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Abstract

Deep networks are extremely hungry for data. They de-

vour hundreds of thousands of labeled images to learn ro-

bust and semantically meaningful feature representations.

Current networks are so data hungry that collecting labeled

data has become as important as designing the networks

themselves. Unfortunately, manual data collection is both

expensive and time consuming. We present an alternative,

and show how ground truth labels for many vision tasks

are easily extracted from video games in real time as we

play them. We interface the popular Microsoft R© DirectX R©

rendering API, and inject specialized rendering code into

the game as it is running. This code produces ground truth

labels for instance segmentation, semantic labeling, depth

estimation, optical flow, intrinsic image decomposition, and

instance tracking. Instead of labeling images, a researcher

now simply plays video games all day long. Our method

is general and works on a wide range of video games. We

collected a dataset of 220k training images, and 60k test

images across 3 video games, and evaluate state of the art

optical flow, depth estimation and intrinsic image decompo-

sition algorithms. Our video game data is visually closer to

real world images, than other synthetic dataset.

1. Introduction

Supervised deep learning is the engine of computer vi-

sion, and good datasets are its fuel. Researchers use them

to develop novel architectures and models, evaluate their

performance, and measure the general progress of the field.

Traditionally, most datasets were collected by human anno-

tators, mimicking some part of the human perception sys-

tem. Examples include boundary detection [1], segmenta-

tion [1], semantic labeling [29, 42], depth estimation [42],

and many more. However, human annotations have two

clear drawbacks: They are expensive to collect, and they

bias research towards fields in which labels are readily

available. Consider recent datasets image captioning [29],

visual reasoning [24], image [12] or scene recognition [45]

datasets. Each spurred a proliferation of algorithms, mod-

els and training objectives in their respective field. In other

fields, such as depth estimation, optical flow, or intrinsic

image decomposition, human labels are much harder to ob-

tain. This led researchers to either focus on problems with

plentiful human annotations, or abandon human labels and

supervised learning all together [13,19,35]. Neither of these

solutions is truly satisfying.

In this paper, we propose a different solution: we collect

more labels. We use video games to produce ground truth

labels without the need for human supervision. We obtain

the ground truth labels through a wrapper around the com-

monly used DirectX R© 11 API. Our wrapper intercepts and

modifies any rendering calls by the video game. We reverse

engineered the DirectX HLSL binary shader format, which

allows us to inject arbitrary code into the rendering pipeline.

We force the game to render our ground truth labels in ad-

dition to the final image. Our wrapper labels the images in

real time without slowing the game down, allowing a seam-

less gaming experience in the name of science.

Our method collects a virtually infinite stream of tracked

instance segmentations, semantic labels, depth, optical flow

and albedo, paired with the gamer’s actions, and a partial

internal game state. For examples, see Figure 1. Very few

of these labels are easily obtained through human annota-

tions, and thus complement existing datasets. In an effort

to increase the visual diversity of the collected data, we use

multiple different video games, simulating a wide range of

human visual experiences: starting with the survivalist life

of an early cave men in Far Cry Primal [43], to the jours of

a medieval warrior in The Witcher 3 [8], and culminating

in the challenges facing a modern American man in Grand

Theft Auto V [39]. Each game’s features different environ-

ments, weather conditions, and a full day night cycle.

We collected a dataset of 220k training images, and 60k

test images across our three video games, and evaluate state

of the art optical flow and depth estimation algorithms. The

new dataset is more challenging that existing ones. Finally,

we evaluate the visual similarity between our dataset and

other real world datasets, and show that our dataset is clos-

est to real world benchmarks, while being absolutely free to

collect.
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Figure 1: We extract free ground truth labels from DirectX video games as we play them. Best viewed in color.

