

Lsse

Figure 4: Activity plots of the triplet losses in ρsub discussed

in the text. The log and SSE losses are plotted for δ = 1
(bold), 2, and 5 and α fixed to zero. The log loss is addi-

tionally plotted for δ −→ ∞ in blue which is equivalent

to Lsub. Generally speaking, the larger δ, the more the loss

focuses training on triplets that perform badly.

context θglo in all triplets. But it is more interesting to mix

the global and the local context by choosing

θmix := γθloc + (1− γ)θglo, (22)

where γ ∈ [0, 1]. For γ = 1, we obtain the original triplet

loss and for γ = 0, we get a pure Siamese loss. For any

value of γ in between 0 and 1, we get a mixed-context loss

that draws from the advantages of both Siamese and triplet

losses. In our experiments, we will simply set γ = 1/2.

A question that remains is how we should choose the

global context θglo. One can choose it manually (which we

did for most of our experiments), but this is sometimes dif-

ficult to do appropriately. Instead, we can set it to a rea-

sonable starting value and then treat it simply as a trainable

parameter. We found that this often performs quite well, but

it can cause the network to diverge in some cases. A more

stable and equally successful approach is to estimate θglo

from data: From time to time during training, we evaluate

the network on a set of validation pairs and then choose the

threshold that minimizes the classification error. The value

of θglo is then updated in a moving average fashion.

4.2. Choosing the scale of the loss

In order to get a better intuition of the losses and their

scale, we propose a novel approach to visualizing them,

where we take advantage of the fact that triplet losses are

formulated in terms of a performance function. We will plot

the derivatives of the losses rather than their actual values as

this tells us how strongly a loss acts. In short, we propose

to plot the performance ρ against −∂L/(∂ρ) (also see the

additional material). Larger values of −∂L/(∂ρ) indicate a

stronger corrective activity of the loss, and we therefore re-

fer to these plots as activity plots. We give the activity plots

for Llog (which we’ve seen becomes Lsub for δ −→ ∞ in

Equation (18)) and Lsse in Figure 4.

2766

We’ve already observed in Section 4.1 that losses in ρsub

are antisymmetric. Thanks to this property, we know that

both positive and negative distances are acted on equally

strongly which makes it relatively easy to picture to oneself

how such a loss acts in descriptor space. Differently, losses

in ρsub2 and ρdiv are not antisymmetric and it is therefore not

possible in a straightforward way to apply the knowledge

obtained with the visualization to the descriptor space. This

again highlights that the performance function ρsub interacts

more naturally with the Euclidean descriptor space that we

use than other performance functions.

4.3. Scaleaware sampling

Taking a closer look at the activity plots in Figure 4, one

can see that the losses act only weakly on triplets with a very

high performance. This is an important property of triplet

losses: they focus on the hard cases, allowing the network to

converge towards a stable solution. Still, one cannot com-

pletely ignore triplets with high performance as the network

would eventually stop learning halfway through the train-

ing process otherwise. It is evident from the activity plots

that our scale correction parameter δ can thus be understood

as a measure of how much more weight we give to hard

cases than to easier triplets. Experiments we carried out

show very clearly that networks are highly sensitive to the

value δ (Section 5.2). Unfortunately, choosing an appropri-

ate value for δ is rather difficult in general. For this reason,

we train our networks with a special type of hard mining

which we call scale-aware sampling. It automatically puts

most weight on the hardest cases (in some sense, it automat-

ically chooses the scale), and combines this with a relatively

small value of δ. A general problem with hard mining that

we have to be aware of is its sensitivity to outliers. We take

two precautions: firstly, we mine only for hard negatives

and secondly, we only mine inside of the current training

batch. Given that there are hundreds of thousands of classes

in the UBC dataset [7], having a false negative in a batch of

typical size (e.g. 128) is vanishingly small. In an experiment

where we randomly assigned wrong labels to five per cent of

all patches in the UBC dataset, we observed practically no

performance deterioration, showing that scale-aware sam-

pling is reasonably invariant to outliers.

