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Abstract

We address the problem of texture segmentation by

grouping dense pixel-wise descriptors. We introduce and

construct learned Shape-Tailored Descriptors that aggre-

gate image statistics only within regions of interest to avoid

mixing statistics of different textures, and that are invariant

to complex nuisances (e.g., illumination, perspective and

deformations). This is accomplished by training a neural

network to discriminate base shape-tailored descriptors of

oriented gradients at various scales. These descriptors are

defined through partial differential equations to obtain data

at various scales in arbitrarily shaped regions. We formu-

late and optimize a joint optimization problem in the seg-

mentation and descriptors to discriminate these base de-

scriptors using the learned metric, equivalent to grouping

learned descriptors. Experiments on benchmark datasets

show that the descriptors learned on a small dataset of seg-

mented images generalize well to unseen textures in other

datasets, showing the generic nature of these descriptors.

We also show state-of-the-art results on texture segmenta-

tion benchmarks.

1. Introduction

Segmentation of an image into textures is a fundamen-

tal problem in computer vision, and may play a key role in

higher level tasks such as object segmentation, both in hu-

man and computer vision. Textures are composed of small

tokens, called textons, that may vary by photometric (e.g.,

illumination) and geometric (e.g., perspective of the cam-

era) nuisances, but are otherwise stationary within the tex-

ture. Thus, a natural approach to segment textures is to con-

struct descriptors at each pixel that are invariant to varia-

tions of textons within textures and are discriminative of

textons in different textures. Such descriptors can then be

grouped to form the segmentation.

There are two difficulties with this descriptor grouping

approach to segmentation. First, in order to construct in-

variant descriptors for segmentation, one needs to know the

segmentation. This is because invariant descriptors aggre-

gate image statistics from a neighborhood around a pixel,

and to be descriptive of the texton within the texture, they

must aggregate image statistics only within the texture to

which the pixel belongs. Otherwise, statistics from differ-

ent textured regions are mixed, and such pixels, usually near

boundaries, become difficult to group. Second, provided the

region in which to aggregate statistics is known, one needs

to construct descriptors that are invariant to complex nui-

sances. The first problem has been addressed by [9]. There,

segmentation is formulated as a joint problem of regions of

the segmentation and dense invariant descriptors. Those de-

scriptors, called Shape-Tailored Descriptors, are defined as

solutions of partial differential equations (PDE) within re-

gions of interest, and thus they only aggregate image statis-

tics within regions of interest. The segmentation algorithm

consists of an iterative process of updates of the descrip-

tors based on the current segmentation, and updates of the

segmentation based on the current descriptors.

In this work, we address the second problem, that of

constructing descriptors invariant to complex nuisances yet

discriminative of textures, while aggregating image statis-

tics only within regions of interest. To do this, we use the

base shape-tailored descriptors of [9], which are color chan-

nels and oriented gradients at various scales defined through

PDEs, and learn a function of such base descriptors that is

invariant to more complex nuisances than the limited in-

variances to small contrast and small geometric distortions

that the base descriptors possess. By learning a function

of base shape-tailored descriptors, we automatically inherit

the shape-tailored property, i.e., that the learned descriptors

aggregate image statistics only within regions of interest.

Thus, they are naturally suited for a joint problem in the

segmentation and the descriptors.

The problem we wish to address does not fit into a la-

beling problem, where one labels each pixel in the image

according to pre-defined labels, representing certain cate-

gories in a training set. In particular, we do not wish to seg-

ment classes of textures (e.g., different types of tree barks or

different types of sea shells should not be labeled the same).

Since the set of textures in the natural world is enormous,

perhaps not even enumerable, it is infeasible to construct a
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training set with samples of each texture labeled. Further,

we wish to segment textures that are not even in the train-

ing set. Instead of associating a class label to each texture,

we aim to learn generic descriptors, beyond just textures or

classes of textures in the training set, by learning a metric

to discriminate textures by their base shape-tailored descrip-

tors. By learning a metric to discriminate textures, the train-

ing set only needs to consist of ground truth segmentations

of textures and not class labels. The aim is, by choice of

appropriate regularization in the learning method, the met-

ric and hence the descriptor generalizes beyond the training

set and learns generic properties of all textures. The learned

descriptor is the output of a fully connected neural network

whose input is a base shape-tailored descriptor. The met-

ric is formed from a Siemese network [6] composed of the

aforementioned neural network, and a weighted L
2 norm

between the output of each component of the Siemese net-

work.