2. Related work

Datasets drive computer vision. Early datasets, such

as the Berkeley Segmentation Dataset and Benchmark

(BSDS), brought machine learning into the field of com-

puter vision [1]. The Pascal VOC benchmark fostered the

development of object detection [15]. ImageNet lead to

the current deep learning revolution [12] in image recogni-

tion, which morphed into a broader object centric challenge

in Microsoft COCO [29]. The Places dataset pushed the

state of the art in scene recognition [45]. This proliferation

of datasets has been most dramatic in visual recognition,

where human labels are relatively cheap to collect.

In low-level vision, the Middlebury dataset served as the

gold standard to judge all optical flow, stereo and multi-

view stereo algorithms [3]. It contains a few dozen im-

ages, and is too small to train effective deep models. The

NYU RGBD dataset partially remedies this [42]. It pro-

vides paired color images, depth and semantic segmentation

labels, but is limited to indoor environments. The KITTI

benchmark [17] provides ground truth for visual odometry,

stereo reconstruction, optical flow, scene flow, and object

detection. It pushed the limits of human labeling, as optical

and scene flow are obtained by manually fitting CAD mod-

els to moving objects [32]. Cityscapes [11] extends part of

the KITTI benchmark to 50 European cities, with accurate

depth and semantic labels available for each frame.

Our dataset extends the positive aspects of all the afore-

mentioned datasets. It provides a diverse set of visual ex-

periences and environmental conditions, spanning 3 video

games and full day-night and weather cycles. It provides a

large amount of paired labeled data, and is easily extended.

In addition, it does not require any human labeling.

Synthetic data has existed for almost as long as com-

puter vision itself. Horn and Schunck [22] evaluated their

algorithm using synthetic two dimensional translation pat-

terns. Barron et al. [4] and McCane et al. [31] extend

this to include the three dimensional scene and rendered

objects. Mayer et al. [30] include more complex scenes.

Synthetic datasets are also used to benchmark depth esti-

mation [21], instance segmentation [36], visual feature de-

scriptors [26], or human-pose and hand tracking from depth

images [40, 41]. However, these datasets still have a lim-

ited visual quality and diversity, as content is primarily hand

crafted. In contrast, this paper extracts ground truth labels

from modern video games created by professional artists,

providing a richer and more diverse visual experience.

Buttler et al. [7] cleverly sidestepped the content creation

issue, and built their dataset on an existing open-source

movie. They modified the rendering engine of the movie

and simplified scene elements. Due to the short length of

the movie and the immense human effort involved, the re-

sulting dataset is rather small.

We are not the first paper to use video games to ex-

tract ground truth labels for computer vision. Richter et

al. [38] extract semantic segmentation labels from Grand

Theft Auto V. They record all DirectX rendering com-

mands, and group pixels according to similar texture, shader

and geometry. They propagate human segmentation anno-

tations between groups of pixels throughout all recorded

frames. Concurrently to us, Richter et al. [37] improved

their system to capture optical flow and instance segmenta-

tions. However, both of their algorithms rely on expensive

post-processing to compute all modalities.

This work differs in three fundamental ways from prior

synthetic datasets: Our system is real time, requires no hu-

man annotations, and generalizes across multiple games.

We directly inject code into the rendering pipeline of a game

to compute all labels in real time. This could enable policy

learning algorithms to train on ground truth labels [6, 44],

and open the possibility of real time style transfer [9]. Our

system also requires no human annotations. We obtain free

semantic labels by looking at the English language descrip-

tions of resources in shader. Finally, we show that our ap-

proach works across multiple games with diverse visuals.