In detail, scale-aware sampling uses batches of N posi-

tive pairs with distances {dip}i∈1,...N which are all chosen

from different classes. Hence, one can form negative pairs

by cross-pairing descriptors, yielding a set of 2N − 2 neg-

ative distances {di,jn }j∈1,...2N−2 for each positive distance

dip. The overall loss of a batch is then computed as:

L({dip}i, {d
i,j
n }i,j) =

N
∑

i=1

Ltriplet

(

dip,min
k

{di,kn }

)

. (23)

At the beginning of each epoch, we generate a new training

set by randomly selecting one pair from each class and then

3x3 conv 16 pad 1

3x3 conv 32 pad 1

3x3 conv 64 pad 1

maxpool 2x2

maxpool 2x2

maxpool 2x2

3x

3x

3x

full 256

full 2 (descriptor size)

3x3 conv 32 pad 1 2x

3x3 conv 64 pad 1 stride 2

3x3 conv 64 pad 1 1x

3x3 conv 128 pad 1 stride 2

3x3 conv 128 pad 1 1x

8x8 conv 128 pad 0 stride 8

L2-Net (UBC) BN-Net (MNIST)

3
2

x
3

2
1

6
x

1
6

8
x

8

-normalization

1
x

1

Figure 5: Networks used. The original L2-Net [23] is used

for all experiments involving the UBC dataset [7], while

BN-Net for the experiment on the MNIST dataset. Batch

Normalization (BN) is applied after each conv or fully con-

nected layer where the scale and offset are fixed at 1 and 0,

respectively. A ReLu nonlinearity is applied after each BN-

layer except the last. L2-Net produces normalized descrip-

tors of length 128 while BN-Net produces two-dimensional

descriptors that are scaled to a normal distribution by batch

normalization.

use each pair exactly once in that epoch. This ensures that

no two pairs in a batch are from the same class.

4.4. Network and training procedure

For the final results in Section 5, we train Tian et al.’s L2-

Net [23] that is detailed in Figure 5. The network is trained

with standard steepest gradient descent with a momentum

term of 0.9 in batches of size 128. The learning rate starts

at 0.1 and is multiplied by 0.9 after every of fifty epochs.

As a loss, we use the mixed-context loss of the generalized

loss L̃log as described in Section 3.3. That is, our loss is (we

choose α = 0):

θmix =γ(dp + dn)/2 + (1− γ)θglo, (24)

L(dp, dn) =− 1/(2δ) log smax (2δ(θmix − dp), 0)

− 1/(2δ) log smax (2δ(dn − θmix), 0) , (25)

where we choose θglo := 1.15, a value that works well in

practice. We use scale-aware sampling and set δ to 5 based

on the activity plots in Figure 4, backed up by the empiri-

cal results given in Section 5.2. We choose γ = 0.5, i.e.,

we give equal weight to the global and the triplet-local con-

text. We normalize the images with the average mean and

standard deviation (per image, not per pixel).

5. Experiments

In the following, we first report results on two sets of

experiments. The former empirically shows that we can in-

deed observe the limited context problem, while the latter

investigates the impact of the scale correction parameter δ
and scale-aware sampling. In the second part of this sec-

tion, we report the performance results of our training pro-

cedure against other state-of-the-art algorithms on the UBC

2767

benchmark [7] and the recently introduced HPatches bench-

mark [3].

5.1. Visualization of the localizedcontext problem

In our first experiment, we investigate whether the

localized-context problem can indeed be observed with

real data and whether mixing the context improves the

learned descriptors. To this end, we train a network on the

MNIST [12] dataset of handwritten digits. Since it is a par-

ticularly easy dataset and has only ten classes, it is possible

to learn descriptors of dimensionality only two. The dis-

tribution of the descriptors can then be illustrated on paper

without further dimensionality reduction. As a network, we

use our own BN-Net detailed in Figure 5. Its descriptors

are scaled to a normal distribution by a batch normalization

layer at the output (hence the name). No other normaliza-

tion or nonlinearity is applied at the output layer (for com-

parison, L2-Net projects all descriptors on a hypersphere),

allowing the network to use the full 2D descriptor space.

