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Abstract

Low dimensional embeddings that capture the main vari-

ations of interest in collections of data are important for

many applications. One way to construct these embeddings

is to acquire estimates of similarity from the crowd. Simi-

larity is a multi-dimensional concept that varies from indi-

vidual to individual. However, existing models for learning

crowd embeddings typically make simplifying assumptions

such as all individuals estimate similarity using the same

criteria, the list of criteria is known in advance, or that the

crowd workers are not influenced by the data that they see.

To overcome these limitations we introduce Context Em-

bedding Networks (CENs). In addition to learning inter-

pretable embeddings from images, CENs also model worker

biases for different attributes along with the visual con-

text i.e. the attributes highlighted by a set of images. Ex-

periments on three noisy crowd annotated datasets show

that modeling both worker bias and visual context results

in more interpretable embeddings compared to existing ap-

proaches.

1. Introduction

Large annotated datasets are a vital ingredient for train-

ing automated classification and inference systems. Label-

ing these datasets has been made possible by crowdsourcing

services, which enable the purchasing of annotations from

crowd workers. Unfortunately fine-grained categorization

is very challenging for untrained workers. The alternative,

obtaining annotations from experts, is equally impractical

due to the fact that for many domains experts are few [24].

Instead of obtaining semantic fine-grained category-level

labels, one can ask workers to label images in terms of their

similarities and differences. This is intuitively much easier

for untrained workers because it requires the comparison

of images, a task that humans are naturally good at. This

approach, however, presents its own challenges: 1) differ-

ent workers may use different criteria when estimating the

similarity between pairs of images, and 2) workers may be

influenced by the set of images that they see when making

their decisions i.e. ‘context’.

In Fig. 1 we see an example of three different crowd
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Figure 1. Context influences similarity estimates. We hypothe-

size that estimating similarity according to a particular visual at-

tribute is influenced by a combination of innate biases and the con-

text in which these decisions are made. Compared to worker 1,

worker 2 has a strong prior bias towards using the gender attribute.

Influenced by the context of the images worker 1 also groups based

on gender. Worker 3 sees the same context as worker 1 but ulti-

mately groups based on expression due to prior bias.

workers estimating similarity by clustering a collection of

images. The workers’ decision for which visual attribute

they use to compare the images can be explained by two

factors: 1) The workers have an innate preference towards

certain attributes based on their past experiences and 2) the

set of related images that a worker observes biases them

towards certain attributes. We call this first bias the worker

prior and the second bias the context. Our hypothesis is that

different sets of images highlight different visual attributes

to the workers. The majority of existing work often assumes

that all workers behave in the same way [23], the list of

attributes are specified in advance [25], or in addition to

similarity estimates, workers also indicate which attributes

they used to make their decision [21].

We introduce Context Embedding Networks (CENs), an

efficient end-to-end model that learns interpretable, low di-

mensional, image embeddings that respect the varied simi-

larity estimates provided by different crowd workers. Our

contributions are: 1) A flexible model that produces an em-
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bedding for a set of input images. This is achieved by mod-

eling worker bias and image context i.e. the degree to which

each worker is influenced by the attributes present in a given

set of images. 2) An empirical evaluation on annotations

from real crowd workers showing that CENs outperform

existing approaches, producing interpretable, disentangled,

low-dimensional feature spaces.

2. Related Work

Learning Embeddings The goal of embedding algo-

rithms is to learn a low dimensional representation of a col-

lection of objects (e.g. images), such that objects that are

“close” in the potentially high dimensional input space are

also “close” in the embedding space. Embeddings are use-

ful for a large number of tasks from face recognition [19]

to estimating the clinical similarities between medical pa-

tients [34]. They can be learned from pre-defined feature

vectors representing the input objects [22], from similarity

estimates obtained from the crowd [20, 23], or a combina-

tion [33]. Crowdsourced annotations can come in the form

of pairwise [7] or relative similarity estimates [20, 26]. Pre-

senting workers with sets of images, as opposed to pairs or

triplets, is an efficient way of acquiring estimates of simi-

larity [7, 28, 32]. Another approach is to learn a function

that can extract meaningful features from the raw input data

by training on similarity labels e.g. [4, 25]. This has the

advantage of being able to also embed objects not observed

at training time.