To the best of our knowledge we are the first paper to pro-

duce a large joint depth, optical flow, segmentation, tracking

and intrinsic image decomposition dataset.
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rendering parameters

vertex processing rasterization pixel processing

vertex shader

injected code

vs_4_0 
dcl_input v0.xyz 
dcl_input v1.xyzw 
dcl_output o0.xyz 
dcl_temps 1 
mov o0.xyz, v0.xyzx 
mov_sat r0.xyzw, v1.xyzw 
mul r0.xyzw, r0.xyzw, l(255) 
ftou r0.xyzw, r0.xyzw 
ishl r0.y, r0.y, l(8) 
iadd r0.x, r0.x, r0.y 
ishl r0.y, r0.z, l(16) 
ishl r0.z, r0.w, l(24) 
iadd r0.x, r0.x, r0.y 
iadd o1.x, r0.x, r0.z

ftou r0.xyz, r0.xyzx 
ishl r0.y, r0.y, l(10) 
iadd r0.x, r0.x, r0.y 
ishl r0.y, r0.z, l(20) 
iadd o1.w, r0.x, r0.y

pixel shader

injected code

ps_4_0 
dcl_input v0.xyz 
dcl_input v1.xyz 
dcl_output o0.xyz 
dcl_output o1.xyz 
dcl_temps 1 
mov o0.xyz, v0.xyzx 
ftou r0.xyzw, r0.xyzw 
ishl r0.y, r0.y, l(8) 
iadd r0.x, r0.x, r0.y 
ishl r0.y, r0.z, l(16) 
ishl r0.z, r0.w, l(24) 
iadd r0.x, r0.x, r0.y 
iadd o1.x, r0.x, r0.z

ftou r0.xyz, r0.xyzx 
ishl r0.y, r0.y, l(10) 
iadd r0.x, r0.x, r0.y 
ishl r0.y, r0.z, l(20) 
iadd r0.x, r0.x, r0.y

transformed 
mesh

camera_position  10, 5.232, -5 
camera_lookat    0, 0, 0 
camera_up        0, 1, 0 
camear_fov       70 
…

segmentation 

depth 

optical flow 

albedo

output

previous 
vertex location

object id
object id

Figure 2: Overview of the DirectX rendering pipeline: 3D geometry, textures and rendering parameters are stored in GPU

memory. During rendering, they undergo at least three transformations. First the geometry is transformed into screen space,

using a vertex shader. Then the geometry is rasterized into a 2d images. Finally, a pixel shader post-processes every pixel. In

this paper, we wrap the DirectX library and reverse engineered the proprietary binary shader format to inject arbitrary code

into the game’s shaders. This code allows us to extract both low and high level vision ground truth from the game engine.

3. Preliminaries

Most modern video games use raster-based rendering on

dedicated hardware (GPUs) to deliver stunning visuals. Fig-

ure 2 gives a high level overview of raster-based rendering.

A game object consists of 3D meshes, textures and render-

ing parameters, all stored in buffers on the GPU memory

inaccessible from the CPU. Geometry and texture buffers

remain mostly fixed during the rendering process. The ar-

rangement, deformation and appearance of objects is all

controlled by the rendering parameters, stored in constant

buffers (cbuffers). They contain camera parameters, object

position, and even joint locations of animated objects.

Modern games render each object with several render

calls, each of which draws part of an object with a con-

stant texture and mostly continuous geometry. For exam-

ple, a car comprises the wheels, tires and body, which each

produce their own render call. In a render call the mesh

undergoes several transformations: vertex processing, ras-

terization, and pixel processing.

In vertex processing projects the mesh into screen coor-

dinates. First, optional animations deform the object. Next,

the world transformation places the object in a common

world reference frame. Finally, view and projective trans-

formation project the object into the screen coordinate sys-

tem, where it is then rasterized.

Rasterization takes the three dimensional description of

an object, in the form of triangles, and converts them into

pixels on the screen. For the purpose of this overview ras-

terization is fixed.

Finally, a pixel shader performs various post-processing

operations, such as lighting computation, texturing, or

shadow computations on the rasterized pixels. Vertex and

pixel processing is fully programmable. A vertex or pixel

shader is a small GPU program that computes these trans-

formations.

The rendering parameters, together with vertex and pixel

shaders control the entire rendering pipeline. Here, we

modify these shaders, and intercept the rendering parame-

ters to produce ground truth labels in real time, as the game

is played. The next section goes into more details.

