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Abstract

It is desirable to train convolutional networks (CNNs) to

run more efficiently during inference. In many cases how-

ever, the computational budget that the system has for in-

ference cannot be known beforehand during training, or

the inference budget is dependent on the changing real-time

resource availability. Thus, it is inadequate to train just

inference-efficient CNNs, whose inference costs are not ad-

justable and cannot adapt to varied inference budgets. We

propose a novel approach for cost-adjustable inference in

CNNs - Stochastic Downsampling Point (SDPoint). During

training, SDPoint applies feature map downsampling to a

random point in the layer hierarchy, with a random down-

sampling ratio. The different stochastic downsampling con-

figurations known as SDPoint instances (of the same model)

have computational costs different from each other, while

being trained to minimize the same prediction loss. Shar-

ing network parameters across different instances provides

significant regularization boost. During inference, one may

handpick a SDPoint instance that best fits the inference bud-

get. The effectiveness of SDPoint, as both a cost-adjustable

inference approach and a regularizer, is validated through

extensive experiments on image classification.

1. Introduction

Convolutional networks (CNNs) [7] have greatly accel-

erated the progress of many computer vision areas and ap-

plications in recent years. Despite their powerful visual rep-

resentational capabilities, CNNs are bottlenecked by their

immense computational demands. Recent CNN architec-

tures such as Residual Networks (ResNets) [10, 11] and

Inception [36] require billions of floating-point operations

(FLOPs) to perform inference on just one single input im-

age. Furthermore, as the amount of visual data grows, we

need increasingly higher-capacity (thus higher complexity)

CNNs which have shown to better utilize these large visual

data compared to their lower-capacity counterparts [35].

There have been works which tackle the efficiency is-

sues of deep CNNs, mainly by lowering numerical preci-

sions (quantization) [16, 29, 43], pruning network weights

[8, 23, 41, 12, 25], or adopting separable convolutions [18,

3, 40]. These methods result in more efficient models which

have fixed inference costs (measured in floating-point oper-

ations or FLOPs). Models with fixed inference costs cannot

work effectively in certain resource-constrained vision sys-

tems, where the computational budget that can be allocated

to CNN inference depends on the real-time resource avail-

ability. When the system is lower in resources, it is prefer-

able to allocate a lower budget for more efficient or cheaper

inference, and vice versa. Moreover, in some cases, the ex-

act inference budget cannot be known beforehand during

training time.

As a simple solution to such a concern, one could train

several CNN models such that each has a different inference

cost, and then select the one that matches the given budget at

inference time. However, it is extremely time-consuming to

train many models, not to mention the computational stor-

age required to store the weights of many models. In this

work, we focus on CNNs whose computational costs are

dynamically adjustable at inference time. A CNN with cost-

adjustable inference only has to be trained once, and it al-

lows users to control the trade-off of inference cost against

network accuracy/performance. The different inference in-

stances (each with different inference cost) are all derived

from the same model parameters.

For cost-adjustable inference in CNNs, we propose a

novel training method - Stochastic Downsampling Point

(SDPoint). A SDPoint instance is a network configuration

consisting of a unique downsampling point (layer index) in

the network layer hierarchy as well as a unique downsam-

pling ratio. As illustrated in Fig. 1, at every training itera-

tion, a SDPoint instance is randomly selected (from a list of

instances), and downsampling happens based on the down-

sampling point and ratio of that instance. The earlier the

downsampling happens, the lower the total computational

costs will be, given that spatially smaller feature maps are

cheaper to process.

During inference, a SDPoint instance can be determinis-

tically handpicked (among the SDPoint instances seen dur-

ing training) to match the given inference budget. Existing

approaches [22, 38, 20] to achieve cost-adjustable inference
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Figure 1: Progression of feature map spatial sizes during training of a (Left) conventional CNN, (Right) with SDPoint. The

costs here refer to computational costs measured in numbers of floating-point operations (FLOPs).

in CNNs work by evaluating just subparts of the network

(e.g., skipping layers or skipping subpaths), and therefore

not all network parameters are utilized during cheaper in-

ference. In contrast to existing approaches, SDPoint makes

full use of all network parameters regardless of the infer-

ence costs, thus making better use of network represen-

tational capacity. Moreover, the (scale-related) parameter

sharing across the SDPoint instances (each with a different

downsampling and downsampling ratio) provides signifi-

cant improvement in terms of model regularization. On top

of these advantages, SDPoint is architecture-neutral, and it

adds no parameter or training overheads. We carry out ex-

periments on image classification with a variety of recent

network architectures to validate the effectiveness of SD-

Point in terms of cost-accuracy performances and regular-

ization benefits. The code to reproduce experiments will be

released.