Different Notions of Similarity A limitation of the

above methods is that they typically assume that objects are

compared using a single similarity criteria. Given a pair or

triplet of images, one estimate of similarity may be valid

for one visual attribute, or trait, but invalid for another. For

example, in Fig. 1 comparing faces according to gender or

expression will result in a different grouping. In practice,

workers may use different criteria unless they are specifi-

cally told which attribute to use. To overcome this limitation

there is a body of work that attempts to learn embeddings

where alternative notions of similarity are represented in the

embedding space. One common approach is to instruct the

workers to provide additional information regarding the at-

tribute they used when making their decision. This infor-

mation can come in multiple forms such as category labels

[25], user provided text descriptions [21], or part and corre-

spondence annotations [16].

Similar to [28], [1] propose a model inspired by [23]

that produces a separate embedding for each similarity cri-

teria instead of learning a single embedding that tries to sat-

isfy all constraints. In contrast, [25] learn a unified embed-

ding where alternative notions of similarity are extracted by

masking different dimensions in this space. However, the

visual attribute used for each similarity estimate is assumed

to be known. [29] also learn a weighted feature represen-

tation of the input examples but require category level la-

bels in order to learn cross-category attributes. Their model

learns a different weight vector for each triplet, resulting in

a large number of parameters. [21] propose a generative

model for learning attributes from the crowd where workers

are instructed to specify an attribute of interest via a text box

and then perform similarity estimates for a set of query im-

ages based on these pre-defined attributes. The majority of

these methods assume that extra information, in addition to

the pairwise or triplet labels, are available to the model. We

instead make use of the context information that is present

in the set of images that we show to our crowd workers.

Modeling the Crowd Crowdsourcing annotations is an

effective way of gathering a large amount of labeled data

[12]. One difficulty that arises when using such annotations

is that they can be noisy, as workers behave differently. One

solution to this problem is to model the ability and biases of

each worker to resolve better quality annotations [31, 30, 3].

Specific to clustering, [7] propose a Bayesian model of how

workers cluster data from noisy pairwise annotations. To

efficiently gather a large number of labels, workers are pre-

sented with successive grids of images and are asked to

cluster the images into multiple different groups. By mod-

eling individual workers as linear classifiers in an embed-

ding space they allow for different worker biases. However,

they assume that workers are consistent in the criteria they

use when making their decisions and that it does not change

over time. Our approach also learns individual worker mod-

els while also making use of the strong context information

provided by the image grid.

Attribute Discovery Low dimensional, attribute based,

representations of images have the benefit of being more in-

terpretable than raw pixel information [5, 6]. In addition to

providing semantically understandable descriptions of im-

ages, they can also be used for applications such as zero

shot learning [13]. Attributes can be discovered by various

means, from mining noisy web images and their associated

text descriptions [2] to crowdsourcing [18]. In this work,

while we do not explicitly aim to produce ‘nameable’ at-

tributes, we qualitatively observe that the embeddings that

our model produces are often disentangled along the em-

bedding dimensions.

3. Methods

We crowdsource the task of image similarity estimation

for a dataset containing N images referenced by i, j =
1, ..., N . Each crowd worker w = 1, ...,W , is presented

with an image grid g = 1, ..., G, displaying a collection

of images {ig} which they group into as many categories

as they wish [7]. A grid of S items results in (S2 − S)/2
pairwise labels, e.g. a single grid of 24 items produces the

same number of annotations as 276 individual pairs. Across

grids, real workers are often inconsistent with the attributes
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Figure 2. Context Embedding Networks are composed of three neural networks that are trained jointly. (Top-Left) A worker encoder

network models workers’ annotation behavior and (Bottom-Left) a context encoder network models the attributes highlighted by a particular

set of images. Jointly, these networks are referred to as the attribute encoders and are used to weight the embeddings produced by the image

encoder network (Center). (Right) Our final embedding respects similarity estimates from each worker in the same low dimensional space

where each dimension corresponds to a different visual attribute.

they use to cluster and the number of clusters they create.

A pair of images (ig, jg) shown in the same grid, g, clus-

tered by worker w is assigned a positive label l = 1 if they

are grouped together and l = 0 otherwise. This results in a

training set of pairwise similarity labels

D = {(w, g, ig, jg, l)|g = 1, ..., G}. (1)

3.1. Context Embedding Network (CEN)

Here we present out CEN model and define the loss func-

tion used to train it. This involves joint training of three net-

works which model workers, grid context, and image em-

bedding respectively, see Fig. 2. The first two networks are

referred to as attribute encoders while the third is the image

encoder.