4. Supervision from video games

To access the DirectX pipeline for arbitrary video games,

we wrote a wrapper around DirectX and the Direct X

Graphics Infrastructure library (DXGI). We inject our wrap-

per into the video game through DLL injection using

dxgi.dll. If placed into a game directory the operat-

ing system automatically loads our wrapper into the game’s

main memory. Once in main memory, we use func-

tion hooking to overwrite several key DirectX functions.

Namely, we intercept shader creation, drawing functions,

selection of render outputs, and any keyboard or mouse in-

put. We further record all rendering parameters as they are

uploaded to the GPU. We store them in CPU memory in

a cbuffer cache. This allows us to access them more effi-

ciently and at irregular access patterns.

Albedo and depth At this stage, the game already ex-

poses a significant amount of information. For example,

most games store both depth and albedo in some inter-

nal buffer. Unfortunately, each game stores these modali-

ties slightly differently. While GTA V and The Witcher 3,

store albedo as a RGB image, FarCry Primal stores it in a

compressed two channel format, similar to a Bayer pattern.

Similar differences apply to the depth buffer. We directly

copy these buffers during the rendering process, and apply

a game specific post processing step to transform them into

a common format: A RGB image for albedo, and a disparity
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(a) image (b) depth (c) albedo

Figure 3: For each frame in a game we directly capture: (a) the image before the GUI is drawn, (b) the depth map, and (c)

the texture color as albedo. Depth is displayed in log-scale, and only converted to color for display. Best viewed in color.

image for depth, see Figure 3.

Other modalities such as segmentation or optical flow

cannot be read out directly. To extract these modalities, we

need to modify the actual rendering code, by injecting our

own code into the game’s shaders.

Shader injection DirectX shaders use a proprietary bi-

nary format, produced by the DirectX compiler. Games

ship all shaders pre-compiled to hinder reverse engineering.

However, significant parts of the DirectX shader format is

reverse engineered for cross compilers to OpenGL, see [25]

for a nice overview. We built on this work and wrote a tool

to merge two different DirectX shader. It allows us to write

arbitrary shader code, compile it, and execute it either be-

fore or after the game’s shader code. To prevent this sort

of injection, DirectX signs the bytecode using a hash func-

tion. If the hash does not match, the shader is not executed.

Luckily, this hash function was recently reverse engineered

by users on the GeForce forum [16]. It turns out to be an

obfuscated implementation of MD5. Our shader injection

gives us the ability to add arbitrary code into the game’s

shaders producing additional output without modifying or

reverse engineering the core rendering code. We use shader

injection to extract all remaining ground truth annotations

from the game.

Instance segmentation Grouping pixels by render calls

already yields a pixel perfect over-segmentation of the

scene. However, each individual object requires many dif-

ferent render calls, see Figure 4b. Thus we need a way to

merge different render calls within the same object. Here

we use the fact that artists model individual objects in a 3D

editor. For convenience, all individual parts of objects are

kept in the same reference frame. We use this to group ren-

der calls into instances.

Specifically, we read the world transformation matrix of

each render call from the cbuffer cache, extract position and

orientation of the object and use a KD-tree to group objects

in real time. We assign each object a unique id, and pass

it as an additional parameter into a modified pixel shader.

This modified pixel shader produces an additional instance

segmentation map. See Figure 4c for the result.

Next, we show how these instances are tracked over time.

Tracking To track instances over several frames we first

extract a signature for each render call. The signature con-

tains the unique memory locations of the geometry, the hash

functions of all shaders, and the textures used. We match

each render call at time t to all render calls at t−1 using this

signature. We greedily track objects using the Euclidean

distance in both position and quaternion rotation, as well

as the matching signature. We normalize the position for

each game to adjust for differences in measurement units.

