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Abstract

We present a novel approach to template matching that

is efficient, can handle partial occlusions, and comes with

provable performance guarantees. A key component of

the method is a reduction that transforms the problem of

searching a nearest neighbor among N high-dimensional

vectors, to searching neighbors among two sets of order√
N vectors, which can be found efficiently using range

search techniques. This allows for a quadratic improve-

ment in search complexity, and makes the method scalable

in handling large search spaces. The second contribution

is a hashing scheme based on consensus set maximiza-

tion, which allows us to handle occlusions. The resulting

scheme can be seen as a randomized hypothesize-and-test

algorithm, which is equipped with guarantees regarding the

number of iterations required for obtaining an optimal so-

lution with high probability. The predicted matching rates

are validated empirically and the algorithm shows a sig-

nificant improvement over the state-of-the-art in both speed

and robustness to occlusions.

1. Introduction

Matching a template T (a small image) to a target I (a

larger image) can be trivial to impossible depending on the

relation between the two. In the classical setup, when I is a

digital image and T is a subset of it, this amounts to a search

over the set of N discrete 2D-translations, where N would

be the number of pixels in I . When T and I are images

of the same scene taken from different vantage points, their

relation can be described by a complex deformation of their

domain, depending on the shape of the underlying scene,

and of their range, depending on its reflectance and illumi-

nation. For a sufficiently small template, such deformations

can be approximated by an affine transformation of the do-

main (“warping”), and an affine (“contrast”) transformation

of the range . . . except for occlusions: An arbitrarily large

portion of the template, including all of it, may be occluded

and therefore have no correspondent in the target image.

This poses a fundamental problem to many low-level

tasks: To establish local correspondence (co-visibility), the

template should be large, so as to be discriminative. But

Figure 1. Instances of the occlusion experiment (Sec. 4.2) A tem-

plate (overlaid in green) that is 60% occluded by random blocks is

searched for in an image. OATM shows the best results in dealing

with significant deformation and occlusion (use zoom for detail).

increasing the area increases the probability that its corre-

spondent in the target image will be occluded, which causes

the correspondence to fail, unless occlusion phenomena are

explicitly taken into account.

In this work we model occlusions explicitly as part of a

robust template matching process where the co-visible re-

gion is assumed to undergo affine deformations of the do-

main and range, up to additive noise. We search for trans-

formations that maximize consensus, that is the size of the

co-visible set, in a manner that is efficient and comes with

provable convergence guarantees.

Efficiency comes from the first contribution - a reduc-

tion method whereby the linear search of nearest neighbors

for the d-dimensional template T through N versions in the

target image is converted to a search among two sets of vec-

tors, with each set of size O(
√
N) (Sect. 2.2). This re-

duces the search complexity from O(N) to O(
√
N), which

is practical even for very large search spaces, such as the

discretized space of affine transformations.

For this method to work, we need a hashing scheme that

is compatible with occlusions, which we achieve by adapt-

ing the scheme of Aiger et al. [2], leading to our second

contribution: Rather than reporting close neighbors under

the Euclidean ℓ2 norm, we are interested in reporting pairs

of vectors that are compatible, up to a threshold, on a max-

imum (co-visibility) consensus set. Our hashing scheme is

akin to a random consensus (RANSAC-type) procedure un-

der the ℓ∞ norm (Sect. 2.3).

Finally, our third contribution is an analysis of the algo-

rithm (Sect. 2.4), specifically regarding guarantees on the

number of candidate hypotheses required for obtaining the
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optimal solution, in the sense of maximal inlier rate, within

a certain probability.

While for many low-level vision tasks speed, not con-

vergence guarantee, is the key, there are applications where

being able to issue a certificate is important, such as high-

assurance visual pose estimation for satellite maneuvering.

In our case, we achieve both speed and assurance, all the

while being able to handle occlusions, which allows using

larger, and therefore more discriminative, templates.

The algorithm is rather generic and is presented for

a general geometric transformation of the domain space,

while possible explicit decompositions are given for the

2D-translation and 2D-affine groups. In the experimental

section, our algorithm is shown empirically to outperform

the state-of-the-art in affine template matching [17] both in

terms of efficiency and robustness to occlusion. In addition,

it shows some clear advantages over some modern image

descriptors on the recent HPatches [4] benchmark.

1.1. Related work

Research in template matching algorithms has focused

heavily on efficiency, a natural requirement from a low level

component in vision systems. This was largely achieved

in the limited scope of 2D-translation and ℓp similarity,

where full-search-equivalent algorithms accelerate naive

full-search schemes by orders of magnitude [22]. unlike

in real-time applications, such as robotic navigation and

augmented reality, there are applications where accuracy

and performance guarantees are important, such as high-

assurance pose estimation for high-value assets, such as

satellites or industrial equipment. This requires extending

the scope of research in several aspects.