3.1.1 Worker Encoder

For the workers we define an attribute encoder network qφ
which takes as input a one-hot encoding (o(·)) of worker

w and outputs a K dimensional worker, attribute activa-

tion, vector aw = qφ(o(w)) = [aw
1
, ..., awK ]. Each awk , for

k = 1, ...,K, represents the degree of prior bias towards

attribute k for worker w. Once the network is trained, the

output attribute activation vector models the worker’s prior

preferences for each visual attribute. For example, a heav-

ily biased worker that only attends to a single attribute k∗

should have high activation for that particular attribute di-

mension awk∗ . On the other hand, a worker that does not

have a strong preference for any particular attribute will

have weak attribute activations in all K dimensions and may

be more influenced by the grid context.

3.1.2 Context Encoder

For an image grid containing S images, we define a con-

text encoder network pθ that takes as input a S-hot encod-

ing (s(·)) of the grid g and outputs a K dimensional grid

attribute activation vector ag = pθ(s(g)) = [ag
1
, ..., agK ].

Each agk for k = 1, ...,K represents the degree of vi-

sual prominence of attribute k for grid g. Once the net-

work is trained, the grid attribute activation dimensions with

high values should correspond to the most salient visual at-

tributes highlighted by the input grid. Intuitively, attribute

variance in the collection of images should influence which

attributes are more noticeable to workers. For instance, a

collection of images that is similar along all other attributes

except one k∗ should have a peak activation at agk∗ . On the

other hand, if the image set varies along many different at-

tributes, ag should be close to uniformly distributed. The

attribute vectors aw and ag from the worker and context en-

coders are combined to produce the final attribute encoder

output am (Fig. 2 Center).

3.1.3 Image Encoder

We seek to learn a non-linear mapping from image i to a

disentangled Euclidean coordinate xi where each dimen-

sion embeds the image into a one dimensional attribute

specific subspace. To achieve this we use a Siamese Net-

work architecture for the image encoder network fψ with

shared parameters ψ that take as input a one hot encoding

of image i and outputs a K dimensional embedding vector

xi = fψ(o(i)) = [xi1, ..., xiK ]. Although our image em-

bedding network learns an embedding for each input image
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directly, with enough data it is possible to learn a feature

extractor from the raw images [25]. Similarly, we present

our model in terms of a pairwise loss, but it is also possi-

ble to use a triplet loss for the image encoder. For brevity,

from this point forward we omit the one and S-hot encoding

function notation o(·), s(·).

3.2. Learning from the Crowd

By ignoring worker and context information, an embed-

ding can be learned using Siamese networks [4], where the

contrastive training loss Lc is defined as

Lc(xi, xj) = ld(xi, xj) + (1− l)max{0, ξn − d(xi, xj)},
(2)

where d(xi, xj) = kxi − xjk2 is the L2 distance between

image i, j in embedding space. ξn is the negative margin

which prevents over-expanding the embedding manifold,

and l 2 {0, 1} is the user provided label. This contrastive

loss alone does not encourage the network to learn low di-

mensional attribute specific embeddings as it assumes that

all crowd workers compare images using the same visual

attributes. To overcome this, we weight the L2 distance

metric by the attribute activation vectors aw and ag . We

hypothesize that a worker’s decision to cluster along a par-

ticular attribute depends on both their prior preferences for

specific visual attributes and the context highlighted by the

set of images in the grid. Based on this assumption, we de-

fine three variants of the distance metric weighted by the

attribute activation vectors

d(xi, xj ; a
w) = kaw · (xi − xj)k2

= kqφ(w) · (fψ(i)− fψ(j))k2
(3)

d(xi, xj ; a
g) = kag · (xi − xj)k2

= kpθ(g) · (fψ(i)− fψ(j))k2
(4)

d(xi, xj ; a
m) = kam · (xi − xj)k2 (5)

= k(pθ(g) + qφ(w)) · (fψ(i)− fψ(j))k2,

where am = ag+aw is the mixed attribute activation vector.