If the distance exceeds a certain threshold, we set the ob-

ject as untracked. We experimented with a more expensive

weighted bipartite matching, but found greedy matching to

be sufficient. The key to the success of greedy matching

is to update the tracker at full frame rate, even though the

(a) image (b) render call id (c) instance segmentation

Figure 4: Multiple render calls (b) are grouped together to form an instance segmentation (c). Instances are segmented

according to a common reference frame. The grass was purposefully not segmented. However each individual tree is

segmented in the background. Best viewed in color.
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Figure 5: Tracking of the three largest objects in the scene. The weapon travels an average distance of 1.1 ± 0.6 between

consecutive frames, the person travels 0.5± 0.1, while the object in the background stays stationary. All objects in the scene

were tracked, but only the largest three are shown. Best viewed on screen.

game might not record every frame. For GTA V, we ad-

ditionally use the games scripting engine to track cars and

pedestrians, which is more efficient. Figure 5 shows the re-

sults of the tracking algorithm.

Optical flow Finally, we use the tracked instances to com-

pute ground truth optical flow oriented backward in time.

The optical flow ~ut(~x) = ~xt−~xt−1 at pixel ~xt measures the

difference in pixel position of a point in the scene between

the current and prior frame. Let ~xt denote the current posi-

tion and ~xt−1 the prior position. We now show how to ex-

tract this information directly from a vertex shader. Our key

insight is that the deformation and projection of any point

on a mesh solely depends on the rendering parameters. Let

θt−1 and θt be the rendering parameters at two consecutive

frames. If we render a vertex ~y in frame t with its current

rendering parameters θt, it is displayed at the current screen

position ~xt, while using parameter θt−1 will display it at

the previous location ~xt−1. We use this to compute optical

flow in real time. We duplicate each vertex shader to output

two screen transformations for each object: One with θt,

and one with θt−1. We rasterize ~xt and compute the flow

using ~xt−1. This optical flow estimate is exact and does not

use any optimization, see Figure 6c for example. However,

unlike traditional optical flow, our flow estimate is directed

backward in time, from the current image to the previous

one. It also does not yet deal with occlusion boundaries.

Occlusion boundaries To obtain occlusion boundaries,

we first compute the scene flow, using the same proce-

dure described above. Scene flow additionally computes the

depth value dt−1 for each point ~xt−1. A point is occluded

if there is another object in the target frame with a smaller

depth value at location ~xt−1. Thus, a simple depth test is

sufficient to compute occlusion boundaries. We add a small

slack of ε = 10cm to account for any numerical instability.

Figure 6d shown an example.

Semantics Finally, the rendering engine also exposes

some semantics to DirectX. Variables, buffers and texture

are all named in English language in the shader bytecode.

For example shaders that render trees consistently contain

the word “tree” in their variable names, irrespective of the

game. The same applies to animals, vegetation, or vehicles.

We extract this semantic information by running a tokenizer

over the variable names and finding rarely occurring tokens.

However, not all tokens are semantic, some refer to shading

computation or other internal rendering information.

We briefly considered using NLP techniques to extract

the semantically meaningful tokens, but then quickly opted

for a manual approach. We map these semantic tokens to

seven different classes: Tree, Vegetation, Person, Weapon,

Car, Object and Structure. The structure class contains any

part of the game world that is not moving, or cannot be in-

teracted with. Labeling took roughly 10 minutes per game.

This pipeline now allows us to extract a nearly infinite

stream of tracked instance segmentations, semantic labels,

depth, optical flow and albedo from a video game without

any human annotations.

(a) frame t− 1 (b) frame t (c) optical flow (d) occlusion boundaries
(e) flow wheel

Figure 6: Visualization of optical flow (c) and occlusion boundaries (d) between two frames 100ms apart. The players vehicle

is going at high speed, with displacements exceeding 300px. The sky is not tracked, hence there is no flow estimate. For

reference we include the flow encoding in (e), colors are truncated at 100px displacement. Best viewed in color.
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5. Evaluation

We collect our data from three different video games:

FarCry Primal [43], GTA V [39] and The Witcher 3 [8]. We

run out main evaluation on GTA V, and show preliminary

results for FarCry Primal and The Witcher 3. Both FarCry

and The Witcher heavily rely on instanced drawing calls,

which we were not able to track at a satisfactory accuracy.