The 28× 28 input patches are white-padded to fit the input

size of the network (32 × 32). The network is trained with

steepest gradient descent for 1,000 iterations with batches

of 128 randomly sampled triplets. The learning rate is ex-

ponentially decreased from 0.1 to 0.001. As a loss function,

we used Lsub with α = 0.1 where we train a network with a

pure Siamese loss (γ = 0), a second network with a mixed-

context loss (γ = 0.5) and a third network with a triplet

loss (γ = 1) where γ is kept fixed during training in all

three cases. As a numerical error measure, we use the false

positive rate at 95% recall (FPR95), a measure commonly

used in the literature. The lower the FPR95, the better the

performance it represents.

Results are given in Figure 1. In this particular case,

the Siamese loss actually outperforms the triplet loss be-

cause the cluster representing the digit 1 is particularly

badly scaled. This is in line with what we explained in

Section 3.2: large positive distances are compensated by

pushing the corresponding cluster away from the other clus-

ters, thus increasing the negative distance. Overall, the de-

scriptors are highly inconsistently spaced. The loss that per-

forms the best by far is the newly proposed mixed-context

loss, backing that it can profit from the advantages of both

Siamese and triplet losses.

5.2. Scale of loss and scaleaware sampling

In our second set of experiments, we investigate the

impact of the scale correction parameter δ, introduced in

Section 3.3. Furthermore, we compare networks trained

with random sampling and networks trained with our scale-

aware sampling scheme introduced in Section 4.3. To this

end, we train a large number of L2-Nets (Figure 5) on the

UBC dataset [7] where we vary δ and the sampling strat-

egy on the liberty scene and test on notredame. As

1 5 9 13 17 21 25 30 35 ∞

scale δ

100

101

F
P
R
9
5
o
n
te
st

se
t random sampling

scale-aware sampling

Figure 6: Comparison of random sampling and scale-aware

sampling (training on liberty, testing on notredame)

It can be clearly seen that scale-aware sampling performs

better in all cases and is much less sensitive to a bad choice

of the scale correction parameter δ.

a measure of performance we report the false positive rate

at 95% recall (FPR95). The training procedure detailed in

Section 4.4 is used, where we fix γ = 1.0, i.e., we use a

simple triplet loss.

The corresponding results are given in Figure 6. As ex-

pected, the value of δ has a significant impact on the perfor-

mance of the descriptors, which is particularly clear when

using random sampling (the values plotted in blue). Con-

versely, the descriptors with our scale-aware sampling sig-

nificantly outperform random sampling, effectively halving

the FPR95 values. Apart from that, we also observe the

other effect that we predicted: scale-aware sampling is less

prone to bad choices of δ. If in doubt, we can simply choose

a relatively small δ as the sampling strategy automatically

gives more weight to hard triplets.

5.3. UBC benchmark

The first benchmark, on which we report results is the

UBC benchmark [7]. According to the standard procedure

described in [7], a separate network is trained on each of

the three scenes liberty, notredame, and yosemite,

and then the false positive rate at 95% recall (FPR95) is re-

ported on the other datasets. Our results can be found in Ta-

ble 1. To illustrate the impact of the measures we propose,

we first train a network with a regular log-loss Llog and ran-

dom sampling which gives quite poor results as the loss has

a completely wrong scale for a descriptor with dmax = 2.

We then train a second network with the generalized log-

loss L̃log where we set the scale-correction parameter δ to

12.5 based on the plot in Figure 6, which gives significantly

better results, confirming that the scale of the loss and the

descriptor should be in accordance. A comparison to T-

Feat-margin* [4] is interesting here as the authors have re-

ported some of the best results with pure triplet losses. As

can be seen from the FPR95 values, our approach achieves

similarly good results.

2768

0 20 40 60 80 100

Ours

HardNet

L2-Net

SIFT

Verification (mAP [%])

86.35%

85.75%

81.55%

65.12%

0 20 40 60 80 100

Ours

HardNet

L2-Net

SIFT

Matching (mAP [%])

48.22%

46.32%

38.89%

25.47%

0 20 40 60 80 100

Ours

HardNet

L2-Net

SIFT

Retrieval (mAP [%])

57.54%

55.37%

48.96%

31.98%

Figure 7: HPatches benchmark. The marker color indicates the level of geometrical noise: easy (green), hard (blue) and

tough (red). � (SAMESEQ) and ∗ (DIFFSEQ) indicate the source of negative examples in verification. (VIEWPT) and ×

(ILLUM) indicate the used sequence for matching. Our net here uses scale-aware sampling with δ = 5 and a mixed-context

loss with γ = 0.5. All descriptors (except for SIFT) were trained on the liberty scene from the UBC dataset.

