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Abstract

This work addresses the novel problem of one-shot one-

class classification. The goal is to estimate a classification

decision boundary for a novel class based on a single image

example. Our method exploits transfer learning to model

the transformation from a representation of the input, ex-

tracted by a Convolutional Neural Network, to a classifica-

tion decision boundary. We use a deep neural network to

learn this transformation from a large labelled dataset of

images and their associated class decision boundaries gen-

erated from ImageNet, and then apply the learned decision

boundary to classify subsequent query images. We tested

our approach on several benchmark datasets and signifi-

cantly outperformed the baseline methods.

1. Introduction

Thanks to a combination of advanced machine learning

algorithms and access to an abundance of annotated data

sets, object recognition tasks have become easier to solve

and can achieve very high accuracy [28, 21, 17, 18]. How-

ever, in many cases there may not be enough data to suffi-

ciently train a classifier for a given object category. There

are many reasons why this might be the case, such as data

being unavailable, prohibitively expensive, or time con-

suming to obtain. Data availability forces a change in the

methodology for classification tasks and has been a major

factor in the need for novel approaches to recognition.

Table 1 presents a division of classification tasks based

on the amount of available positive and negative examples

in the training data. Reading from the top left to the bottom

right, the first is presented the optimal recognition problem

setting where we have access to an abundance of positive

and negative examples to train on [18]. To the right is the

one-shot/few-shot scenario, which occurs when we want to

quickly learn a novel category with only one or a few exam-

ples [19, 15, 7, 37]. Next is the zero-shot classification prob-

lem, where we learn to recognize an object without seeing

any examples, usually by utilizing the verbal description or

some additional attribute information. This subset of clas-

sification problems is quickly gaining the attention of the

research community [30, 27, 11, 13, 20, 16, 6, 22, 8]. An-

other significant direction is one-class classification, where

we have access to a large number of positive examples but

only a handful of (or no) negatives. This is the outlier de-

tection problem, illustrated, for example, by the problem of

detecting when a nuclear power plant is not working appro-

priately, while having only data describing its normal oper-

ation. It also has been widely studied [29, 32, 33, 23, 35].

Both one-shot and one-class classification have received

much attention from the machine learning community [1,

19, 14], but the intersection of these scenarios – the one-

shot one-class (OSOC) problem – remains rather unex-

plored, as does the overlap of the zero-shot and one-class

(ZSOC) problems. This work focuses on tackling the partic-

ular problem of one-shot one-class (OSOC) classification,

which occurs when it is necessary to build a classifier for a

novel category having only a single example and no nega-

tives.

The motivation behind this work is based on the way

people learn new skills. While “practice makes perfect” –

i.e., repetition or multiple attempts at the same task lead

to mastering it – there is a additional aspect of learning: the

more similar skills you already know, the easier it is to grasp

a new one. For example, in learning foreign languages, a

third language is usually easier to master than the second

one, as we are more experienced in the action of learning it-

self – this is relevant to the concept of learning-to-learn [36].

In a similar fashion, we should be able to impart to an im-

age recognition system the ability to improve its recognition

skill – the more object categories it has already learned, the

better and faster it will learn the next category.

Data availability Positives

Many One Zero

Negatives
Many Recognition One-shot Zero-shot

None One-class OSOC ZSOC

Table 1: Taxonomy of classification problems based on the

amount of available training data
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Figure 1: An overview of training the transfer learning model for one-shot one-class recognition. Dashed lines: Graphical

representation of generating the training data. Using feature vectors f extracted from all the images in ImageNet, we create

J decision boundaries w, one for each object category. Solid lines: The resulting training data pairs {f j
i , w

j} are then used

to train the Deep Feed-Forward Neural Network.

In this paper we propose a “cumulative learning” ap-

proach to OSOC classification (CLEAR), inspired by this

human-like way of learning, by accumulating the experi-

ences of learning so far. Instead of learning-to-learn from

only the most similar example [3], we exploit all of the

knowledge acquired in the past training processes. Building

on previous work by Wang and Hebert [39] on boundary

transformations with neural networks working as regres-

sors, we demonstrate that a deep network can perform the

more advanced regression task of estimating a classification

decision boundary from an image representation.