We thus only report instance tracking and optical flow re-

sults for GTA V.

We collect a total of 220k training images, and 60k test-

ing images. Training and testing images come from differ-

ent play sessions, restart of game. For the Witcher 3 and

FarCry primal we physically played the game, for GTA V

we use the built in auto-pilot to navigate the environment.

The auto-pilot starts at a random location in the world,

drives or walks for 30 seconds (∼ 180 frames), then gets

reset. In total, we spent 2 hours physically playing The

Witcher and FarCry, and collected 10 hours of GTA V auto-

pilot data. The dataset contains 16−41 instances per frame.

In GTA, the average distance between consecutive training

frames is 1m (∼ 1
4 game car length). The average dis-

tance between a test frame and its closest training frame is

435m (median 540m, 5th-percentile 3.9m, 10th-percentile

26.8m). Table 1 summarizes our dataset and compares it

to MS COCO, the largest real world instance segmentation

dataset. Note that our dataset contains two to five times

more instances per image than COCO. At the same the la-

beling time was four orders of magnitude shorter, and a lot

more fun.

Since Richter et al. [37] already show that modern video

game images look realistic to the human eye, we will not

repeat this experiment. We instead focus on how deep net-

works see our dataset. Specifically, we compute statisti-

cal similarities between our video game dataset and other

datasets using a discriminatively trained classifier. We then

provide baseline models for all tasks on our dataset. Finally,

we provide some applications to robotics tasks, making full

use of the real-time nature of our approach.

5.1. Statistical similarity to other datasets

Let PD be the distribution of image patches X of size

W ×H in a dataset D. We compare two distributions PD1

Dataset #train #test time (h) inst./img

GTA V 200k 50k 10 15.5

FarCry Primal 10k 5k < 1 36.2

The Witcher 3 10k 5k < 1 41.2

MS COCO 120k 40k 100+k 7.2

Table 1: A comparison of our game dataset to MS COCO

in terms of size, instance density and annotation time.

and PD2
using the KL-divergence. If two datasets D1 and

D2 have a low KL-divergence, they are similar. Computing

the KL-divergence directly is hard, and involves estimating

high dimensional probability densities. We instead compute

the difference in KL-divergence from a query dataset D3, to

two other datasets D1 and D2. The difference is negative if

the query is close the first dataset, and positive otherwise.

Mathematically the difference is defined as

KL(PD3
|PD1

)−KL(PD3
|PD2

)= E
X∼PD3

[

log
PD2

(X)

PD1
(X)

]

.

The resulting probability ratio is much easier to estimate.

We take inspiration from the Generative Adversarial Net-

work literature [18], and train a discriminator D between

the two datasets D1 and D2. It should predict 0 for images

in D1 and 1 for images in D2. By definition the optimal

discriminator has the form

D(X) =
PD2

(X)

PD1
(X) + PD2

(X)
.

and the “logit” of the discriminator log D(X)
1−D(X) =

log
PD2

(X)

PD1
(X) yields the probability ratio between the datasets.

This allows us to efficiently approximate the difference in

KL-divergence through the eyes of a convolutional network.

We train a Network in Network [28] model to distinguish

between two datasets D1 and D2 and evaluate it on a third

D3. All patches are resized to 32×32, mean subtracted, and

normalized. We mean subtract and normalize each dataset

individually. We train a separate discriminator for each pair

of datasets, and use ADAM [27] with a batch size of 32 and

train for 10k iterations. The architecture and hyper parame-

ters are the same for all pairs of datasets.

Figure 7 analyzes the visual similarity of datasets

through the eyes of the network in network model for low to

high-level patch sizes: 32px, 128px, and 512px. We com-

pare our GTA V dataset with our other two datasets and

9 prior datasets: Citiscapes [11], Microsoft COCO [29],

Flying Things [30], Freiburg driving sequence [30], Intrin-

sic Image in the Wild (IIW) [5], KITTI [17], NYU Depth

v2 [42], and Sintel (final) [7]. To our surprise our syn-

thetic dataset seems closer to most datasets than KITTI.