One line of works focuses on geometric deformations

due to camera or object motion. Early works such as

[11, 26] extend the sliding window approaches to handle

rotation and scale. The Fast-Match algorithm [17] was de-

signed to handle 2D-Affine transformations. It minimizes

the sum-of-absolute-differences using branch-and-bound,

providing probabilistic global guarantees. [29] uses a ge-

netic algorithm to sample the 2D-affine space.

To achieve photometric invariance, [13] introduced a

fast scheme for matching under non-linear tone mappings,

while [10] used the Generalized Laplacian distance, which

can handle multi-modal matching. Our method can provide

affine photometric invariance, i.e., up to global brightness

and contrast changes.

In this work we propose a quadratic improvement upon

the runtime complexity of these methods, which depends

linearly on the size of the search-space (i.e., exponential

in its dimension). More recently we are seeing attempts

at matching under 2D-homographies using deep neural net-

works [9, 20], although these methods do not provide any

guarantees and like the previously mentioned methods -

they were not designed to handle partial occlusion.

Two recent works can handle both geometric deforma-

tions and partial occlusion through similarity measures be-

tween rectangular patches: the Best Buddies Similarity

(BBS) measure [8], based on maximizing the number of

mutual nearest-neighbor pixel pairs, and Deformable Di-

versity Similarity (DDIS) [25], that examines the nearest

neighbor field between the patches. DDIS dramatically im-

proves the heavy runtime complexity of BBS, but is limited

in the extent of deformation it can handle, since it penal-

izes large deformations. Also, the sliding window nature of

these methods limits the extent of occlusion they can han-

dle. While OATM is limited to handling rigid transforma-

tions, it is provably able to efficiently handle high levels of

deformation and occlusion.

Another relevant and very active area of research is

learning discriminative descriptors for image patches (nat-

ural patches or those extracted by feature detectors), from

the earlier SIFT [19] and variants [7, 23] to the more recent

[24, 5, 12]. We show OATM to be superior in its ability to

match under significant deformation and occlusion.

Lastly, the problem of occlusion handling was addressed

in many other areas of computer vision, including track-

ing [31, 30, 15], segmentation [28], image matching [27],

multi-target detection [6], flow [14] and recognition [21].

Within a landscape of “X-with-deep-learning” research,

our work is counter-tendence: We find that the need to

provide provable guarantees in matching, albeit relevant to

niche applications, is underserved, and data-driven machine

learning tools are not ideally suited to this task.

2. Method

2.1. Problem Definition

In template matching, one assumes that a template T
and an image I are related by a geometric transformation

of the domain F = {f : R
2 → R

2} and a photomet-

ric transformation of the range space. The goal is to de-

termine the transformation of the domain, despite transfor-

mations of the range. Here we assume that both T and

I are discretized, real valued, square images, and hence

can be written as T : {1, . . . , n}2 → R (and similarly

I : {1, . . . ,m}2 → R), where T and I are n × n and

m × m images, respectively. The set of transformations

F can be approximated by a discrete set of size N , possibly

large, up to a desired tolerance. For example, in the standard

2D-translation setup, the set F contains all possible place-

ments of the template over the image at single pixel offsets,

and hence N = |F | ≈ (m − n)2 with a tolerance of one

pixel. Moreover, in our analysis we will assume nearest-

neighbor interpolation (rounding) which allows us to sim-

plify the discussion to fully discretized transformations of

the form f : {1, . . . , n}2 → Z
2.
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With a slight abuse of notation we indicate with p ∈ T
(and likewise q ∈ I) a pixel p in the template domain

{1, . . . , n}2 and T (p) will denote its real valued intensity.

For a given transformation f , we define the (photomet-

ric) residual, or reprojection error, at pixel p ∈ T by

resf (p) = |T (p) − I(f(p))|. The known “brightness con-

stancy constraint” guarantees that the residual can be made

small (to within a threshold) by at least one transformation

f . However, it is only valid for portions of the scene that

are Lambertian, seen under constant illumination and most

importantly: co-visible (unoccluded).

We are now ready to pose Occlusion-Aware Tem-

plate Matching (OATM) as a Consensus Set Maximization

(CSM) problem, where we search for a transformation un-

der which a maximal number of pixels are co-visible, i.e.,

mapped with a residual that is within the a threshold.