Figure 1 shows a high-level view of the training process

for our method. To acquire the needed category-learning

experience, we use ImageNet data from ILSVRC 2012 [28]

and deploy an end-to-end model that takes an RGB im-

age as input and provides as an output a one-vs-rest (OVR)

decision boundary for the category the input image repre-

sents. The method workflow is depicted in Figure 2. We

use a Support Vector Machine as the OVR classifier, as it

is widely used in one-class problem settings (Section 2.2),

but to demonstrate the general nature of our approach we

evaluated it on different classification models (Section 4.4).

Because of the limited amount of available training data, we

chose to test classification models with a number of param-

eters similar to the dimensionality of the image representa-

tion. We do not use deep learning as classification method,

since teaching the network to regress all the weights would

require a tremendous amount of training data.

Our model with the vast category-creating experience

collected on ImageNet can be directly tested on bench-

mark datasets without any fine-tuning or retraining us-

ing those benchmark datasets. We tested our approach

on five datasets: Caltech-256 [9], two fine grain recogni-

tion sets (Oxford Flowers [24] and Caltech-UCSD Bird-

200-2011 [38]), one scene recognition dataset (MIT In-

door scene recognition [26]), and one attribute recognition

dataset (SUN attribute database [25]). We compared our

method with two baselines: random chance classification

(with 50% chance of image belonging to the same class)

and a One-Class Support Vector Machine. Our proposed

approach outperformed the baselines in all of the test sets.

The main contributions of this paper are as follows:

• We explore a novel problem, one-shot one-class clas-

sification, and present a working method for tackling

this problem.

• We propose a learning-to-learn approach with the use

of a Deep Neural Network and test it on multiple

benchmark datasets and our approach outperformed

the baseline methods.

• We demonstrate that generalized and robust SVM de-

cision boundary transformations can be learned from

only a single example and that our transfer learning

model is applicable to any novel input image.

2. Related work

2.1. One­shot classification

One-shot classification is an important problem investi-

gated by many machine learning researchers. A subgroup of

methods approaching this problem tries to identify known

instances (or their parts) in images of unseen objects. Lake
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Figure 2: An overview of our OSOC recognition method. A novel training image is fed to the ConvNet and the output

representation is input to our transfer learning model, which produces a OSOC SVM boundary. This decision function is

used to classify any subsequent query image x′ based on its feature representation f ′ as belonging to the same category as

the novel training image or not. The ConvNet and the transfer learning network can be trained on independent datasets; in

this case, we use ILSVRC 2014 and ILSVRC 2012, respectively. Five different image datasets were used for testing (see

Section 4).

et al. [19] learned a generative stroke model to better under-

stand how a newly seen character is created and was thus

able to increase the accuracy of recognizing the same char-

acter based on the single example presented. That work

mimics well how humans see objects (including charac-

ters) as compositions of different, already known objects.

However the transition to learning visual categories in the

same manner as characters is not as feasible and was ad-

dressed. Fei-Fei et al. [7] used a Bayesian Inference ap-

proach to quantify a probability that new images come from

the same class as a single query image. They built a genera-

tive model to predict which subsets of features would make

two images belong to the same class. This method involves

a non-CNN feature extraction step. An approach involv-

ing Genetic Programming was used by Al-Sahaf et al. [1]

to learn similarities between Local Binary Patterns (LBP)

histograms of images. On a smaller scale, Aytar and Zisser-

man [3] used transfer learning to modify the SVM boundary

for a novel class of objects by extracting information from

a single most similar class. The drawback of the method

is that it requires the presence of this similar class, utilizing

information only from this single similar category; informa-

tion accumulated in all the other categories is not exploited

and treated as irrelevant.

Another approach by We et al. [40] used an elaborate

technique to fuse temporal and spatial information from

RGBD images and then transform data with a vector em-

bedding. This allowed them to successfully classify ges-

tures based on a small number of training examples for the

CHALEARN gesture challenge [10].