2. Related Work

Cost-adjustable Inference: One representative method to

achieve cost-adjustable inference is to train “intermediate”

classifiers [22, 21, 38] which branch out of intermediate

network layers. A lower inference cost can be attained

by early-exiting, based on the intermediate classifiers’ out-

put confidence [22] or entropy [38] threshold. The lower

the threshold is, the lower the inference cost will be, and

vice versa. In [22], intermediate softmax classifiers are

trained (second stage) after the base network has been com-

pletely trained (first stage). The downside of [22] is that

the intermediate classifier losses are not backpropagated for

fine-tuning the base network weights. To make the net-

works more aware of intermediate classifiers, BranchyNet

[38] has intermediate classifiers (each with more layers per

branch than [22]) and final classifier trained jointly, us-

ing a weighted sum of classification losses. Unlike these

works, our SDPoint method relies on the same final clas-

sifier for different inference costs. FractalNets [20] which

are CNNs designed to have many parallel subnetworks or

“paths” which can be stochastically dropped for regulariza-

tion during training. For cost-adjustable inference, some

FractalNet’s “paths” can be left out. But the path-dropping

regularization gives inconsistent/marginal improvements if

data augmentation is being used.

Stochastic Regularization: Our work is closely related

to stochastic regularization methods which apply certain

stochastic operations to network training for regularization.

Dropout [34] drops network activations, while DropCon-

nect [39] drops network weights. Stochastic Depth [15] al-

lows nonlinear residual building blocks to be dropped dur-

ing training. Swapout [33] allows elementwise Bernoulli

random variables, for each of the residual network func-

tion separately. These 4 methods are similar in the way that

during inference, all stochastically dropped elements (acti-

vations, weight, residual blocks) are to be present. For any

of the methods, its different stochastic instances seen during

training have rather comparable forward pass costs, making

them unfit for cost-adjustable inference.

Multiscale parameter-sharing: Multiscale training of

CNNs, first introduced by [9] is quite similar to SDPoint.

In the training of [9], the network is trained with 224× 224
and 180 × 180 images alternatively (one scale per epoch).

The same idea has also been applied to CNN training for

other tasks [2, 30]. While multiscale training downsam-

ples the input images to different sizes, SDPoint only down-

samples feature maps (at feature level). Downsampling at

feature level encourages earlier network layers to learn to

better preserve information, to compensate for loss of spa-

tial information caused by stochastic downsampling later.

This does not apply to multiscale training, where the input

images are downsampled through interpolation operations

which happen before network training takes place.

3. Preliminaries: Conventional CNNs with

Fixed Downsampling Points

Conventionally, downsampling of feature maps happens

in CNNs at several predefined fixed locations/points in the

layer hierarchy, depending on the architectural designs.

For example, in ResNet-50, spatial pooling (happens af-
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ter the first ReLU layer, and after the last residual block)

and strided convolutions (or convolution with strides > 1
which happens right after the 3rd, 7th, and 13th residual

blocks) are used to achieve downsampling. Between these

downsampling layers are network stages. Downsampling in

CNNs trades low-level spatial information for richer high-

level semantic information (needed for high-level visual

tasks such as image classification) in a gradual fashion.

During network inference, these fixed downsampling

points have to be followed exactly as how they are config-

ured during training, for optimal accuracy performance. In

this work, we go beyond fixed downsampling points - we

develop a novel stochastic downsampling method named

Stochastic Downsampling Point (SDPoint) which does not

restrict downsampling to happen every time at same fixed

points in the layer hierarchy. The proposed method is com-

plementary to the fixed downsampling points in existing

network architectures, and do not replace them. SDPoint

can be simply plugged into existing network architectures,

and no major architectural modifications are required.