Definition 1. [Occlusion-Aware Template Matching

(OATM)] For a given error threshold t, find a transforma-

tion f∗ given by:

f∗ = argmax
f∈F

∑

p∈T

[resf (p) ≤ t] (1)

where [·] represents the indicator function.

Our reduction to a product space relies extensively on a

distance notion between geometric transformations (which

depends on the source domain - the template T ).

Definition 2. [Distance ∆ between transformations] Let

f1, f2 ∈ F . We define the distance ∆(f1, f2) =
maxp∈T ‖f1(p) − f2(p)‖ where ‖ · ‖ represents the Eu-

clidean distance in the (target) domain of the image I .

2.2. Reduction to a Product Space

Recall (Equation (1)) that our goal is to find an optimal

transformation f∗, one whose residual

resf∗(p) = |T (p)− I(f∗(p))| (2)

is below a threshold t at as many pixels p ∈ T as possible.

In order to optimize (1) we would need to compare T to

N possible target vectors I(f(T )) (all possible transformed

templates in the target image).

The main idea here will be to enumerate the search space

in a very different way. On the source image side we define

a set U of templates (vectors) obtained by local perturba-

tions of the template T , while on the target side we define

a set V of templates that “covers” the target image I in a

sense that every target template location will be close to one

of those in V . In such a way, if a copy of the template ap-

pears in the image, there must be a pair of similar templates

(vectors) u ∈ U and v ∈ V . Refer to Figure 2 to get the

intuition for the 2D-translation case.

Formally, for a given tolerance ǫ > 0, let f ∈ F be a

transformation such that ∆(f, f∗) < ǫ. For an arbitrary

p′ ∈ T , if we assume the existence of some p ∈ T such that

f(p) = f∗(p′), which is the case in our model under the as-

sumption of co-visibility, by substituting p′ = f∗−1(f(p))
in Equation (2), we get:

resf∗(p′) = |T (f∗−1(f(p)))− I(f(p))| . (3)

If we set h = f∗−1 ◦ f , we can write:

resf∗(p′) = |T (h(p))− I(f(p))| (4)

for pixels p in the sub-template Th = {p ∈ T : h(p) ∈ T},

for which h(p) = p′ ∈ T .

Regarding h, since we know that ∆(f, f∗) < ǫ, it is

easy to see that ∆(h, id) < ǫ/s(f∗), where id is the identity

transformation and s(f∗) is the minimal scale of f∗, defined

by s(f) = minp∈T ‖f(p)‖/‖p‖.

If we call ǫ′ = ǫ/s(f∗) we can now define the restricted

subset of functions (which is a ball of radius ǫ′ around the

identity, in the function space F ):

Fǫ′ = {h ∈ F : ∆(h, id) < ǫ′} (5)

Let Netǫ(F ) be an arbitrary ǫ-net over the space F , with

respect to the distance ∆. Namely, for any f ∈ F there

exists some f ′ ∈ Netǫ(F ) such that ∆(f, f ′) < ǫ.
The result is that we have decomposed the search for an

optimal f∗ ∈ F in Eq. (1), to the search of the equivalent

(recall that h = f∗−1 ◦ f ) optimal pair (h, f) in the prod-

uct space Fǫ′ ×Netǫ(F ). Namely, we can reformulate the

OATM problem (Equation (1)) as:

f∗ = argmax
h∈F

ǫ′

f∈Netǫ(F )

∑

p∈Th

1

|Th|
[

|T (h(p))−I(f(p))| ≤ t
]

(6)

For simplicity of description and implementation we can

work with a fixed subtemplate T ′ of T , defined by the inter-

section of all sub-templates {Th}h∈F
ǫ′

, which results in:

f∗ = argmax
h∈F

ǫ′

f∈Netǫ(F )

∑

p∈T ′

[

|T (h(p))− I(f(p))| ≤ t
]

(7)

It may appear that, up to this point, we stand to gain

nothing, since under any reasonable discretization of the

transformation sets Netǫ(F ) and Fǫ′ , it holds that |F | ≈
|Netǫ(F )| · |Fǫ′ |, i.e. that the size of the search space re-

mains unchaged. However, this decomposition allows us to

design preprocessing schemes for two sets of vectors1

U = {T (h(T ′))}h∈F
ǫ′

(8)

V = {I(f(T ′))}f∈Netǫ(F ) (9)

in a manner that enables an efficient search over the terms

|T (h(p))− I(f(p))| from (7) for all (h, f)∈Fǫ′×Netǫ(F ).