One of the more interesting methods was presented by

Koch et al. [15], who proposed a Siamese CNN architecture

that takes as an input two images and outputs the probabil-

ity that both of them come from the same class. Such an

approach shows the generalization capabilities of learning-

to-learn approaches. The slight drawback is that one has to

do such comparisons between every pair of images (query

image, testing image) to determine the true class of every

image in the test set.

Vinyals et al. [37] used Matching Networks to learn clas-

sifiers for novel classes in one-shot scenarios based on a

mapping from a small support set of examples (input-label

pairs) to a classifier for the given example. The method still

requires examples in the testing phase coming from each of

the novel classes at once (N-way one-shot classification).

Very promising is the work of Burgess et al. [4], where they

used Bayesian approach to update weights of hidden lay-

ers in the pretrained Deep CNN to create a classifier from

just a single image input (instead of regular abundance of

examples required to train such network).

2.2. One­class classification

A valuable taxonomy of one-class classification (OCC)

problems was presented by Khan and Madden [14], who

divide OCC problems into three categories based on the

available data: training with just positive data, training with

positive and scarce negative data, training with positive and

unlabelled data. In our case, we focus on the first, hard-

est scenario of having just positive data and no negative or

unlabelled data. In the same paper they break down OCC

methods into SVM and non-SVM techniques, showing how

prevalent SVM methods are for dealing with this scenario.

The first approach to One-Class Support Vector Ma-

chines (OC-SVM) was presented by Schölkopf et al. [29],
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where, faced with examples coming only from one class,

the algorithm attempts to maximize the margin between the

origin and these samples. A similar approach was shown

by Chen et al. [5], where they also used a One-Class SVM

to better fit the target class of images in an image retrieval

problem. Tax and Duin [32, 33] presented a novel method

for dealing with OCC problems – Support Vector Data De-

scription (SVDD) – and later [34] enriched their method-

ology by generating artificial outliers in lieu of optimiz-

ing the OCC problem, posing a balance between over- and

under-fitting to the training data. In all of the methods of

Schölkopf et al. and Tax and Duin [29, 32, 33] the origin

played a very important role.

Using non-SVM methods, Manevitz and Yousef [23]

presented an approach to learn a OCC with a feed-forward

neural network as a classifier with just positive data.

Tax [35] provided a novel method, called Nearest Neigh-

bor Description (NN-d), for using a Nearest Neighbor clas-

sifier to deal with the OCC problem. Here a test object is

accepted as coming from the class when its local density

is greater than or equal to the local density of its nearest

neighbor in the training set.

According to Khan and Madden [14] one-class classi-

fiers have a very important feature working to their advan-

tage – mainly that they can represent well the concept of

“none of the above.”

2.3. Transfer learning for boundary transformation

Another significant factor for this research is the concept

of learning-to-learn [36] that has become an important di-

rection in modern machine learning approaches, especially

when dealing with few-shot and one-shot scenarios, and

with methods involving decision boundary or model trans-

formation. As mentioned in Section 2.1, Aytar and Zisser-

man [3] used transfer learning to modify an SVM bound-

ary by using information from the most similar class to the

novel one. This approach relied on having a classifier for

a similar class and rejecting information from other cate-

gories. Moreover, it required negative examples to create a

classifier (that will undergo this transformation) in the first

place. The work of Burgess et al. [4] on Deep CNN hidden

layers transformation (described in 2.1) is also very promis-

ing. A recent approach by Wang and Hebert [39] shows that

there is an underlying learnable transformation between the

decision boundaries of classifiers learned with few exam-

ples and the decision boundaries of classifiers learned with

many examples. Similarly to the previous case, this method

relies on having negative examples in the first place to cre-

ate the weak classifier for the transformation.