We suspect this might have to do with saturation issues in

KITTI images, which give them a distinct signature bias-

ing the KL-divergence measure. On Cityscapes the situ-

ation is as expected: Natural image datasets are closer to

each other than to our dataset, while most synthetic datasets

are closer to GTA V. The more interesting experiment is

the comparison of the GTA V dataset to other synthetic

datasets. While Sintel seems close to real world datasets in

low level patch statistics, GTA V clearly wins on medium

and high level patches, capturing the overall appearance of

the scene. The Freiburg dataset is farther in appearance
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Figure 7: Comparison of our GTA V dataset to other

datasets in terms of KL-divergence over patches of size

32×32, 128×128 and 512×512. Values below the dashed

line indicate the dataset is closer to GTA V than the alterna-

tive.

than GTA V throughout all competing datasets. Note, that

the Freiburg results is not symmetric, Freiburg is close to

KITTI, but KITTI is not close to Freiburg. This comes

from the fact that the KL-divergence is non-symmetric, and

strongly favours visual diversity in its entropy term.

5.2. Baselines

We begin our evaluation with optical flow. We split the

dataset into five parts according the the activity performed:

walking, riding a bicycle, driving a car, riding a motorbike,

and riding a quadbike. All vehicles scenes are very chal-

lenging. They feature high speed dirt bike races, passing

cars on freeways, and relatively few slow moving scenes.

The quad and car are easier, as these vehicles are large and

cover part of the screen. Most optical flow algorithm do

well on tracking the the players vehicle. Bikes and bicycles

walk bicycle bike quad car KITTI

51.3 96.0 87.7 60.0 70.0 27.7

Table 2: Average pixel displacement for different activities.

method walk bicl. bike quad car mean

Mean flow 3.25 6.04 4.15 5.77 3.11 4.46

FlowNet 2 (I) 83.11 36.02 38.65 50.52 35.99 48.86

FlowNet 2 (A) 86.75 38.48 40.12 51.45 39.71 51.30

FlowFields (I) 66.07 29.49 27.56 36.93 26.97 37.40

FlowFields (A) 76.65 34.47 32.96 41.26 36.94 44.46

Table 3: Flow accuracy in percent for a threshold of 5px,

for four splits of our dataset, higher is better. I refers to flow

computed on the original image, A the albedo image.

cover little of the screen, and feature quickly moving han-

dles. Both walking and cycling scenes contain a significant

amount of camera shaking and turns as the game simulates

head motion. Table 2 measures the average flow magnitude

for all valid pixels in a scene. The flow magnitude in GTA

is significantly larger than KITTI, his is in part due to the

larger images size (2x), and the faster travel speed and cam-

era motion.

Table 3 compares state of the art optical flow algorithms

on our dataset. We compare FlowNet 2 [23] and Flow-

Fields [2], using the authors code and KITTI pre-trained

models. We additionally evaluate the performance of the

mean flow over the entire training set, as a constant base-

line. This constant flow baseline performs poorly and serves

as a lower bound. Analogous to KITTI [17], we evaluate

the flow accuracy at a threshold of 5px for all valid pix-

els, occluded or not. We run each algorithm on both the

original image, and the albedo image. Both algorithms per-

form slightly better with albedo. FlowNet 2 performs sig-

nificantly better on all metrics.