1h(T ′) and f(T ′) are shorthands for {h(p)}p∈T ′ and {f(p)}p∈T ′
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Efficiency comes from designing the product space in a way

that the sets U and V have approximately equal size (
√
N )

and from using a search algorithm whose complexity de-

pends on the sum of the space sizes (order
√
N ), and not on

their product (of size N ). We provide explicit decomposi-

tions for the 2D-translation and 2D-affine spaces.

2.3. Search by Random Grid based Hashing

We have transformed the problem of matching between a

single vector and N target vectors to that of finding match-

ing vectors between two sets of ∼
√
N vectors. Matching

between a pair of high-dimensional point sets is a classi-

cal problem in the search literature, clearly related to the

problem of finding all close neighbors in a single point-set.

Our approach is based on random grid hashing [1] - an al-

gorithm that is straightforward to implement and which has

been shown to work well in practice [2].

In [1], to hash a collection of d dimensional points, the

space is divided into cells by laying a randomly shifted uni-

form grid (each cell is an axis-parallel cube with side-length

c). The points are arranged accordingly in a hash table and

then all pairs of points that share an entry in the hash table

are inspected, reporting those whose distance is below the

specified threshold. The process is then repeated a suitable

number of times in order to guarantee, with high probabil-

ity, that all or most pairs of close points are reported.

Unlike the work of Aiger et al. [1, 2] that uses the ℓ2
norm to measure the similarity between vectors, we use the

number of coordinates whose absolute difference is below

a threshold. Furthermore, we replace the dimensionality

reduction in [2] (a Johnson–Lindenstrauss transform) by a

random choice of a small number of coordinates (pixels), in

order to enable matching under occlusions. These changes

require a different analysis of the algorithm. Refer to Algo-

rithm 1 for a summary of our basic hashing module.

2.4. Analysis

The main result needed for a high-assurance template

matcher is a guarantee on the success probability of Algo-

rithm 1. The following term will be used in our claims:

P (α, d, d̂) =

(

αd
d̂

)

(

d
d̂

) =
αd · (αd− 1) · . . . · (αd− d̂+ 1)

d · (d− 1) · . . . · (d− d̂+ 1)

Claim 1. [analysis of Algorithm 1] Algorithm 1 succeeds

(reports a pair u, v ∈ U × V with maximal possible inlier

rate of α) with probability at least

P (α, d, d̂) ·
(

1− t

c

)d̂

(10)

Proof. The derivation is straightforward, since the algo-

rithm succeeds if a pair of optimal matching vectors u, v
collide in the hash table. A collision is guaranteed to occur,

input: Sets U and V of vectors in R
d; threshold t;

output: A vector pair (u, v) ∈ U × V with maximal

found consensus set (inlier rate)

parameters: Sample dimension d̂; cell dimension c;

1. Pick d̂ random dimensions out of 1, . . . , d.

2. Let Û and V̂ be the vector sets U and V reduced

to the d̂ random dimensions.

3. Generate a random d̂-dimensional offset vector o
in [0, c]d̂.

4. Map each vector in Û and V̂ into a d̂-dimensional

integer, according to Map(v̂) = ⌊(v̂ + o)/c⌋.

5. Arrange the resulting integers into a hash table

using any hash function from N
d̂ to {1, . . . , |U |}.

6. Scan the hash table sequentially, where for each

pair of vectors û and v̂ that share a hash value,

count the number of inlier coordinates in i ∈
{1, . . . , d} (those for which |u(i)− v(i)| ≤ t).

7. Return a pair u, v with maximal found inlier rate

Algorithm 1: Consensus Set Maximization in vector sets.

given a combination of two events. First, the event that the

set of the d̂ sampled dimensions is a subset of the αd inlier

dimensions. This occurs with probability P (α, d, d̂), since

this is a hyper-geometric distribution with αd success items

among a population of d, with d̂ samples all required to be

success items. Second, we need to multiply by the probabil-

ity that a collision occurred subject to the randomness in the

grid offset. In this case, the d̂-dimensional û and v̂ differ by

at most t in each coordinate. Therefore, and since the off-

set is uniform and independent between coordinates, û and

v̂ are mapped into the same cell (and hence collide in the

hash table) with probability at least ( c−t
c
)d̂ = (1− t

c
)d̂.