3. Method

The CLEAR method for OSOC recognition (see Fig-

ure 2) consists of three main components: (1) a pretrained

Convolutional Neural Network working as a feature extrac-

tor or image representation, (2) a binary classifier to achieve

one-class classification, and (3) a transfer learning compo-

nent – a Deep Feed-Forward Neural Network working as a

regressor to transform the image representation into a clas-

sification decision boundary.

3.1. CNN representation and a classifier

Convolutional Neural Networks perform exceedingly

well on classification tasks with a fixed number of possi-

ble outputs and plentiful training examples [18, 31]. When

the amount of training data might be not enough for some

classification task, two common techniques are to use a net-

work such as [18, 31] pretrained on a large labelled dataset

(frequently ImageNet [28]) and fine-tune the weights of

the CNN to suit this novel recognition task, or to use the

CNN as a representation (or feature extractor) and train

a classifier such as a Support Vector Machine (SVM) on

those extracted features, as in work by Athiwaratkun and

Kang [2]. Both of these approaches work well when faced

with a known a priori number of visual categories. Unfortu-

nately, when the number of visual categories changes while

training, the architecture of the CNN (including the num-

ber of output neurons) must change and the training process

started all over again. The same corresponds to the SVM

classifier requiring to be retrained with the new data and for

the new number of possible categories.

Our method uses features extracted with the use of a

CNN and an SVM classifier on top of that. Typical multi-

class classification creates decision boundaries between all

known J categories, so when a new category (J + 1) is in-

troduced, it is necessary to incorporate that information and

retrain the classifier (using data coming from the previous

J classes as negative examples). To achieve a more robust

approach that does not require such retraining, we employ a

one-class type of classification, which creates separate clas-

sifier for every category with no negative examples – there-

fore when a new category is introduced, we simply create a

classifier for that category based on only positive examples

from that novel class, with no dependence on data from the

previous J known categories.

3.2. Single image to decision boundary regression

We apply transfer learning to model the desired SVM

decision boundary for a given single image input, based on

generated {image, decision boundary} pairs for training.

Wang and Hebert [39] demonstrated that it is possible to

learn an underlying transformation from an SVM decision

boundary learned from a small number of positive examples

to an SVM decision boundary learned from a large number

of positive examples. We extend this SVM-SVM regression

to an image-SVM regression, learning the decision bound-

ary from the novel image. The main differences between
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their work and ours are as follows:

• Our method does not require creating a weak SVM

classifier to provide an input; we work on image data

directly.

• Our method is one-shot one-class, so it does not

require any negative examples coming from other

classes.

• Our transfer learning approach is trained on an entirely

different dataset that we use for testing.

• Our method does not require retraining when the num-

ber of categories in the test set changes.

Our approach demonstrates that it is possible to learn an un-

derlying, general transformation from an image to a classifi-

cation decision boundary for the class it represents. We use

a linear-SVM classifier to simplify the learning process for

the regression network, as it is not required to learn a ker-

nel. A kernel-based SVM can also be used here, although

with more parameters for the network to learn, so the di-

mensions of the layers of our network would grow as well,

and we would need much more training data to properly

train all the weights.

Let us introduce some notation. Let f
j
i be a representa-

tion (or feature vector) describing the i-th image belonging

to the class j, and let wj be a linear-SVM decision bound-

ary (a weight vector and a bias) for class j. We define a

transformation T that maps f
j
i to wj for all j. Using a

large number of training pairs {f j
i ;w

j}
J
j=1

N
i=1

created from an-

notated data (where J is a number of classes and N is a

number of images per class), we are able to learn the transi-

tions T effectively.

3.3. Generation of training pairs

To generate pairs {f j
i ;w

j}
J
j=1

N
i=1

first we need to extract the

representation of the input image (the feature vector) using

the CNN. From every image x
j
i we extract a feature vector

f
j
i , where j is a ground truth label of the image i. Next,

for every category {cj}Jj=1
we create a classifier using all

N available data points f
j
i belonging to class cj as posi-

tive examples and M data points randomly sampled from

other categories as negative examples. This step allows us

to create a wj decision boundary for every class j.