Contributions: Our contributions are as follows: 1. We

show how to construct learned Shape-Tailored Descriptors,

descriptors that aggregate image statistics only within arbi-

trary shaped regions of interest and are invariant to com-

plex photometric and geometric nuisances yet discrimina-

tive for segmentation. The shape-tailored property is nec-

essary so that segmentation by grouping descriptors can be

accomplished, and the invariance is needed to segment tex-

tures plagued by nuisances. Invariance is accomplished by

learning it from training data. 2. We formulate grouping

of Learned Shape-Tailored Descriptors as a joint optimiza-

tion problem for the segmentation and descriptors, and de-

rive the optimization algorithm. 3. We test our method on

texture segmentation benchmarks, and show state-of-the-art

performance.

1.1. Related Work

Segmentation has a vast literature in computer vision,

and we will only briefly discuss the most relevant litera-

ture. Exising approaches for texture segmentation can be

roughly divided into learning based approaches and “hand-

crafted” approaches. Further, hand-crafted approaches can

be divided into edge-based and region-based approaches.

Some region-based approaches attempt to partition the im-

age into regions that have global intensity distributions that

are maximally separated [26, 11, 20]. Since spatial relations

are lost, other approaches have tried to incorporate spatial

relations by considering distributions of pairs or neighbor-

hoods of pixels (e.g., [8]). Larger neighborhoods are de-

scribed, by for instance the output of Gabor filters at vari-

ous scales and orientations [15], and grouped in other ap-

proaches for texture segmentation [25, 21, 7]. However,

such approaches are affected by the problem that describing

neighborhoods without knowing or having an estimation of

the segmentation is prone to errors as neighborhoods that

aggregate statistics across segmentation boundaries are dif-

ficult to group. This problem was addressed by [9], who

formulated the estimation of descriptors and segmentation

as a joint problem. However, the descriptors constructed

in [9] were hand-crafted, and do not exhibit invariances to

complex nuisances. In [10] instead of a few handcrafted

scales of [9] a continuum of scales is considered.

Edge-based approaches (e.g., [1]) attempt to locate edges

as a response to a filter bank. [1] use a filter bank of Ga-

bor filters among other hand-crafted filters. Such responses

are then post-processed to fill gaps, and generate a segmen-

tation. Learning-based approaches to edge detection have

been shown to achieve better results [24, 23, 12]. Such

approaches have used deep learning to derive a probability

that a pixel belongs to boundaries between segments. While

these approaches achieve impressive results, still a difficulty

remains in generating the segmentation from edges, which

still rely on hand-crafted approaches [1] and the problem

remains not fully solved. Alternatively, region-based ap-

proaches, like our method, solve directly for the regions,

and avoid this problem. However, they have the problem

of selecting the correct number of regions, which cannot be

fully addressed without a hierarchy of segmentations. Our

approach addresses one of the problems in region-based ap-

proaches, that of learning descriptors to group. Our ap-

proach is the first to address this problem to the best of our

knowledge.

There has been recent interest in methods for semantic

segmentation using deep learning [3, 4, 14]. These ap-

proaches aim to label each pixel in the image as semanti-

cally distinct objects from a pre-defined set of objects. Such

approaches achieve impressive results. However, they are

limited to object classes in the training set, and it would be

difficult to apply this approach to our problem of texture

segmentation, as the set of textures that we wish to segment

is probably not even enumerable.

2. Learning Shape-Tailored Descriptors

In this section, we describe our approach to learning

descriptors that are descriptive of neighborhoods around a

pixel within a specific region of interest, while having in-

variance to complex photometric and geometric nuisances.