Next we compare monocular depth prediction baselines:

Depth in the Wild (DiW) [10] and Eigen et al. [14]. Both

are trained on the KITTI dataset. We follow the evalua-

tion metric used in DiW, and compute root mean squared

error (RMSE), log scale RMSE, and the scale invariant log

RSME. Table 4 summarizes the results. Neither of the two

models transferred well to our GTA data. We suspect this

might have to do with a slight viewpoint change between

KITTI and GTA. The KITTI camera is mounted on a car,

roughly two meters above ground, while the GTA camera

is hood mounted one meter above ground, or at the play-

ers head position, one and a half meter above ground. Both

depth models consistently predict the ground plane wrong.

method RMSE log-RMSE s.i. log-RMSE

Mean depth 7.12 0.575 0.084

Eigen et al. [14] 7.49 0.740 0.161

DiW [10] 7.09 0.624 0.085

Table 4: Monocular depth estimation errors: root mean

squared (RMSE), log RSME, and scale invariant log RSME.
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Figure 8: Action prediction using different modalities:

Albedo (A), Instance Boundaries (B), Depth (D), Optical

Flow (F) and the original Image (I). We measure classifica-

tion error in percent. Lower is better.

Finally, we evaluate state of the art intrinsic image de-

composition using the LMSE metric of Grosseet al. [20].

Direct Intrinsics [33] performed quite well with an LMSE of

0.077. Reflectance filtering [34] on the other hand didn’t, at

an LMSE of 0.086 with the original parameters, and 0.076
with highly tuned filter parameters. We suspect that the

original parameters were tuned for the keypoint based eval-

uation of the IIW dataset [5]. None of the keypoints in IIW

are selected close to discontinuities, hence excessive blur-

ring of the albedo image is less penalized in IIW.

In summary, the novel dataset is slightly more challeng-

ing for both depth, and optical flow estimation. However,

the data is easy to collect which will inspire larger and more

powerful depth, and optical flow prediction networks.

6. Applications

Since our data collection is real time, it can be used to

train autonomous driving agents. We follow Xu et al. [44]

and Bojarski et al. [6], and train an imitation learning agent

to act in GTA V. We limit ourself to 40k training images

that involve driving a car in GTA V. During the gameplay,

we record all actions performed by the auto-pilot: steer-left,

steer-right, brake, accelerate. We binarize all actions and

predict them using a classifier. Actions are heavily biased,

most time is spent driving forward, and relatively little time

goes into steering. This skewed distribution makes action

prediction easy. A blind classifier, that does not consider

the input, achieves an error rate of ∼ 4%. However looking

at the input, still improved accuracy significantly.

Here, we are particularly interesting in figuring out

which modalities help control and which ones don’t. We

use the albedo, depth, flow and color image as they were

provided by our wrapper. Unfortunately, since there is not

good way to feed instance segmentation directly into a deep

neural network, we use instance boundaries instead. For

each combination of modalities, we train a Network in Net-

work model [28] on images resized to 256×256. We follow

Xu et al., and use sigmoid cross entropy to predict the ac-

tions, and measure classification error at test time. We train

each model from scratch with a batch size of 32 and 100k

training iterations.

Figure 8 shows a summary of the results. To learn to act

in GTA V, the original image, or the albedo image are most

important. Depth or instance boundaries perform slightly

worse. Optical flow alone produces a poor driving agent.

This is in part due to the fact that optical flow is heavily in-

fluenced by camera motion, which at times can be distract-

ing. Combining the image with any other modality slightly

improved the imitation learning agent. Image and albedo

lead to the largest improvement, and depth and boundaries

closely follow. Combining all modalities performs best.

7. Discussion

In conclusion, we present a framework to extract ground

truth supervision from video games in real-time. The super-

visory signal is free and complementary to human annota-

tions. Our approach is general, and is not tied to first person

games. Thus far, we tried it on five video games: Fallout 4,

The Witcher 3, GTA V, FarCry Primal, Total War - Warham-

mer. On all we were able to extract the image, albedo, and

depth. On four, we can obtain instance segmentation and a

semantic labeling. For GTA we additionally obtain optical

flow, and occlusion boundaries. This can help research for

general video game AIs. Figure 9 shows an example from

the strategy game Total War - Warhammer. It took 30 min-

utes to hack the game and capture instance segmentations at

30 Hz.
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