3.4. Implementation details

An overview of our method is depicted in Figure 2 and its

training process in Figure 1. The transfer learning step, in-

volving the neural network as a representation for the trans-

formation T , consists of six fully connected layers with

leaky ReLU activation functions.

We use the Caffe [12] GoogLeNet [31] CNN as a feature

extractor. All the GoogLeNet weights are frozen to those

learned on ILSVRC 2014. We resize each image to 224

× 224 pixels. The resized image is fed to GoogLeNet and

we take the output of the final pooling layer “pool5/7x7 s1”

as our 1024-dimensional feature vector describing the im-

age. We used standard data augmentation in terms of image

mirroring to increase the number of available training ex-

amples.

We use the ImageNet ILSVRC 2012 [28] dataset as a

source to create a large number of training pairs {f j
i ;w

j}
J
j=1

N
i=1

(see Section 3.3). For each of 1000 categories in ILSVRC

2012 we create 1200 training pairs that we split 70-30

into training and validation sets. That gives us a total of

1,200,000 pairs to train the network.

The architecture of the neural network consists of six

fully connected layers with dimensions from fc1 to fc6 of

6000, 4000, 3000, 2000, 1200, and 1025. We use the Caffe

framework to train the network.

4. Experimental results

4.1. Accuracy metrics used

For each dataset we calculate the mean average precision

(MAP) and F1-score measures, shown in Tables 2 and 3. We

also present the ROC (Receiver Operating Characteristic)

curves and their respecting AUC (Area Under Curve) scores

for every test set in Figure 4. Additionally, we show the

average precision and recall measures for every test set in

Table 5.

It is important to note that in order to properly test the

one-shot one-class method, only a single query image is

presented (as a one-way one-shot classification instead of

J-way one-shot classification). This is done to treat every

classification problem as a one-class classification without

any information about other J − 1 classes. For each class

cJj=1
within the data set we subsampled K instances to cre-

ate the testing set. Next, we created a classifier wJ
j=1

for

each class using a single sample from the class (not in the

test set) and then applied our method to it.

For every category we randomly select K = 20 images

for testing and one image to create a classifier. We repeated

the experiments 20 times, presenting average results to min-

imize the impact of any outliers.

4.2. Datasets used

We tested our method on five datasets: one for general

object recognition, two for fine-grain image recognition,

one for scene recognition and one for attribute recognition.

Caltech-256 [9] is a benchmark image recognition

dataset consisting of 30,607 images coming from 256 dif-

ferent visual categories. The images have high intra-class

variability and high object location variability. The images

represent a diverse set of lighting conditions, poses, back-

grounds and sizes.
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Method
Caltech-256 CUB-200-2011 Flowers 102

MAP F1 MAP F1 MAP F1

Threshold 0.0004 0.008 0.0035 0.0003 0.03 0.0029

Chance 0.005 0.008 0.007 0.01 0.013 0.019

One-Class SVM 0.061 0.011 0.051 0.01 0.068 0.016

CLEAR [ours] 0.364 0.176 0.068 0.037 0.193 0.087

Table 2: Object recognition datasets: Comparison of MAP and F1 scores between baselines and our method. Our method

outperforms the baselines on all datasets, usually by at least one order of magnitude.

Method
MIT Indoor 67 SUN attributes

MAP F1 MAP F1

Threshold 0.001 0.0001 0.006 0.0006

Chance 0.019 0.029 0.015 0.021

One-Class SVM 0.025 0.003 0.009 0.001

CLEAR [ours] 0.209 0.111 0.081 0.041

Table 3: Attribute-oriented recognition datasets: Compar-

ison of MAP and F1 scores between baselines and our

method. Our method outperforms baselines on all datasets,

usually by at least one order of magnitude.

Oxford flowers 102 [24] is a benchmark dataset for fine-

grained image recognition containing 8,189 images of flow-

ers belonging to 102 different categories. Each class con-

sists of between 40 and 258 images.

Caltech-UCSD Birds-200-2011 (CUB-200-2011) [38] is

also a benchmark for fine-grained image recognition. It

consists of 11,788 images from 200 categories of birds.