After exploring different non-linear methods of mixing

ag and am, we found that a simple summation sufficiently

captures the relationship between the two biases. In the

experiments section, we compare the performance of the

above three different models. For the model in Eq. 5, bi-

ased workers should have a concentrated worker attribute

activation vector aw which will dominate the mode of sum

am = aw+ag . Alternatively, workers with weak prior pref-

erences should have low worker attribute activations aw and

the grid attribute activations ag will dictate the mode. Intu-

itively, the attribute activation vector serves as a mask which

indicates the embedding dimension that should be weighted

heavily in the loss e.g. [25]. By encouraging sparsity in aw

and ag along with ReLU non-linearities [17], we assume

that grids that were clustered along one attribute will have a

uni-modal am while grids that were clustered on a mixture

of attributes will have a multi-modal am with peaks corre-

sponding to the attribute dimensions used.

Inspired by the dual margin contrastive loss proposed in

[29], we include a positive margin term ξp in the loss func-

tion to prevent two images from overlapping in the embed-

ding space which could lead to over fitting. This ensures

that images will be pushed closer only if their current em-

bedding is separated by more than ξp. We use a to denote

the general attribute activation vector which can be ag, aw,

or am depending on the model variant

Lc(xi, xj ; a) =lmax{0, d(xi, xj ; a)− ξp}+

(1− l)max{0, ξn − d(xi, xj ; a)}.
(6)

A crowd worker’s decision to group two images is an ac-

tive decision while choosing not to group images together

can be seen as a more passive decision. This can become a

problem when workers group images with different levels of

detail. For example, a grid of shapes containing squares, tri-

angles, circles, and stars might be clustered into two groups,

squares and non-squares, by one worker. A second worker

may group the images into the four different shape types.

An embedding model might incorrectly assume that a dif-

ferent attribute was used to separate the images, when it is

in fact just a different level of granularity of ‘shape’ that

is being used by both workers. To overcome this problem,

we introduce an additional positive similarity weight γ, that

captures the relative importance of the positive similarity

labels compared to the dissimilarity labels

Lc(xi, xj ; a) =γlmax{0, d(xi, xj ; a)− ξp}+

(1− l)max{0, ξn − d(xi, xj ; a)}.
(7)

This ensures that the model can learn the high level at-

tributes when workers cluster with different levels of de-

tail. In the example above, although cross category labels

between circles, triangles, and stars are l = 0, the posi-

tive labels generated within each circle, triangle, and star

groups agree with the positive labels generated within the

non-square group thus allowing the network to learn that

the high level attribute, i.e. shape, used by both workers are

the same. We show the impact of γ on the performance of

our CEN in the supplementary materials.

3.3. Regularization

We add L1 penalties λ1kak1 to the attribute encoders

to encourage sparsity in the attribute activation vector.We

also regularize the embedding network with a L2 penalty
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λ2kxk2 to encourage regularity in the latent space. The final

loss function for our CENs is

LCEN (xi, xj ; a) =γlmax{0, d(xi, xj ; a)− ξp}+

(1− l)max{0, ξn − d(xi, xj)}+

λ1kak1 + λ2kxik2 + λ2kxjk2.

(8)

CENs require the number of dimensions K as a hyper-

parameter. However, we observe that by setting K to a large

number and by L1 regularizing aw and ag , our model tends

to only use a subset of the available embedding dimensions.

4. Experiments

Here we show that CENs can recover meaningful low-

dimensional embeddings from noisy data. Network archi-

tectures, training details, and hyperparameters tuning are

described in the supplementary material. We perform ex-

periments on the following three datasets:

CELEBA contains images of different celebrity faces from

which we select a random subset of 300 images [15]. For

this dataset we instruct workers in advance to cluster on one

attribute per grid respecting four visual attributes: gender,

expression, skin color, and gaze direction. Although we ex-

pect some workers to deviate from our instructions, having

a definite ground truth set of attributes allow us to quantify

the attribute retrieval accuracy. The CEN is unaware of the

attribute selected for each grid. In total, 94 workers clus-

tered 620 grids, yielding 170,000 similarity training pairs.