4. Stochastic Downsampling Point

A Stochastic Downsampling Point (SDPoint) instance

has a unique downsampling point p ∈ Z and a unique down-

sampling ratio r ∈ R which are stochastically/randomly se-

lected during network training. A p and a r are stochasti-

cally selected at the beginning of each network training iter-

ation, and downsampling occurs to the selected point (based

on the selected ratio) for all samples in the current training

mini-batch. The downsampling points and a downsampling

ratios will be discussed more thoroughly in the upcoming

sections. Downsampling is performed by a downsampling

function D(·) which makes use of some downsampling op-

erations. When the selected point falls at the lower layer

in the layer hierarchy, the downsampling happens earlier

(in the forward propagation), causing quicker loss of spa-

tial information in the feature maps, but more computation

savings. Conversely, spatial information can be better pre-

served at higher computational costs, if the stochastic down-

sampling happens later.

SDPoint can effectively turn the feature map spatial sizes

right before prediction layers to be different from original

sizes, and this could cause shape incompatibility between

the prediction layer weights (as well as labels) and the con-

volutional outputs (before prediction layers). To prevent

this, we preserve the feature map spatial size in the last net-

work stage, regardless of stochastic downsampling taking

place or not, by adjusting convolution strides and/or pool-

ing sizes accordingly. For example, in image classification

networks, we consider the global average pooling layer [24]

and the final classification layer to be the last network stage.

Therefore, regardless of the spatial size (variable due to SD-

Point) of the incoming feature maps, we globally pool them

to have spatial size of 1× 1.

4.1. Downsampling Operation

As discussed in Sect. 3, the downsampling operation

employed in D(·) can be either pooling [1] (average or

max variations) or strided convolution. We opt for average

pooling (the corresponding downsampling function is de-

noted as Davg(·)), rather than strided convolutions or max

pooling for several reasons. Strided convolutions are the

preferred way to do downsampling in recent network ar-

chitectures, because they add extra parameters (convolution

weights) and therefore improving the representational capa-

bility. In this work, we want to rule out the possible perfor-

mance improvements from increase in parameter numbers

(rather than the SDPoint itself). Moreover, strided convo-

lutions with integer-valued strides cannot work well with

arbitrary downsampling ratios (see Sect. 4.3). On the other

hand, average pooling is preferred over max pooling in this

paper due to the fact that max pooling itself is a form of non-

linearity. Using max pooling as the downsampling opera-

tion could either push for a greater non-linearity in the net-

work (positive outcome) which is unfair to the baselines, or

could exacerbate the vanishing gradient problem [13] com-

monly associated with deep networks (negative outcome).

Besides, the effectiveness of average pooling has been val-

idated through its extensive roles in recent CNN architec-

tures (e.g., global average pooling [24, 10], DenseNets’

transition [14]).

4.2. Downsampling Points

At every training iteration, a downsampling point p for

a SDPoint instance can be drawn from a discrete uniform

distribution on a set of predefined downsampling point in-

dices P = {0, 1, 2, ...,N -1,N}, with N + 1 number of

points. In this work, the downsampling point candidates

are the points between two consecutive CNN “basic build-

ing blocks”, mirroring the placements of fixed downsam-

pling layers in conventional CNNs. We keep the original

network (without stochastic downsampling) as an instance

by assigning the index p = 0 to it, so that we can perform

full-cost inference later. Let F (·) denote the function car-

ried out by the i-th basic building block, wi denote the net-

work weights involved in the block. For a given input xi

and downsampling ratio r, the downsampling is carried out

as following:

yi = Davg(F (xi;wi); si, r) (1)

to obtain the output yi. The downsampling switch denoted

as si ∈ {True,False} is turned on if p = i.

For non-residual CNNs (e.g., VGG-Net [32]), the ba-

sic building block comprises 3 consecutive convolutional,

Batch Normalization (BN) [17], non-linear activation lay-

ers. On the other hand, for residual networks, residual
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blocks are considered as the basic building blocks. the

downsampling point p can be stochastically selected to be

any point between any 2 basic building blocks in the net-

work, where downsampling happens. Since a residual block

involves two streams of information - (i.) the identity skip

connection and (ii.) the non-linear function consisting of

several network layers, we apply stochastic downsampling

function Davg(·) to the point right after the residual addition

operation. We also experiment with Densely Connected

Networks (DenseNets) [14] in this paper. For DenseNets,

the SDPoint downsampling points are the points right be-

hind each block concatenation operation, mirroring the fixed

downsampling in DenseNets.