We first review Shape-Tailored Descriptors [9], which are

descriptors invariant to minor photometric and geometric

nuisances, and are computed only from image information

within a region of interest. We then describe how to use

these “base” descriptors to learn such shape-tailored de-

scriptors that are invariant to more complex nuisances, such

as illumination change, shading, etc.

2.1. Base Shape­Tailored Descriptors

Let Ω be the domain of the image, Jj : Ω ⊂ R
2 →

R
+ for j = 1, . . . , Nc (Nc is the number of channels) be
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channels of the image, these could be for instance, color and

oriented gradients. Let R ⊂ Ω be a region of interest, which

can have arbitrary shape. Shape-Tailored Descriptors are

defined as the solution of Poisson-type partial differential

equations (PDE):

{

uij(x)− αi∆uij(x) = Jj(x) x ∈ R

∇uij(x) ·N = 0 x ∈ ∂R
, (1)

where ∇ is the gradient, ∆ is the Laplacian, ∂R is the

boundary of R, N is the unit outward normal to ∂R, i =
1, . . . , Ns and Ns is the number of scales, and αi ∈ R

+ are

the scales. The solution of the PDE can be shown to be the

minimizer of the energy E =
∫

R
(Jj(x) − uij(x))

2 dx +
αi

∫

R
|∇uij(x)|

2 dx. The solution is thus a balance be-

tween fidelity to the image and smoothness, with αi larger

implying more smoothness. We set u : R → R
NsNc as the

vector of all components of scales and channels:

u(x) = (u11(x), . . . , u1Nc
(x), . . . , uNs1(x), . . . , uNsNc

(x))T .

The uij are smoothed channels of the image and since

the PDE is defined in a specific region R, no image infor-

mation outside R is used to determine uij . This is important

in region-based approaches to segmentation, as aggregating

image information across segmentation boundaries mixes

unrelated statistics and then such descriptors are difficult to

group. Due to the smoothing, the descriptors exhibit invari-

ance to small geometric transformations. However, they are

not in general invariant to more complex geometric trans-

formations or complex photometric transformations, such

as illumination change. Therefore, in the next section, we

use the descriptors above and learn more invariant descrip-

tors. Since these learned descriptors are built from the de-

scriptors above, they inherit the shape-tailored property.

2.2. Metric and Descriptor Learning

In this section, we learn a function, f : Rn → R
m where

n = Ns × Nc and m > 0, from the space of base Shape-

Tailored Descriptors to another vector space, with better in-

variance properties. In other words, f takes in u(x) ∈ R
n

at a particular pixel and returns a descriptor with m com-

ponents. We choose f to be the output of a fully-connected

neural network. Since we will eventually use the descrip-

tor to discriminate between descriptors of different regions,

we learn f by learning a Siemese neural network [6] de-

signed to discriminate descriptors of different segmentation

regions. Thus, the overall system is a symmetric function,

D : R
n × R

n → [0, 1], with a value of 1 indicating the

descriptors are from different segmentation regions, and 0
indicating the descriptors are from the same region. The ar-

chitecture is shown in Figure 1. The network takes in two

different base descriptors u(x) and v(x), each are input to

f and the output are two descriptors with m-components,

Figure 1. Siamese network for metric learning. u and v are de-

scriptors, the training label is zero when u and v are descriptors at

pixels belonging to same region and the label is one otherwise.

then a weighted L
2 norm of the difference of the descrip-

tors are computed, followed by a sigmoid function. Note

that for descriptors at pixels x and y, the metric from the

Siemese network is defined as

D(u(x),v(y))2 := ‖f(u(x))− f(v(y))‖2w

=

m
∑

i=1

wi|f(u(x))i − f(v(y))i|
2, wi ≥ 0

(2)

where wi, i = 1, . . . ,m are weights, and f(u(x))i is the

ith component of f(u(x)). Figure 2 shows a few compo-

nents of STLD and the learned descriptors. We can observe

that learned descriptors are more invariant to intrinsic and

extrinsic nuisances of complex textures.

2.3. Training Data

The training data to train the network is generated from

ground truth segmentations of images in the training set of

images. Given a training image, we compute base Shape-

Tailored Descriptors from the ground truth segmentation.