Claim 2. [analysis of Algorithm 1 - stronger version] As-

sume there exists a pair u, v ∈ U × V which are identical

up to a zero-mean Gaussian noise with standard deviation

σ at an α-fraction of their coordinates. Algorithm 1 suc-

ceeds (reports a pair u, v ∈ U × V with inlier rate at least

α) with probability at least

P (α, d, d̂) ·
(

∫ c

0

(1− x

c
) ·

√
2

σ
√
π
· exp(− x2

2σ2
)dx

)d̂

(11)

Proof. The only difference here compared to the previous

claim is regarding the probability of vectors of inlier co-

ordinates falling into a single cell. The difference is in the

definition of inliers, where here we not only assume a maxi-

mal absolute difference of t at each coordinate but we rather

make the stronger (but realistic) assumption that the vectors

at inlier coordinates differ only due to Gaussian noise of
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(a) ǫ-net construction (b) simple construction

Figure 2. Illustration of two possible decompositions for 2D-translation. In each of (a) and (b) the sets of sampled vectors (templates) U

(from T ) and V (from I) are represented by gray pixels which denote the top left corner position of the sampled templates. If the Template

(red) appears in the target image, there will be a respective pair of matching samples in U and V (shown in yellow). The parameter ǫ is

taken such that the number of samples (number of gray squares) on both sides is approximately equal (both approximately
√

N ).

a known standard deviation. In such a case, the absolute

difference per coordinate follows a folded Gaussian distri-

bution (see e.g. [18]), and therefore we integrate over the

possible absolute differences x in the range [0, c].

2.5. OcclusionAware Template Matching

Given Algorithm 1 and its performance guarantees, we

can now specify our complete OATM template matching

algorithm. The template matcher will run Algorithm 1

a certain number of times and return the target location

in the image, which corresponds to the overall best pair

of vectors found. As a reminder, Algorithm 1 returns a

pair of vectors which are of the form {T (h(p))}p∈T ′ and

{I(f(p))}p∈T ′ , which suggests the pair of transformations

(h, f) as a candidate solution, from which a single transfor-

mation f∗ = f ◦ h−1 can be extracted.

There are two reasons to evaluate directly the inlier rate

P ∗ = 1
|T |

∑

p∈T

[

|T (p) − I(f∗(p))| ≤ t
]

instead of the

proxy 1
|T ′|

∑

p∈T ′

[

|T (h(p)) − I(f(p))| ≤ t
]

. One is

to avoid interpolation errors by applying the concatenated

transformation f∗ = f ◦ h−1 directly. The second and

more important one is that the detected inlier rate reflects

input: template T and image I; threshold t;
family of transformations F (of size N );

output: f ∈ F with maximum consensus (Eq. (1))

1. Decompose F into the product Fǫ′ × Netǫ(F )
choosing an ǫ s.t. |Fǫ′ | ≈ |Netǫ(F )| ≈

√
N .

2. Construct the vector sets U and V (Eqs. (8)-(9)).

3. repeat Algorithm 1 for k times (with U , V and t)
to obtain transformations {fi}ki=1.

4. return the transformation fi with largest consen-

sus set (Eq. (1)).

Algorithm 2: OATM: Occlusion Aware Template Matching

only pixels of T ′ in a sub-template of T .

Occlusion-Aware Template Matching (OATM) is sum-

marized in Algorithm 2. It consists of running Algorithm 1

for k iteration. If we denote by Pα the success probability

of Algorithm 1, given in Equation (11) of Claim 2, it holds

that the success probability of Algorithm 2 is at least:

1− (1− Pα)
k (12)

and conversely, the number of iterations k needed in order

to succeed with a predefined probability p0 (e.g. 0.99) is:

log(1− p0)/ log(1− Pα).
It is important to note that the number of iterations k can

be determined adaptively, based on the findings of previ-

ous rounds. As is common in the RANSAC pipeline, every

time the best maximal consensus (inlier rate) is updated, the

number of required iterations is decreased accordingly.

Notice that the algorithm is generic with respect to the

underlying transformation space F . It does however re-

quire the knowledge of how to efficiently decompose it into

a product space (Step 1). We next describe two such con-

structions for 2D-translations and provide a construction for

the 2D-affine group in the supplementary material [16].

2.6. 2Dtranslation constructions

Recall that at the basis of our algorithm is the decompo-

sition of the transformation search space F into a product of

spaces Fǫ′×Netǫ(F ), controlled by a parameter ǫ. Depend-

ing on the structure of the space F (|F | = N ), we will pick

a value of ǫ (and ǫ′) for which |Fǫ′ | ≈ |Netǫ(F )| ≈
√
N ,

in order to minimize the complexity which depends on the

sum of the sizes of the product spaces. We make the decom-

position explicit for the case of 2D-translations.