RETINA is a medical dataset comprising of fundus images

of the retina belonging to patients with varying degrees of

diabetic retinopathy [9]. The images contain a number of

visual indicators for the disease such as hard exudates (yel-

low lesions dispersed throughout the retina). From 66 fun-

dus images we crop out 300 image patches. These patches

provide a localized view that may or may not contain indi-

cator features of the disease. This dataset is more challeng-

ing to discover meaningful attributes as the disease indicator

features are visually subtle and the images are unfamiliar to

the crowd. We do not provide any instructions as to the at-

tributes the workers should use for this dataset. 62 workers

clustered 620 grids, yielding 170,000 similarity pairs.

BIRDS is a larger dataset composed of 1000 bird head im-

ages made up of 16 randomly selected species from [27].

We use this dataset to demonstrate the scalability of our

CENs. 252 workers clustered 3,000 grids yielding 820,000

similarity labels.

4.1. Data Collection

We use Amazon Mechanical Turk’s crowdsourcing plat-

form to request crowd workers to cluster grids of images us-

ing the GUI shown in Fig. 3. Workers were presented with

a 4 ⇥ 6 grid of images randomly sampled from the given

dataset. Using up to ten possible groups, workers clustered

Images	are	 assigned	

colors	to	according	to

group	membership

Worker	 defines	and	

describes	each	group	

1

2

Figure 3. Data collection GUI. Workers group images they per-

ceive to be visually similar by assigning them to different groups.

They can create up to ten groups per grid of images.

images by first clicking on a group button on the right side

of the page then clicking on the desired images. For each

group they were asked to provide a short text description,

used only for evaluation. The image, cluster, and worker

ids were then converted into pairwise similarity labels (Eq.

1). Each worker clustered a minimum of ten grids in or-

der to receive a reward, ensuring that the worker encoder

network had sufficient data to learn from.

4.2. Baseline Comparisons

We compare results to four baseline methods and three

variants of our model:

Standard Siamese Network e.g. [4]: Assumes that all

pairwise similarity labels come from the same notion of

similarity, as in Eq. 2.

Standard Triplet Network e.g. [19]: Learns embeddings

given similarity labels of the form ”A is more similar to B

than C”.

Bayesian Crowd Clustering [7]: Workers are modeled as

linear classifiers in the embedding space where both an en-

tangled image embedding and individual worker models are

jointly learned with variational methods.

CSN [25]: Learns an entangled image embedding from

similarity triplets which are disentangled by masks learned

separately for each pre-known attribute. This baseline rep-

resents the situation where the similarity dimension used by

the worker is known.

CEN-worker encoder only: This first variant of our model

uses only worker modeling to learn attribute activations

which weight the embeddings as in Eq. 3.

CEN-context encoder only: Here we only model context

information to weight the embeddings as in Eq. 4.

CEN-mixture: Our full model, incorporates both worker

and context information to learn a network that weights the

worker bias aw and grid context ag as in Eq. 5.

4.3. Unsupervised Attribute Retrieval

First, we evaluate whether our CEN can accurately re-

cover the four dominant attributes present in the CELEBA

dataset. For each grid g clustered by worker w, we take

the mode dimension of the attribute activation vector a to
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Figure 4. Attribute retrieval accuracy. On the left we see the pre-

dicted embedding dimensions from the CEN-mixture model com-

pared to the ground truth visual attributes for the CELEBA dataset.

On the right, we quantify how disentangled the learned embed-

dings are. Lower entropy indicates models that better capture the

ground truth attributes along individual embedding dimensions.

be the model’s prediction, apred = argmaxkak. This is

the attribute that we predict was used to cluster the set of

images. Again a can be aw, ag or am depending on the

model variant used. We then examine the annotations pro-

vided by workers for each set of grids that map to a dif-

ferent apred 2 {1, 2, 3, 4} and quantify the proportion of

each attribute actually used. In Fig. 4(a) we show a confu-

sion matrix illustrating that for each worker and grid pair,

the CEN-mixture model is able to accurately predict which

attribute was used. The row for gender and the first col-

umn denote the proportion of grid submissions that have

apred = 1 out of all the submissions that were clustered

along gender. For all attributes we obtain over 85% attribute

prediction accuracy. In Fig. 4(b) we plot the entropy H
of the distribution p for each row of the confusion matrix

where Hp = −
P

p log p. High entropy indicates that the

ground truth attributes are scattered throughout the attribute

predictions and vice versa. The CEN-mixture model learns

the most disentangled embeddings across the four ground

truth attributes compared to its variants.