In principle, each mini-batch sample could have its

unique downsampling point pi (for stronger stochasticity),

but due to practical reasons (e.g., training efficiency, ease

of implementation), we resort to using the same pi for all

samples in a mini-batch. While it is possible to have more

than one downsampling points in each training iteration,

the number of possible combinations or SDPoint instances

would become excessively large. Some of the instances

would deviate too much from the original network, in terms

of computational cost and accuracy performance. We opt

for single stochastic downsampling point in this work.

4.3. Downsampling Ratios

We consider a set of downsampling ratios R, which

the SDPoint instance can stochastically draw a downsam-

pling ratio r from, for use at current training iteration. As

with Sect. 4.2, downsampling ratios are drawn accord-

ing to discrete uniform distributions. The ratios cannot be

too low that they hamper the training convergence (due to

parameter-sharing unfeasibility). And, we consider only a

small number of downsampling ratios in R to prevent an

excessive number of SDPoint instances, which would cause

great difficulty in experimentally evaluating all SDPoint in-

stances for cost-adjustable inference. A recent experimental

study [26] on CNNs finds that it is sufficient to make quali-

tative conclusions about optimal network structure that hold

for the full-sized (224 × 224 image resolution) ImageNet

[31] classification task, by using just 128 × 128 (roughly

half the original resolution) input images. Conceivably, the

same network structure/architecture that works well with a

certain image resolution is likely to work well with a resolu-

tion double/half of that. Motivated by the above-mentioned

heuristics and experimental finding, we come up with the

downsampling ratio set R = {0.5, 0.75}. The same ratios

have also been used by [2] for “multiscale-input” semantic

segmentation. The same hyperpameter R is used across all

experiments in this paper.

Downsampling with such fractional downsampling ra-

tios cannot be trivially achieved with integer-valued pooling

hyperparameters. For example, pooling a 28 × 28 feature

map to a 21 × 21 one (with r of 0.75 and minimal over-

laps) cannot be easily done by tuning just the pooling size

and stride. To this end, we adopt a spatial pooling strat-

egy (which works along with the pooling choice in Sect.

4.1) akin to that of Spatial Pyramid Pooling [9] that gener-

ates fixed-length representation via adaptive calculations of

pooling sizes and strides.

Algorithm 1 : Training with SDPoint

1: P = {0, 1, 2, ...,N -1,N} ⊲ Downsampling Points

2: R = {0.5, 0.75} ⊲ Downsampling Ratios

3: while given a training mini-batch x do

4: Randomly draw p from P

5: Randomly draw r from R

6: x1 = x

7: for i ∈ {1, 2, ...,N -1,N} do ⊲ Forward pass

8: if i == p then si = True else si = False

9: xi+1 = Davg(F (xi;wi); si, r)
10: end for

11: Compute loss with xN+1

12: Backward pass

13: Parameter updates

14: end while

4.4. Training with SDPoint

SDPoint gives rise to a new training algorithm for CNNs.

The training algorithm consolidating all the previously in-

troduced SDPoint concepts is given in Algorithm 1. F (·)
denotes the generic nonlinear building network block in

CNNs. For simplicity sake, we omit the other network lay-

ers which are not basic building blocks - typically the start-

ing and ending layers. In a nutshell, Algorithm 1 shows

that whenever a building block index i is equal to the down-

sampling point p, the downsampling switch s is turned on.

Stochastic downsampling then happens to the output of i-th

building block, with the stochastic downsampling ratio r. It

is important to point out that the (stochastic) downsampling

does not happen, if p is drawn to be 0, allowing the network

to work in its original “unadulterated” form.

4.5. Regularization

SDPoint can be seen as a regularizer for CNNs. When

stochastic downsampling takes place, the receptive field

size becomes larger and it causes a sudden shrinkage of

spatial information in the feature maps. The network has

to learn to adapt to such variations during training, and per-

form parameter-sharing across the downsampled feature

maps and the originally sized feature maps (when p = 0).

In addition to robustness in terms of receptive field size and

spatial shrinkage, SDPoint also necessitates the convolu-

tional layers to accommodate for different “padded pixel to

non-padded pixel” ratios. For example, applying a 3 × 3
convolutional filter (with zero-padding of 1) to a 8× 8 fea-
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ture map gives a padded-pixel ratio of 0.44, compared to

0.56 ratio resulted from applying the same filter to 6 × 6
feature map. Zero-padded pixels are quite similar to the

zero-ed out activations caused by Dropout [34], in the sense

that they both are missing values. Thus, a higher padded-

pixel ratio is akin to having a higher number of dropped-out

activations, vice versa. This form of variation provides fur-

ther regularization boost. Experimentally, we find that even

with the use of heavy data augmentation - such as “scale +

aspect ratio” augmentation [37, 36], SDPoint can still help.