For any pair of pixels x and y in adjacent ground truth re-

gions or the same region in the same image, we form the

training data as

D(ul(x),uk(y)) =

{

0 x, y ∈ Rl, l = k

1 x ∈ Rl, y ∈ Rk, l 6= k
,

where ul(x) is the base Shape-Tailored Descriptor com-

puted within Rl at x and uk(x) is the base shape-tailored

descriptor computed within Rk at y. Note we only choose

adjacent regions since during segmentation, only discrimi-

nating between adjacent regions will be needed.

During segmentation at test time, we will solve a joint

problem for the base descriptors u and the regions of the

segmentation. The method iteratively updates the regions

and the base descriptors. Thus, the metric D also needs to

discriminate shape-tailored descriptors, when the descrip-

tors are not computed on the ground truth segmentation. To

this end, we perturb the ground truth segmentations by di-

lations and erosions to form regions R̃l, and compute base
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image/ Region STLD comp. 1 STLD comp. 2 Learned comp. 1 Learned comp. 2

Figure 2. Comparison of STLD and Learned Descriptors. (Image/Region) shows the image, the red contour marks the boundary

between regions. (STLD comp.1, STLD comp. 2) are two components of the base Shape-Tailored Local Descriptor, where statistics are

aggregated in foreground and background separately. (Learned comp. 1, Learned comp. 2) are components of the learned descriptor.

Notice that different components of the learned descriptors are active for differently textured regions, making segmentation easier and

precise. Also, notice that the Learned comp. 1 is more invariant to illumination change in the background then STLD comp. 1 and 2

shape-tailored descriptors ũ within the perturbed regions.

This simulates possible base-descriptors anticipated during

test time. We augment the training data with these descrip-

tors as follows:

D(ũl(x), ũk(y)) =

{

0 x, y ∈ Rl, l = k

1 x ∈ Rl, y ∈ Rk, l 6= k
,

where x and y are in the same or adjacent ground truth re-

gions Rl and Rk. Note that the descriptors are computed in

the perturbed regions, whereas the distance above is defined

according to the ground-truth regions where pixels belong.

3. Segmentation

In this section, we describe our method for segmentation

by using the invariant descriptors and the metric learned in

the previous section.

3.1. Optimization Problem

We assume that the image consists of Nr regions with

a constant learned shape-tailored descriptor in each region.

We design an optimization problem for segmentation to be

optimal when the regions are placed so that the learned

shape-tailored descriptors are nearly constant within the re-

gions. Let ui(x) ∈ R
n denote the base shape-tailored de-

scriptor within region Ri, and let ai ∈ R
m be the con-

stant learned shape-tailored descriptor representing the re-

gion, which is unknown. The energy for segmentation is as

follows:

E({Ri}
Nr

i=1) =

Nr
∑

i=1

∫

Ri

‖f(ui(x))−a
i‖2w dx+β

∫

∂Ri

ds,

(3)

where there are Nr regions, β > 0, and the second term

above is to induce spatial regularity of the segmentation

and consists of penalizing boundary length ( ds is the arc-

length element). The first term measures how similar the

learned shape-tailored descriptor at each pixel within a re-

gion is to a constant vector ai. Thus, the optimal regions

will be such that the regions have nearly constant learned

descriptors within regions. This energy can be seen as a

generalization of the energies considered by [17, 5].

3.2. Optimization Algorithm

If we minimize in a
i, we see that the optimizer is ai =

1/|Ri| ·
∫

Ri

f(ui(x)) dx where |Ri| denotes the area of Ri,

i.e., the average value of the learned descriptor within the re-

gion. Since the energy above is non-convex in the regions,

as the descriptor u
i depends on Ri non-linearly and f is

non-convex, we use a gradient descent to optimize the en-

ergy. The gradient with respect to the boundary of Ri of the

ith term, using techniques from [9], is

(‖f(ui)−a
i‖2w+κi)Ni+(tr[(Du

i)TDû
i]+(ui−J)TA−1

û
i)Ni

(4)