The MIT Indoor 67 scene recognition dataset [26] con-

tains 67 indoor categories and a total of 15,620 images.

There are at least 100 images per category.

The SUN attribute database [25] is a large-scale scene

attribute database with 102 discriminative attributes (e.g.,

natural, man-made, open, enclosed, etc.) of 14,340 images,

for fine-grained scene understanding.

4.3. Discussion of results

As one-shot one-class recognition is an underexplored

problem, we have compared our method with three baseline

methods – threshold method (‖fi − fj‖
2 ≤ thresh), ran-

dom chance classification, where there is a 50% chance for

every test image to be classified as the same class as a query

and with a One-Class SVM created with the single query

image (its feature extracted with GoogLeNet). We have

also tested the Nearest Neighbor technique as a baseline,

but for one-shot one-class setting it always categorizes all

examples in the test set as positives (due to presence of only

one training example), so we disregarded such approach as

it is impractical. We divided our test sets into two cate-

gories: first called “object-based” recognition (Caltech-256,

Oxford Flowers and Birds) and the second called “attribute-

based” recognition (MIT Indoor and SUN attribute). We

have done that to distinguish difficulty of the task of a sim-

ple object recognition from difficulty of a more complex

scene understanding (where it is crucial to identify certain

attributes and recognize important combination of different

objects in the image). We present results of experiments in

Table 2 for object recognition test sets and in Table 3 for

the attribute-based test sets. Our proposed approach outper-

forms baselines for all test sets. For the Caltech-256 set,

the gain in accuracy (compared to the random chance base-

line) is a 72.8 times increase for MAP and 22 times for the

F1 score. The average gain per dataset for the other object-

based datasets is 12.3 for MAP and 4.1 for F1. For the

attribute-based datasets the average gains per set are 8.2 for

MAP and 2.9 for F1.

Class granularity problem: An important factor behind

the differences in the performance of our method among the

datasets is the granularity of the data in the test sets – i.e.,

the magnitude of the differences between the classes in a

test set. For example, in Caltech-256 the classes represent

different visual objects, frequently not similar to each other,

such as “American flag” or “saturn,” whereas Oxford Flow-

ers consists only of categories representing different types

of flowers, some of which are quite similar. As a measure of

the dataset granularity we calculated the average Euclidean

distance between centroids of categories within each dataset

(the mean Inter Class Euclidean Distance) according to the

following equation:

mICED =
1

2×N × (N − 1)
×

N∑

i=1

N∑

j=1

||ci − cj || (1)

where mICED is the mean Inter Class Euclidean Distance,

N is the number of categories in a dataset, and ci is the

centroid of a category i.

This granularity metric relates directly to how far on av-

erage an SVM boundary should be from a given sample

point. Calculated mICED metrics for all the datasets are

presented in the Table 4, where the numbers in parenthesis

are the differences between the granularity of ILSVRC 2012
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Figure 3: OSOC recognition accuracy as a function of dataset granularity.

ILSVRC 2012 Caltech-256 CUB-200-2011 Flowers 102 MIT Indoor 67 SUN attributes

35.15 28.27 (6.88) 21.59 (13.56) 24.44 (10.71) 18.31 (16.84) 13.21 (21.94)

Table 4: Mean Inter Class Euclidean Distance metrics (within a dataset) as a dataset granularity metric. Given in parentheses

are differences between ILSVRC 2012 granularity and dataset granularity.

Figure 4: ROC curves and their AUC scores for every test

dataset.

(on which the network was trained) and the subsequent test

sets.

In one-shot one-class problems, the class granularity

problem is unavoidable – based on only a single image,

one cannot guess at what hierarchy level the class should

be. For example, given an image of a dog, is the intent to

recognize an animal of the same species, a mammal, a non-

flying animal, or should the classification be based on some

attribute like color or size? The class granularity problem

explains why our method improves recognition accuracy far

more for datasets with granularity similar to that of Ima-

geNet ILSVRC 2012 data. As a comparison, we show in

Figure 3 how the difference in granularity (compared to that

of ILSVRC) influences the MAP and F1 scores for datasets

(left and right, respectively). The figure compares sepa-

rately the accuracies for object-based (blue) and attribute-

based (red) test sets. Based on those figures we can see a

linear dependency suggesting how the accuracy for a given

test set decreases as the granularity difference increases.