Although workers were encouraged to focus on four dif-

ferent attribute options for this experiment, in practice they

did not abide by our instructions and the proportion of noise

in the raw data is significant. For the CELEBA dataset ap-

proximately 19.1% of the HITs completed were either clus-

tered on different attributes such as “wearing sun glasses”

(see Fig. 5) or noisy submissions where images were not

separated into different groups. We also observed workers

using different levels of detail when clustering on the same

attribute. For example, for the gaze attribute some workers

labeled “looking left”, “looking right”, etc. To demonstrate

our model’s robustness, we perform all of our experiments

on this raw data without filtering out annotation noise. For

evaluation of the worker model learned by the worker en-

coder, refer to the supplementary material.

Gender

Male, Female

Men, Women

Guys, Girls

All men

All females

Expression

Smiling, Not smiling

Smiling, Frowning, Neutral

Content, Undecided

Thoughtful, Fearful

Happy, Bored

Skin Color

Indian, African, Asian

White, non-white

Black, White

Dark, Light, Tan

White, Black Brown

Gaze

Looking, Not-looking

Front, Left, Right

Looking Straight, Crooked

Side Pose, Front Pose

Facing, Not-facing

Other 

Hat, No Hat

Earing, No-Earing

Hair up, Hair down

Attractive, Ugly

Humble, Arrogant

I don’t know

Celebrity

Artist

Musician

Beard, no beard

Wearing tie

Black hair, Blond

Sample Worker Annotations

Figure 5. Cluster Names. Keywords provided by workers for

CELEBA. Colored labels indicate the manual grouping performed

by us (only used for evaluation). Some workers use finer grained

distinctions compared to others.

4.4. Visualizing Disentangled Attributes

Fig. 6 shows the attribute specific embeddings of the four

subspaces learned by the CEN for the CELEBA dataset. Fig.

6(a) shows that the embedding clearly separates the images

according to gender. On the very left of the expression sub-

space (Fig. 6(b)) we can see that people are smiling with

teeth showing while on the right they show serious or un-

happy expressions. In the middle we see ambiguous expres-

sions. Fig. 6(c) shows the subspace embedded along the

skin color attribute. On the two ends we see darker skinned

and lighter skinned people. Fig. 6(d) shows the subspace

for gaze direction of people, showing people that are either

looking at the camera or away from it. Again, in the middle

we see people wearing sunglasses or looking in ambiguous

directions making it difficult to assess their gaze direction.

In Fig. 7 we show attribute specific embeddings learned

for the RETINA dataset in which no supervision was given

to the workers for which attributes to pay attention to. Here

we select four dimensions that are most highly activated

from the learned ten dimensional embedding vector. Other

attribute dimensions attain trivial activations. This shows

that our CEN is robust to value of K (please see supplemen-

tary material for robustness analysis of K). Fig. 7(a) shows

the first dimension seemingly showing the presence or ab-

sence of the optic disc, a key feature of the retina. Fig. 7(b)

shows the subspace which discriminates between patches

with blood vessels present and those without. Blood vessels

are mostly concentrated and visually prominent around the

optic disc, meaning that the two attributes are highly corre-

lated. Regardless, our CEN is capable of distinguishing be-

tween the two attributes, as we see that images displaying

blood vessels without optic discs are correctly embedded

in Fig. 7(a). Fig. 7(c) plots the attribute that groups laser

scars (named after consulting with an ophthalmologist) and

Fig. 7(d) groups hard exudates, a key indicator for diagnos-

ing diabetic retinopathy [11]. A comparison of embedding

qualities between baselines are presented in the supplemen-

tary material.

Fig. 8 shows a t-SNE plot of the four dimensional em-

bedding space learned by the CEN for the BIRDS dataset.
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Figure 6. CELEBA - Attribute specific embeddings. Each plot shows one of the four different embedding dimensions produced by the

CEN-mixture mode. The vertical axis in each subplot is randomly assigned for visualization purposes. We show representative images

from the embeddings space in yellow boxes. We can see that the CEN learns to disentangle the attributes.

Figure 7. RETINA - Attribute specific embeddings. Here we show a subset of four of the ten embeddings dimensions produced by the

CEN-mixture model for the RETINA dataset. Dimensions correlated well with visual features of diabetic retinopathy.