where κi is the signed curvature of ∂Ri, Ni is the

inward normal to ∂Ri, tr is the trace, D is the

derivative, A is a diagonal matrix of size n with

diagonal entries (α1, . . . , α1, . . . , αNs
, . . . , αNs

), J =
(J1, . . . , JNc

, . . . , J1, . . . , JNc
)T is a vector of size n, and

û
i satisfies the PDE

{

û
i(x)−A∆û

i(x) = 2∇f(ui(x))[f(ui(x))− a
i] x ∈ Ri

∇û
i(x) ·Ni = 0 x ∈ ∂Ri

.

Note that the first term in (4) arises from the variation of the

integrals as the boundary is deformed, and the second term

arises from the variation of the descriptor as the boundary

is changed. The gradient ∇f , which involves the neural

network, can be approximated numerically. However, for

simplicity of implementation, we neglect the variation of

the descriptor since the numerical algorithm will involve

only small changes of the boundary at each iteration and

the descriptors u
i do not change much, and so the term is

negligible.

To implement the gradient descent numerically, we rep-

resent the regions with relaxed indicator or “level-set” func-

tions φi : Ω → [0, 1], i = 1, . . . , Nr. Rj is the region

where φj achieves the maximum over all i = 1, . . . , Nr.

We can then convert the boundary evolution into an evolu-

tion of φi analogous to level set methods [19]. In order to

extend the evolution beyond just the boundary, we extend

the terms in the gradient to a band around the boundary.

Computing the full gradient of the energy and neglecting
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variation of the descriptor terms, our algorithm to minimize

the energy is given in Algorithm 1.

Algorithm 1 Grad. Descent of Learned STLD Energy

1: Input: An initialization of φi

2: repeat

3: Set regions: Ri = {x ∈ Ω : i = argmaxjφj(x)}
4: Compute dilations, D(Ri), of Ri

5: Compute u
i in D(Ri), compute a

i = 1/|Ri| ·
∫

Ri

u
i(x) dx.

6: Compute band pixels Bi = D(Ri) ∩D(Ω\Ri)
7: Compute Gi = ‖f(ui(x))− a

i‖2w for x ∈ Bi. f is

evaluated from the neural network.

8: Update pixels x ∈ D(Ri) ∩D(Rj) as follows:

φτ+∆τ
i (x) = φτ

i (x)−∆τ(Gi(x)−Gj(x))|∇φτ
i (x)|

+∆τ · βκi|∇φτ
i (x)|.

(5)

9: Update all other pixels as

φτ+∆τ
i (x) = φτ

i (x) + ∆τ · βκi|∇φτ
i (x)|.

10: Clip between 0 and 1: φi = max{0,min{1, φi}}.

11: until regions have converged

4. Experiments

Datasets: We use four different datasets to test our

method. We use the Real World Texture Dataset and Bro-

datz Synthetic Dataset introduced in [9]. The first consists

of 256 total real-world textured images with two dominant

textures. 128 images are used for training and 128 for test-

ing. The Brodatz Synthetic Dataset consists of 200 images

of two textured regions of various shapes. We also use the

Graz Segmentation dataset [22], which consists of 243 im-

ages of real-world textured objects with multiple objects per

image. Finally, we use the Berkeley Segmentation Dataset

[1], which consists of 200 training and test images, and 100

validation images, and various numbers of textured objects

in each image. Each of the datasets exhibit complex nui-

sances, such as illumination, shading, perspective effects,

etc.

Architecture Details: We use a Siamese twin network,

where each component has two fully connected layers. We

test the sensitivity to number of hidden layers and hidden

units later. Our input base shape-tailored descriptor is a 40

dimensional descriptor (RGB channels, gray scale and four

oriented gradients at 5 scales, α = (10, 20, 30, 40, 50)).
The output descriptor f of the Siamese network is same

size as the number of hidden units used. The sigmoid of

the (learned) weighted difference of the two twins is used

to compute the metric D of a pair of descriptors.