Despite some dependence on dataset granularity, our ap-

proach shows robustness and generalization abilities. It per-

forms well on the MIT Indoor 67 data, which has categories

like “mall,” “dental office,” and “meeting room,” and on

the SUN attribute database with attribute-based categories.

Both MAP and F1 scores are higher for MIT Indoor than

for Oxford Flowers or CUB-200-2011 datasets; such high

recognition accuracy for a recognition task much less re-

lated to the ILSVRC 2012 than, for example, Caltech-256

(in terms that it is capturing much more complex ideas than

just a single object recognition) demonstrates that cumula-

tive knowledge transfer learning might be used to alleviate

more difficult problems such as attribute-based classifica-

tion. We are confident that with additional context regard-

ing the granularity of a classification problem (perhaps sup-
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Metric Caltech-256 CUB-200-2011 Flowers 102 MIT Indoor 67 SUN attributes

Precision 0.15 0.011 0.037 0.072 0.037

Recall 0.3 0.49 0.4 0.3 0.099

Table 5: Precision and recall values for the test data sets.

Metric Caltech-256 CUB-200-2011 Flowers 102 MIT Indoor 67 SUN attributes

MAP 0.31 0.067 0.092 0.16 0.058

F1 0.17 0.034 0.045 0.08 0.025

Table 6: MAP and F1 accuracy measures for our CLEAR method with the logistic regression as classification.

plied by the user), such tasks will be more feasible with this

transfer learning approach.

Figure 4 shows ROC curves for the five test sets com-

pared with the ROC curve for random classification (dashed

line). High AUC scores demonstrate valuable recognition

abilities of our method. In Table 5 we present precision and

recall measures for all five test sets. The results confirm

that the obtained classifiers generalize well and are robust,

since all classifiers within a data set have high recall values,

but the precision decreases as the granularity difference in-

creases (Table 4) due to progressively more false positives

in data sets.

Figure 5: Evaluation of logistic regression as classification

method – ROC curves and their AUC scores for every test

dataset.

4.4. Evaluation of different classification models

We have focused on using SVMs as classifiers, but this

approach can work with other classification models as well;

all it requires is a set of weights to be learned and enough

training data to learn those weights. To verify this, we

added a logistic regression classifier in place of an SVM.

As logistic regression also provides an D + 1 dimensional

decision function (from an D-dimensional feature space),

the architecture of our network did not require any changes.

In Table 6 we present MAP and F1 accuracy measures for

our CLEAR method with logistic regression as a classifier.

The results suggest that our proposed approach can be used

with classification methods other than an SVM. Results

for CLEAR with logistic regression shows improvement in

comparison to the baselines, but both the MAP and F1 mea-

sures are lower than for CLEAR with SVM. In Figure 5 we

present ROC curves for the five test datasets compared to

the ROC curve of random classification (dashed line). High

AUC scores demonstrate that our method is working well

also with the logistic regression as a classification method.

5. Conclusion

This work addressed the novel problem of one-shot one-

class classification. Our proposed method involves using

transfer learning to understand how to obtain a classifica-

tion decision boundary when given just a single image. This

paper demonstrates the ability of a neural network to func-

tion as a model regressor. We have tested our approach

on five benchmark datasets and our results outperformed

the baseline comparisons. Our experiments reveal that the

method has potential to generalize well and works robustly

even on attribute-based datasets. Considering high AUC re-

sults for our method we expect that using one-shot one-class

approaches might be helpful in the image retrieval applica-

tions as well. Further research in the OSOC area can help

with more advanced attribute-based classification and can

lead to a better understanding of different granularity levels

of categories.
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