5. Cost-adjustable Inference

A network that can perform inference at different

computational costs depending on the user requirements,

is considered to be capable of cost-adjustable inference.

Opting for a lower inference cost usually results in a lower

prediction accuracy, and vice versa. SDPoint naturally

supports cost-adjustable inference, given that SDPoint

instances have varying computational costs, given the

different downsampling point locations and downsampling

ratios. More importantly, the instances have all been trained

to minimize the same prediction loss, and this helps them

to work relatively well for inference. During inference, one

may handpick a SDPoint instance (with its downsampling

point p and downsampling ratio r) to make the inference

cost fit a particular inference budget.

5.1 Instance-Specific Batch Normalization As men-

tioned in Sect. 4, SDPoint instances are trained in such a

way that every training mini-batch and iteration shares the

same SDPoint instance. For a SDPoint instance, the pre-

diction and loss minimization during training are based on

the Batch Normalization (BN) statistics (means and stan-

dard deviations) of that particular instance. Therefore, us-

ing the BN statistics accumulated over many training itera-

tions (and thus many different SDPoint instances) for infer-

ence causes inference-training “mismatch”. A similar form

of inference-training “mismatch” caused by BN statistics

has also been observed by [33] in another context. The BN

statistics required for one SDPoint instance should differ

from that of another instance. When using the same (accu-

mulated) BN statistics to perform cost-adjustable inference,

the inference accuracies could be jeopardized.

To address the “mismatch” issue, we compute SD-

Point instance-specific BN statistics, and use them for cost-

adjustable inference. Disentangling the different SDPoint

instances by unsharing BN statistics makes the inference

more accurate. The computational storage overhead re-

sulted from instance-specific BN statistics is relatively low,

as BN statistics of some earlier layers can be shared among

certain SDPoint instances that downsample at later layers.

6. Experiments

Experiments are carried out on image classification tasks

to evaluate SDPoint. We consider image classification

datasets with varying dataset scales in terms of numbers of

categories/classes and sample counts: CIFAR-10 [19] (50k

training images, 10k validation images, 10 classes), CIFAR-

100 [19] (50k training images, 10k validation images, 100

classes), ImageNet [31] (1.2M training images, 50k valida-

tion images, 1000 classes). For inference cost comparison,

we measure the model costs in terms of floating-point op-

eration numbers (FLOPs) needed for forward propagation

of single image. We treat addition and multiplication as 2

separate operations. Implementations are in PyTorch [27].

6.1. CIFAR

For CIFAR-10 and CIFAR-100, the baseline archi-

tectures are Wide-ResNet [42] (WRN-d28-w10 and

WRN-d40-w4) and DenseNetBC-d40-g60 [14]. ‘d’, ‘w’,

‘g’ stand for the network depth, widen factor of WRN, and

growth rate of DenseNetBC, respectively. The training

hyperparameters (e.g., learning rates, schedules, batch

sizes, augmentation) follow the ones in original papers,

except for training epoch numbers which we fix to 400 for

all. The original learning rate schedules still apply (e.g.,

learning rates are dropped at 50% and 75% of total number

of training epochs). The numbers of SDPoint downsam-

pling points (N ) for {WRN-d28-w10, WRN-d40-w4, and

DenseNetBC-d40-g60} are {12, 18 ,12} respectively. As

mentioned in Sect. 4.3, the downsampling ratios are drawn

uniformly from R = {0.5, 0.75}.

6.1.1 Baseline Comparison: We compare SDPoint

with some baseline methods related to ours, in terms of

cost-adjustable inference performance. The classification

error-cost performance plots on CIFAR-10 and CIFAR-100

are shown in Fig. 2. Note that for SDPoint and baseline

methods, not all instances of the same model appear on the

plots; if a higher-cost instance performs worse than any

lower-cost instance, it is not shown. Each model (evaluated

on a dataset) is trained only once to obtain its cost-error plot.