Each ellipse center corresponds to the mean of a Gaus-

sian distribution fit to the embedding coordinates for each

ground truth species. We observe 16 compact clusters that

directly correlate to the 16 ground truth species. Please re-

fer to the supplementary materials for confusion plots of the

ground truth species vs embedding clusters.

4.5. Performance on Held-out Label Prediction

Here we quantify the generalization performance of the

baseline methods on held-out pairwise label predictions

while varying the amount of training data. We measure

the accuracy of the various model’s predictions on the sim-

ilarity estimates for an unseen grid clustered by a known

worker. For a grid input g, worker input w, and image pair

i, j, the model predicts i and j to be in the same group

if d < (ξn + ξp)/2. The test set is made up of 15% of

the dataset and consists only of entire grids that were not

present in the training set. This allows us to measure how

well our CEN generalizes to new sets of images.

Fig. 9(a) shows results for the RETINA dataset. Stan-

dard Siamese Networks and Triplet Networks fail to cap-

ture the multiple attributes used to cluster the images and
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Figure 8. BIRDS - t-SNE embedding. Here we show a t-SNE

[22] plot of the four dimensional embedding produced by the full

CEN model for the BIRDS dataset. Indexed ellipses are centered

at the Gaussian mean of different ground truth species. Clusters

correlated well with ground truth species of birds.

CEN–mix	outperforms

(a) (b)

Pre-known

Similarity	Attribute

Pre-known

Similarity	Attribute

CEN–mix	outperforms

Figure 9. Held-out label prediction. Prediction accuracy on held

out labels for the RETINA and BIRDS datasets plotted against the

amount of available data during training.

have the lowest prediction accuracy of 58.1% and 58.5%.

The Bayesian Crowd Clustering model, CEN worker, and

CEN grid only models attain similar prediction accuracies

of 67%. For the more challenging RETINA dataset work-

ers found it difficult to discover various attributes to cluster

on and thus often fixated on a single attribute on all their

HITs. However, we still benefit from modeling the context

as the CEN-mixture model achieves prediction accuracy of

69.4%. The CSN model with learned masks obtains the

highest accuracy of 75.5%, but it is important to note that

this model was trained on triplets pre-labeled with the true

similarity attributes used to cluster them.

Fig. 9(b) shows the pairwise prediction accuracy for

each model plotted against a varying number of training

samples for the BIRDS dataset. The Bayesian Crowd Clus-

tering model, CEN worker, and CEN grid only models

attain similar prediction accuracies of 62%. The CEN-

mixture substantially outperforms all baselines with a pre-

diction accuracy of 70.5% which is only 3.5% below the

accuracy of the CSN model which uses ground truth labels.

High	variance	along	“Gaze”

Figure 10. Synthesized image grids. Our context encoder can

be used to generate collections of images that highlight specific

attributes. The shown grid has high variance along the gaze direc-

tion attribute and low variance for the others.

4.6. Image Grid Synthesis

Being able to synthesize image grids that highlight spe-

cific attributes may be useful in active learning where the

data collector seeks to obtain similarity estimates along par-

ticular visual attributes. We randomly generate ten million

image grids and individually pass them through the context

encoder and extract the grid attribute activation vectors ag

for each grid. We take a softmax activation over the ags

and select grids that have low entropy, thus choosing grids

that are highly expressive for a particular attribute. Fig. 10

shows a generated grid with the lowest entropy for the gaze

attribute. We see low variance among the images along

other attributes such as gender and skin color, while there

is high variance for ‘gaze’. This suggests that in order for a

grid to emphasize a particular attribute, the contained items

should be similar in all but one high variance attribute.

5. Conclusion

We proposed a novel deep neural network that jointly

learns attribute specific embeddings, worker models, and

grid context models from the crowd. By comparing to sev-

eral baseline methods, we show that our model more accu-

rately predicts the attributes used by individual workers and

as a result produces better quality image embeddings.

In future we plan to incorporate relative similarity esti-

mates and the learning of representations directly from im-

ages [25, 19]. Although currently we model each worker in-

dividually, in practice there may be similarity between dif-

ferent workers that could be discovered through clustering

[10]. Finally, our grid context encoder enables us to gener-

ate sets of images that highlight specific attributes. By com-

bining this with active learning we can potentially speed up

the collection of annotations from the crowd [20, 14].
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