Results on Real-World Texture Dataset: We use 128

images in the training set to train our network and test on

the 128 images in the test set. This gives us 9153732 train-

ing pairs of descriptors. We initialize our method by a 5×5
standard block tessellation, with random labels (out of 1 or

2) chosen for each block. Quantitative results are in Table

1. We compare to hand-crafted Shape-Tailored Descrip-

tors (STLD) [9], to non-STLD (the descriptors in (1) when

R = Ω the whole image), learned non-STLD (non-STLD

base descriptors used to learn invariant descriptors through

the Siemese network), and other methods. non-STLD hand-

crafted performs the worst, followed by learned non-STLD,

then hand-crafted STLD performs better, and the learned

STLD (our approach) performs the best. This shows that

both properties of shape-tailored and learning invariance are

necessary to achieve the best results. Figure 4 shows some

visual comparisons of our approach to handcrafted STLD.

Robustness to Initialization, Training Data, and Ar-

chitecture: First we test sensitivity to initialization. We

vary the box tessellation from 3 × 3 to 5 × 5. Results are

in Table 2. They show that the method is robust to initial-

ization. Now we test the sensitivity to the architecture in

our approach and the learned non-STLD approach. To this

end, we vary the architecture of our network by changing

the number of hidden units. Results are shown in Table 3.

With two layers, the performance is mostly stable as the

number of hidden layers are changed. We also show results

with 3 and 4 layers with 41 hidden units. Performance de-

grades somewhat, and we believe this to be an overfit. We

now test sensitivity to the number of training images, re-

sults are in Table 4. The results do not deteriorate much

as we vary the number of images. Table 6 shows the re-

sults against training by varying the number of dilation of

the ground truth during training phase.

Results on Synthetic Texture Dataset: We test our

method on synthetic Brodatz with the previous network. Ta-

ble 7 shows results, and our method performs the best by a

wide margin. We also perform an experiment to test the per-

formance of learned descriptors from STLD and non-STLD

descriptors. Results are shown in Figure 3, which shows

that STLD outperforms non-STLD by a significant margin.

Results on Graz and BSDS 500 Dataset: We now

test our method against hand-crafted STLD on Graz and

BSD500. These experiments provide more verification that

the network is learning a generic property for segmentation

over STLD. We initialize methods with a Voronoi partition

of the seed points provided in Graz. For BSD500, we initial-

ize the segmentation with 20 different initializations each

with different random number of boxes of random sizes.

The best result of the random initializations is chosen as

the segmentation and the results are reported in Table 8.

It shows that the learned STLD better capture properties of

textures than the hand-crafted STLD.
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Real-World Texture Dataset

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

Learned (ours) 0.65 0.65 0.92 0.92 0.92 0.92 0.43 0.43

Learned(non-STLD) 0.53 0.53 0.89 0.89 0.89 0.89 0.47 0.47

STLD 0.58 0.58 0.86 0.86 0.88 0.88 0.63 0.63

non-STLD 0.20 0.20 0.83 0.83 0.84 0.84 0.79 0.79

mcg [2] 0.51 0.54 0.74 0.82 0.77 0.85 0.80 0.66

gPb [1] 0.53 0.57 0.81 0.84 0.82 0.85 0.82 0.78

Kok.[12] 0.64 0.66 0.56 0.56 0.56 0.57 0.92 0.92

CTF[10] 0.60 0.60 0.91 0.91 0.91 0.91 0.45 0.45

CB [8] 0.54 0.56 0.75 0.80 0.79 0.84 0.81 0.76

SIFT 0.13 0.13 0.54 0.54 0.58 0.58 1.50 1.50

Entropy [7] 0.19 0.19 0.74 0.74 0.76 0.76 1.00 1.00

Hist-5 [18] 0.17 0.17 0.67 0.67 0.72 0.72 1.25 1.25

Hist-10 [18] 0.16 0.16 0.67 0.67 0.72 0.72 1.26 1.26

Chan-Vese [5] 0.19 0.19 0.73 0.73 0.76 0.76 1.07 1.07

LAC [13] 0.14 0.14 0.54 0.54 0.58 0.58 1.51 1.51

Global Hist [16] 0.14 0.14 0.66 0.66 0.68 0.68 1.16 1.16

Table 1. Results on Texture Segmentation Datasets. Algorithms

are evaluated using contour and region metrics. Higher F-measure

for the contour metric, ground truth covering (GT-cov), and rand

index indicate better fit to the ground truth, and lower variation of

information (Var. Info) indicates a better fit to ground truth.