Next, we investigate whether scale-aware sampling can

further improve the performance of the descriptors. Here,

we choose δ = 5 rather than 12.5, again based on Figure 6

and our text above where we discussed that scale-aware

sampling should use smaller values of δ than random sam-

pling. We can see that this brings a significant boost to de-

scriptor quality, cutting the FPR95 rates by more than half.

A final little performance boost is achieved by switching to

the mixed-context loss of L̃log with γ = 0.5. Note that the

Siamese loss, whose results are also given, performs signif-

icantly worse than both mixed-context and triplet loss. In

summary, the results of the UBC benchmark demonstrate

that all three proposals we make in this text help improve

the quality of the descriptors. In particular, we are able to

report the best results on this dataset to date. As a standard

measurement reported in other papers, in the appendix we

also report the full PR curves and their AP on our mixed-

context loss by following the procedures described in [22].

5.4. HPatches benchmark

In Figure 7, we report results on the recently proposed

HPatches benchmark [3]. Here, we use the final network

trained on the liberty dataset (with scale-aware sam-

pling, γ = 0.5 and δ = 5). This makes it comparable to

both L2-Net and HardNet as these networks were trained

on the same dataset. The performance measure here is the

mean average prediction (mAP) where larger values are bet-

ter. It can be seen that our network achieves state-of-the

art performance. Note that we evaluated the networks our-

selves, which guarantees that the results are comparable and

explains the small difference to the results reported in [18].

6. Conclusion

Driven by the recent boom of deep learning techniques

for feature descriptors in Computer Vision tasks, this pa-

per discussed commonly used triplet losses and our analy-

training set NOT YOS LIB YOS LIB NOT

test set LIB NOT YOS

SIFT [17] 29.84 22.53 27.29

T-Feat [4] 7.22 9.53 3.12 3.83 7.82 7.08

L2-Net [23] 3.64 5.29 1.15 1.62 4.43 3.30

HardNet [18] 3.06 4.27 0.96 1.40 3.04 2.53

Random sampling, no scale correction (δ = 1)

Triplet(γ=1)) 45.0 43.2 37.2 37.1 66.0 62.6

Random sampling, with scale correction factor δ = 12.5

Triplet(γ=1)) 4.82 9.72 1.90 3.55 10.5 6.87

Scale-aware sampling, with scale correction factor δ = 5

Siamese(γ=0)) 2.61 4.70 1.36 1.62 3.89 2.91

Triplet(γ=1)) 1.61 3.04 0.64 1.02 3.15 2.21

Mixed(γ= 1

2
)) 1.79 2.96 0.68 1.02 2.51 1.64

Table 1: UBC benchmark. The reported values are the false

positive rates at 95% recall (in per cent) on the experiments

discussed in the text. LIB: liberty, NOT: notredame,

YOS: yosemite

sis highlighted the importance of several aspects that should

be considered when formulating a loss. Based on these in-

sights, we proposed three tools that help in the design of

a loss – namely, (1) mixed contexts, (2) a scale correction

parameter δ along with a new approach to visualization that

helps to choose this parameter, and (3) scale-aware sam-

pling. Empirical evaluation revealed that all of these help in

improving triplet losses, while when brought together in a

unified framework, we showed that they can achieve com-

parable or even better state-of-the art results on the UBC

and HPatches benchmarks. Overall, based on the thorough

analysis presented here, the theoretical insights highlight

the importance of scale in particular, and open up new re-

search directions into how to incorporate this meaningfully

for effective feature learning.

2769

References

[1] A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast

Retina Keypoint. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2012.

1, 2

[2] V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk. PN-Net:

Conjoined Triple Deep Network for Learning Local Image

Descriptors. arXiv preprint arXiv:1601.05030, 2016. 1, 2, 4

[3] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk.