Since no scale is involved, s(f∗)=1 and hence ǫ′=ǫ.
Given a square template T and image I of dimensions

m × m and n × n, the subspaces Fǫ and Netǫ(F ) can

be constructed using a hexagonal cover of a square by

circles of radius ǫ, as is depicted in Figure 2(a). The

sizes of the resulting subspaces Fǫ and Netǫ(F ): πǫ2 and

(n−m+ 1)2/(1.5
√
3ǫ2), can be made equal by tuning ǫ.
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Figure 3. Empirical validation of Algorithm 2’s guarantees.

The theoretical success probabilities of OATM as a function of

the number of iterations k (solid curves) for different inlier rates

α (notice the log-scale x-axis) can be seen to match the algorithm

success rates (markers) measured in a large-scale experiment.

However, this covering is sub-optimal by a multiplica-

tive factor of 1.5
√
3 due to the overlap of circles. We

can actually get a practically optimal decomposition (while

not strictly following the ǫ-net definition), as is depicted

in Figure 2(b). We take the product of the sets: Fǫ =
{i, j : i, j ∈ −ǫ, . . . , ǫ} and Netǫ(F ) =

{

i, j : i, j ∈
{ǫ+2kǫ} for k = 1, . . . , ⌊(n−m+1)/2ǫ)⌋

}

. This results

in |Fǫ| = 4ǫ2 and |Netǫ(F )| = (n−m+1)2/(4ǫ2). Taking

ǫ = 0.5
√
n−m+ 1 yields |Fǫ| = |Netǫ(F )| = n−m+1.

3. Empirical validation of the analysis

Algorithm success rate (2D-translation)

We begin with a large-scale validation of the theoretical

guarantees of the algorithm (shown for the 2D-translation

case), with each of the number k of iterations in the set

{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, while the other pa-

rameters are kept fixed.

We run 200 template matching trials for each inlier rate

α in the set {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The success

rate reported is the relative number of trials for which an

exact match was found. For each trial we created a template

matching instance, by first extracting a 100× 100 template

T from a 500 × 500 image I with grayscale intensities in

[0,1], taken (scaled) at random from the Unplash data-set2.

A random α-fraction of the template pixels are labeled as

inlier pixels, and the intensity T (p) of each outlier pixel p
is replaced with the intensity that is 0.5 away from it in ab-

solute difference. This setting guarantees that the resulting

inlier rate is exactly α, and the algorithm succeeds only if it

samples a pure set of inliers. Finally, we add to the image I
white Gaussian noise with std equivalent of 5 greylevels.

The results are shown in Figure 3, where the empirical

success rates per α (markers) can be seen to match the theo-

retical success rates from Equation (12) (solid curves). It is

important to mention that these are minimal success rates

2A set of 65 high-res images we collected from https://unsplash.com/,

which we present in the supplementary material [16].
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Figure 4. Scalability experiment. OATM is compared empirically

to FM, over a 2D-affine search space of size N . As expected, the

runtime of OATM grows linearly in
√

N , while that of FM is linear

in N (notice the
√

N x-axis).

guaranteed for finding the perfect match, which strictly

hold, irrespective of the template and image contents, while

in practice we often observe significantly better rates.

Algorithm scalability (2D-affine)

In this experiment (result shown in Figure 4) we verify the

argued O(
√
N) runtime of our algorithm. A simple way

of doing so is by creating a sequence of affine matching

instances (see the experiment in Section 4.1 for the techni-

cal details), were square templates of a fixed side length of

32 pixels are searched in square images with varying side

lengths in the set {100, 200, 300, . . . , 3200}, while keep-

ing other affine search limits fixed - scales in the range

[2/3, 3/2] and rotations in the range [−π/4, π/4]. This

leads to a sequence of configuration sizes N that grows

quadratically (hence the markers are distributed roughly lin-

early in the
√
N x-axis). As can be seen, the runtime of

OATM grows linearly with
√
N , and can handle in reason-

able time a ratio of up to 100 between template and im-

age dimensions. For reference, the complexity of the Fast-

Match (FM) algorithm [17], representing the state-of-the-

art in affine template matching, depends on a standard pa-

rameterization of the 2D-affine space (whose size grows lin-

early in N - see [17] for details). As can be seen, it cannot

cope with template-image side length ratio of over 20.

4. Results

In this section we demonstrate the advantages of the

proposed algorithm through several controlled and uncon-

trolled experiments on real data.