Initialization

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

5by5 0.62 0.62 0.91 0.91 0.91 0.91 0.44 0.44

4by4 0.61 0.61 0.91 0.91 0.91 0.91 0.44 0.44

3by3 0.61 0.61 0.91 0.91 0.91 0.91 0.44 0.44

Table 2. Insensitivity to Initialization. The results remain similar

as we vary the box tessellation initialization for segmentation.

Comparison of Learned STLD against pre-trained

VGG Descriptor: Table 5 provides the results of descrip-

tors obtained from convolutional layers of pre-trained VGG

network. Descriptors from VGG (CNNs) are not shape-

tailored and hence suffer from the same problems as ”non-

STLD” descriptors, i.e., they do not aggregate data within

objects of interest, thus blurring the boundaries between ob-

jects, resulting in erroneous segmentation.

Figure 3. Comparison of Training with STLD and non-STLD

desp. on synthetic dataset. The training images are varied form

25 to 200 and result of GT covering metric is reported. Learned

STLD performs better then non-STLD for all training sizes and

requires less no. of images for best possible performance.

Network Architecture

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

61 units 0.60 0.60 0.91 0.91 0.90 0.90 0.45 0.45

51 units 0.61 0.61 0.91 0.91 0.91 0.91 0.45 0.45

41 units 0.62 0.62 0.91 0.91 0.91 0.91 0.44 0.44

31 units 0.60 0.60 0.91 0.91 0.91 0.91 0.45 0.45

21 units 0.57 0.57 0.90 0.90 0.90 0.90 0.48 0.48

3 Layers 0.55 0.55 0.89 0.89 0.89 0.89 0.48 0.48

4 Layers 0.54 0.54 0.88 0.88 0.88 0.88 0.52 0.52

61 units 0.52 0.52 0.89 0.89 0.89 0.89 0.48 0.48

51 units 0.51 0.51 0.88 0.88 0.88 0.88 0.48 0.48

41 units 0.53 0.53 0.89 0.89 0.89 0.89 0.47 0.47

31 units 0.49 0.49 0.88 0.88 0.88 0.88 0.49 0.49

21 units 0.46 0.46 0.87 0.87 0.87 0.87 0.51 0.51

3 Layers 0.54 0.54 0.87 0.87 0.87 0.87 0.55 0.55

4 Layers 0.53 0.53 0.87 0.87 0.87 0.87 0.58 0.58

Table 3. Performance vs. Architecture. The top half of the table

shows the performance for learned STLD descriptor (ours) and the

bottom part show the results for learned non-STLD descriptor. We

have varied the number of hidden units in the two-layer network,

and the number of layers from 3-4 with 41 units.

Training Images

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

128 images 0.62 0.62 0.91 0.91 0.91 0.91 0.44 0.44

100 images 0.59 0.59 0.90 0.90 0.90 0.90 0.47 0.47

75 images 0.58 0.58 0.90 0.90 0.90 0.90 0.49 0.49

50 images 0.54 0.54 0.89 0.89 0.89 0.89 0.52 0.52

Table 4. Varying Number of Images in Training. We vary the

number of training images and report the results.

VGG Descriptors in Segmentation

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

Learned (ours) 0.65 0.65 0.92 0.92 0.92 0.92 0.43 0.43

Learned(non-STLD) 0.53 0.53 0.89 0.89 0.89 0.89 0.47 0.47

VGG conv3 (256 dim) 0.49 0.49 0.84 0.84 0.84 0.84 0.67 0.67

VGG conv4 (512 dim) 0.44 0.44 0.79 0.79 0.80 0.80 0.77 0.77

VGG conv2 & 3 (384 dim) 0.47 0.47 0.86 0.86 0.87 0.87 0.63 0.63

Table 5. Comparison of Learned Descriptors with pre-trained

VGG descriptor. The output of Convolutional layers of VGG net-

work is used as dense descriptor for segmentation and is compared

with our learned descriptors (detailed exp. in supp.).