Hpatches: A benchmark and evaluation of handcrafted and

learned local descriptors. arXiv preprint arXiv:1704.05939,

2017. 1, 7, 8

[4] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk. Learning

local feature descriptors with triplets and shallow convolu-

tional neural networks. Proceedings of the British Machine

Vision Conference (BMVC), 2016. 1, 2, 7, 8

[5] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-

Up Robust Features (SURF). Computer Vision and Image

Understanding (CVIU), 110(3):346–359, 2008. 1

[6] J. Bromley, I. G., Y. LeCun, E. Säckinger, and R. Shah.

Signature Verification using a ”Siamese” Time Delay Neu-

ral Network. In Advances in Neural Information Processing

Systems, pages 737–744. 1994. 2

[7] M. A. Brown, G. Hua, and S. A. J. Winder. Discrimina-

tive Learning of Local Image Descriptors. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (PAMI),

33(1):43–57, 2011. 1, 2, 6, 7, 12

[8] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

MatchNet: Unifying Feature and Metric Learning for Patch-

Based Matching. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015. 2

[9] E. Hoffer and N. Ailon. Deep metric learning using Triplet

network. International Workshop on Similarity-Based Pat-

tern Recognition, 2015. 2, 3, 10

[10] B. G. Kumar, G. Carneiro, and I. D. Reid. Learning Local

Image Descriptors with Deep Siamese and Triplet Convolu-

tional Networks by Minimising Global Loss Functions. Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016. 2

[11] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous Fea-

ture Learning and Hash Coding with Deep Neural Networks.

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015. 2

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 7

[13] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary

Robust Invariant Scalable Keypoints. In Proceedings of the

International Conference on Computer Vision (ICCV), 2011.

1

[14] G. Lin, C. Shen, and A. van den Hengel. Supervised hashing

using graph cuts and boosted decision trees. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (PAMI),

2015. 2

[15] K. Lin, J. Lu, C. Chen, and J. Zhou. Learning Compact Bi-

nary Descriptors With Unsupervised Deep Neural Networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016. 2

[16] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep

hashing for compact binary codes learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. 2

[17] D. G. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. International Journal of Computer Vision (IJCV),

60(2):91–110, 2004. 1, 8

[18] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas. Work-

ing hard to know your neighbor’s margins: Local descriptor

learning loss. arXiv preprint arXiv:1705.10872, 2017. 1, 8

[19] M. Norouzi and D. J. Fleet. Minimal Loss Hashing for Com-

pact Binary Codes. In International Conference on Machine

Learning (ICML), 2011. 2

[20] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB:

An Efficient Alternative to SIFT or SURF. In Proceedings

of the International Conference on Computer Vision (ICCV),

2011. 1

[21] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A

unified embedding for face recognition and clustering. In

CVPR, 2015. 2

[22] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative Learning of Deep Convo-

lutional Feature Point Descriptors. Proceedings of the Inter-

national Conference on Computer Vision (ICCV), 2015. 2,

8, 12

[23] Y. Tian, B. Fan, and F. Wu. L2-Net: Deep Learning of Dis-

criminative Patch Descriptor in Euclidean Space. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 1, 6, 8, 12

[24] E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense

Descriptor Applied to Wide-Baseline Stereo. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (PAMI),

32(5):815–830, 2010. 2

[25] T. Trzcinski, M. Christoudias, and V. Lepetit. Learning Im-

age Descriptors with Boosting. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI), 37(3):597–

610, 2015. 1, 2

[26] T. Trzcinski and V. Lepetit. Efficient Discriminative Projec-

tions for Compact Binary Descriptors. In Proceedings of the

European Conference on Computer Vision (ECCV), 2012. 1,

2

[27] S. A. J. Winder and M. Brown. Learning Local Image De-

scriptors. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2007. 1

[28] P. Wohlhart and V. Lepetit. Learning Descriptors for Object

Recognition and 3D Pose Estimation. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2015. 2

[29] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised Hash-

ing for Image Retrieval via Image Representation Learning.

In Proceedings of the AAAI Conference on Artificial Intelli-

gence, 2014. 2

[30] S. Zagoruyko and N. Komodakis. Learning to Compare Im-

age Patches via Convolutional Neural Networks. Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015. 1, 2

2770