Implementation details The parameters used in our im-

plementation were chosen by simple coordinate descent

over a small set of random synthetic instances (generated

as described in Sec. 4.1). For the random grid, we use sam-

ple dimension d̂ = 9; cell dimension c = 2.5t; where we

take the threshold t = 2σ
√

2/π (twice the mean of a zero-

mean folded-normal-distribution), given a noise level of σ,

or t = 10 greylevels when it is unknown. Our method can

provide affine photometric invariance, i.e., global bright-
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Figure 5. Results of the occlusion experiment (Sec. 4.2): median center location errors (left) and average run-times (right).

ness and contrast changes, by standardizing the vector sets

U and V (in step 2 of Algorithm 2) to have the mean and

standard deviation of the template.

4.1. Template matching evaluation

We test our algorithm in a standard template matching

evaluation, not involving occlusions, in order to compare

to other algorithms, such as Fast-Match (FM) [17] repre-

senting state-of-the-art in affine template matching. We run

a large-scale comparison, using different combinations of

template and image sizes (a larger gap between their sizes

implies a larger size N of the search space). We will use the

following shorthands for template and image dimensions:

T1 for 16×16, T2 for 32×32 and T3 for 64×64. Likewise:

I1 for 160× 160, I2 for 320× 320 and I3 for 640× 640.

For each template-image size combination, we ran 100

random template matching trials. Each trial (following [17])

involves selecting a random image (here, from the Un-

plash data-set) and a random affine transformation (paral-

lelogram in the image). The template is created by inverse-

warping the parallelogram and white gaussian noise with 5
graylevels equivalent std is added to the image.

For each trial we report average overlap errors and run-

times. The overlap error is a scalar in [0, 1] given by 1 minus

the ratio between the intersection and union of the detected

and true target parallelograms.

The results are summarized in Table 1. OATM is typi-

cally an order of magnitude faster than FM, at similar low

error levels. FM cannot deal with the setting T1-I3, due

to the large number of configurations N (the image edge

length is 40 times the template edge length), while OATM

deals with a more tolerable size of
√
N .

template-image sizes

T1-I1 T1-I2 T1-I3 T2-I1 T2-I2 T2-I3 T3-I1 T3-I2 T3-I3

FM
err. 0.09 0.13 NA 0.05 0.05 0.09 0.02 0.01 0.03

time 12.22 25.37 NA 4.35 7.78 32.07 1.33 1.90 11.61

OATM
err. 0.07 0.10 0.13 0.02 0.04 0.04 0.01 0.02 0.13

time 0.15 0.18 0.39 0.53 0.76 1.73 0.51 0.64 1.01

Table 1. Template matching evaluation for different template im-

age sizes, including average runtime (seconds) and overlap error.

4.2. Robustness to occlusions

In this experiment, we evaluate how well OATM and sev-

eral other methods deal with occlusion. We repeat the proto-

col from the previous experiment (Section 4.1), except that

we take a fixed template-image size (T2-I2) and we synthet-

ically introduce a controlled amount of outlier pixels. One

way of doing so (see examples in Figure 1) is by introduc-

ing random 4× 4 blocks. We repeated the experiment with

two other ways of introducing occlusion, resulting in simi-

lar results, which we provide in the supplementary material

[16]. These come to show that our method is robust to the

spatial arrangement of the occlusion mask.

In addition to Fast-Match (FM) [17], we compare with

two additional template matching methods - Best Buddies

Similarity (BBS) [8] and Deformable Diversity Similarity

(DDIS) [25], both specialized in handling complex geomet-

ric deformations and high levels of occlusion. For a fair

comparison, since BBS and DDIS match the template in a

sliding window fashion (and account for deformation within

the window), we measure center location errors (rather than

overlap error) - the distance between the center of the target

window and the true target center location, as a percentage

of the template dimension (clipped at 100%).

The plots in Figure 5 summarize the experiment. OATM

can be seen to provide the most accurate detections at a very

wide range of inlier rates, starting from around 0.25. DDIS

can handle inlier rates of above 0.5, but is slightly less ac-

curate in localization due to its sliding window search. FM

was not designed to handle occlusions explicitly and fails to

do so for inlier rates under 0.75. BBS does not handle in-

lier rates under 0.75 and its localization is suboptimal when

dealing with the affine deformations in this setting.

In terms of speed, DDIS is clearly the most efficient.

DDIS and BBS are agnostic of the inlier rate, while the run-

time of OATM is inverse proportional to the inlier rate, due

to its RANSAC-like adaptive stopping criterion.