Levels from each images in Training

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

50 steps 0.62 0.62 0.91 0.91 0.91 0.91 0.44 0.44

40 steps 0.60 0.60 0.91 0.91 0.90 0.90 0.46 0.46

30 steps 0.59 0.59 0.90 0.90 0.90 0.90 0.47 0.47

20 steps 0.60 0.60 0.91 0.91 0.90 0.90 0.46 0.46

10 steps 0.58 0.58 0.90 0.90 0.90 0.90 0.49 0.49

Table 6. Varying no. of dilations for Images in Training. We

vary the number of dilation of the ground truth and report the effect

on performance, higher no of dilations means more data per image.

5. Conclusion

We have shown how to construct learned-Shape-Tailored

Descriptors for texture segmentation. The descriptors have

two key properties. First, they are shape-tailored so that
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Figure 4. Sample representative results on Real-World Texture Dataset. We compare the Learned Descriptors (ours) and STLD.
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Figure 5. Sample representative results on BSDS500. We compare our Learned descriptor with STLD.

Synthetic Dataset

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

Learned (ours) 0.45 0.45 0.90 0.90 0.89 0.89 0.46 0.46

STLD 0.41 0.41 0.87 0.87 0.86 0.86 0.53 0.53

non-STLD 0.18 0.18 0.84 0.84 0.84 0.84 0.65 0.65

gPb [1] 0.40 0.38 0.79 0.81 0.79 0.82 0.75 0.73

CB [8] 0.30 0.29 0.75 0.77 0.76 0.79 1.09 1.08

SIFT 0.11 0.11 0.70 0.70 0.70 0.70 1.07 1.07

Entropy [7] 0.13 0.13 0.75 0.75 0.75 0.75 0.91 0.91

Hist-5 [18] 0.32 0.32 0.67 0.67 0.68 0.68 1.10 1.10

Hist-10 [18] 0.32 0.32 0.65 0.65 0.67 0.67 1.15 1.15

Chan-Vese [5] 0.19 0.19 0.72 0.72 0.72 0.72 0.95 0.95

LAC [13] 0.14 0.14 0.72 0.72 0.70 0.70 1.14 1.14

Global Hist [16] 0.28 0.28 0.75 0.75 0.75 0.75 0.79 0.79

Table 7. Results on Synthetic Texture Segmentation Dataset.

See Table 1 caption for details on the measures.

they are computed by aggregating image statistics only

within regions of interest so they do not mix statistics across

texture boundaries. Second, they exhibit invariances to

complex nuisances, which was accomplished by learning

descriptors derived from base hand crafted shape-tailored

descriptors using neural networks. Experiments have shown

that the learned descriptors are able to better cope with nui-

sances than hand-crafted shape-tailored descriptors. Cur-

Graz Dataset
Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

Learned STLD 0.42 0.42 0.76 0.76 0.82 0.82 1.02 1.02

STLD 0.34 0.34 0.70 0.70 0.77 0.77 1.21 1.21

BSD500 Dataset
Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.

ODS OIS ODS OIS ODS OIS ODS OIS

Learned STLD 0.66 0.66 0.67 0.67 0.86 0.86 1.54 1.54

STLD 0.56 0.56 0.57 0.57 0.79 0.79 1.99 1.99

gPb [1] 0.71 0.74 0.59 0.65 0.81 0.85 1.65 1.47

Table 8. Graz and BSDS 500 Dataset Results See Table 1 cap-

tion for details on the measures. Comparison on Graz dataset is

between STLD and learned descriptors. On BSDS we compare

STLD and learned STLD against state-of-the-art on region metric.

rently our method requires the number of regions as initial-

ization; we plan to address this in future work by consid-

ering a hierarchical approach. The focus of this work has

been to construct learned shape-tailored descriptors.
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