4.3. Matching partially occluded deformed patches

In this experiment we use the recent HPatches [4] data-

set, which was designed for benchmarking modern local

2681



image descriptors. The patches were extracted from 116

sequences (59 with changing viewpoint, 57 with changing

illumination), each containing 6 images of a planar scene

with known geometric correspondence given by a 2D ho-

mography. Approximately 1300 square 65 × 65 reference

patches (rectified state-of-the-art affine detected regions)

are extracted from the first image in each sequence. The ex-

act set of corresponding patches were then extracted from

the 5 other sequence images, using the ground-truth projec-

tion, while introducing 3 levels (Easy, Hard, Tough) of con-

trolled geometric perturbation (rotation, anisotropic scaling

and translation), to simulate the location inaccuracies of

current feature detectors.

These perturbations introduce significant geometric de-

formations (e.g. rotation of up to 10◦/20◦/30◦) as

well as increasing levels of occlusion (average overlap of

78%/63%/51%) for the Easy/Hard/Tough cases. Figure 6

shows several examples of extracted reference patches and

their matching patches at the different levels of difficulty.

ref E1 E2 E3 E4 E5 H1 H2 H3 H4 H5 T1 T2 T3 T4 T5
Figure 6. Samples from the HPatches [4] dataset. viewpoint se-

quences (rows 1-3) and illumination sequences (rows 4-6).

This data is useful in showing the capabilities of our

method in handling such challenges, in comparison with the

common practice of matching features by their descriptors.

We focus on the proposed ‘matching’ task [4], in which

each reference patch needs to be located among each of the

patches of each sequence image. A template matching al-

gorithm cannot strictly follow the suggested task protocol,

which was defined for matching patches by their descrip-

tors. Instead, we pack all the (∼1300) square target patches

into a single image in which we search for the template us-

ing the photometric invariant version of OATM. The target

patch chosen is the one which contains the center location

of the warped template patch. For mean-Average-Precision

(mAP) calculation, since our method only produces a single

target patch we assign a weight of 1 to the detected target

patch and 0 to the rest.

The results are summarized in Table 2. The refer-

ence descriptor methods include SIFT [19] and its variant

RSIFT [3], the binary descriptors BRIEF [7] and ORB [23]

and the deep descriptors DeepDesc (DDESC) [24] and

TFeat ratio* (TF-R) [5]. For SIFT, TF-R, DDESC and

RSIFT, results are given for the superior whitened and nor-

malized versions of the descriptors (as reported in [4]).

viewpoint seqs illumination seqs

method Easy Hard Tough Easy Hard Tough

BRIEF [7] 25.6 6.9 2.4 20.5 5.9 2.0

ORB [23] 36.4 11.1 3.7 28.9 8.8 3.2

SIFT [19] 59.4 30.6 15.3 52.6 26.1 13.3

TF-R [5] 58.9 35.5 19.0 48.5 28.6 15.6

DDESC [24] 58.6 36.0 20.2 50.7 30.0 17.0

RSIFT [3] 64.0 35.2 18.5 57.1 30.2 15.9

OATM 72.7 49.2 32.1 43.3 29.3 19.7

Table 2. Results on the HPatches [4] Image Matching bench-

mark. Results are in terms of mean-Average-Precision (mAP),

where all results except that of OATM were reported in [4].

Clearly, for both viewpoint and illumination sequences

- the mAP of OATM deteriorates more gracefully with the

increase in geometric deformation and level of occlusion,

compared to the descriptor based methods. While the state-

of-the-art features and descriptors may be highly insensitive

to certain local geometric deformations and different photo-

metric variations (and hence some outperform OATM in the

Easy illumination case), they are not as effective in dealing

with significant deformation and occlusion, unlike OATM

which explicitly explores the space of affine deformations

and reasons about substantial occlusion levels.

Furthermore, the naive current application of OATM on

this data suggests that performance could be further im-

proved by: (i) finding a distribution over target locations

rather than one single detection; (ii) being aware of the

patch structure of the stacked target image; (iii) using ad-

vanced representations instead of the greylevel pixelwise

description. That being said, unlike the descriptor based

methods, the template matching nature of OATM is cer-

tainly not suitable for large-scale matching, where a large

pool of patches needs to be matched against another. Never-

theless, many of the ideas presented here could be possibly

adapted, e.g. to the image-to-image matching setup.

5. Conclusions

We have presented a highly efficient algorithm for 2D-

affine template matching that is carefully analyzed and is

shown to improve on previous methods in handling high

levels of occlusion and geometric deformation.

The results on the HPatches data-set raise the question

of whether descriptor based matching is able to handle the

geometric deformations and high occlusion levels that are

inherent in the localization noise introduced by feature de-

tectors. This is the case even in the advent of deep learning,

and the development of methods that can explicitly reason

for deformation and occlusion seems to be necessary for

improving the state-of-the-art in visual correspondence.
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