(i) Early-Exits (EE): We train models based on the WRN

with intermediate classifiers (branches) which allow early-

exits (EE), following the design of BranchyNet [38]. Each

network stage in the main network has two evenly spaced

branches, and the branches each have single-repetition of

building block per branch network stage. The blocks in the

branches follow the same hyperparameters (e.g., #channels)

as the blocks in the original network. For cost-adjustable

inference, we evaluate every branch, and make all samples

“exit” at the same branch. The early-exit models have con-

siderably more parameters than both the baseline models

and SDPoint-based models. We conjecture that the rela-
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Figure 2: WRNs’ and DenseNetBC’s cost-error plots on CIFAR-10 (Top) and CIFAR-100 (Bottom). It is observed that

models trained with SDPoint consistently outperform their non-SDPoint counterparts, given the same computational budgets.

tively worse performance of EE is due to lack of full net-

work parameter ultilization. Also, EE forces CNN features

to be classification-ready in early stage, thus causing higher

layers to rely heavily on the classification-ready features,

instead of learning better features on their own.

(ii) Multiscale Training (MS): Multiscale (MS) training

is a baseline method inspired by [9, 2, 30]. The input

images are downsampled using bilinear interpolations, to

an integer-valued size randomly chosen from sizes ranging

from half (16 × 16) to full size (32 × 32), with step size

of 1 pixel. This is done for every training iteration, similar

to SDPoint. The number of “instances” (16) resulted from

multiscale training is close to the downsampling point num-

bers of applying SDPoint to WRNs and DenseNetBC(s).

Also, the ranges of cost-adjustable inference costs among

them are comparable. Instance-specific BN statistics are ap-

plied. The cost-adjustable performance of MS consistently

trails behind that of SDPoint, as input downsampling causes

more drastic information loss than feature map downsam-

pling (see Sect. 2).

(iii) Uniform Batch Normalization (UBN): To validate

the effectiveness of SDPoint instance-specific BN, we show

the results of a SDPoint baseline whose BN statistics are

averaged from many training iterations, and are uniform

for all of its instances. There are consistent classification

performance gaps between using UBN statistics and

instance-specific BN statistics, suggesting that it is prefer-

able to keep instance-specific statistics for inference.

6.1.2 State-of-the-art Comparison: Table 1 reports

the CIFAR validation results of state-of-the-art (SOTA)

ResNeXt [40] and DenseNetBC [14] models, for com-

parison with ours. For each SDPoint-enabled model, we

show the results (giga-FLOPs, classification errors) from

Model # Params GFLOPs CIFAR-10 CIFAR-100

ResNeXt-d29-c08 [40] 34.4M 10.8 3.65 17.77

ResNeXt-d29-c16 [40] 68.1M 21.4 3.58 17.31

DenseNetBC-d250-g24 [14] 15.3M 10.1 3.62 17.60

DenseNetBC-d190-g40 [14] 25.6M 18.7 3.46 17.18

WRN-d40-w4 [42] 8.9M 2.6 4.29 20.78

WRN-d40-w4 [42] 8.9M 2.5/2.6 3.73 19.55

with SDPoint (↓ 0.56) (↓ 1.23)

WRN-d28-w10 [42] 36.5M 10.5 3.84 18.51

WRN-d28-w10 [42] 36.5M 6.5/10.1 3.35 17.53

with SDPoint (↓ 0.49) (↓ 0.98)

DenseNetBC-d40-g60 [14] 4.3M 3.6 3.99 20.00

DenseNetBC-d40-g60 [14] 4.3M 2.7/3.6 3.39 19.25

with SDPoint (↓ 0.60) (↓ 0.75)

Table 1: CIFAR-10 and CIFAR-100 validation errors (%).

The GFLOPs with 2 values separated by “/” are for CIFAR-

10 and CIFAR-100 respectively.
Model Error(%)/Deterministic Error(%)/Stochastic

WRN-d28-w10 18.51 -

*with Dropout [34] 18.05 17.98

*with Swapout [33], Linear(1,0.5) 20.55 18.68

*with Swapout [33], Linear(1,0.8) 19.21 18.65

*with SDPoint 17.53 17.20

Table 2: Deterministic and stochastic inference results of

training WRN-d28-w10 [42] with different stochastic train-

ing methods on CIFAR-100.

the best-performing SDPoint instance among its instances.

Notably, WRN-d28-w10 with SDPoint is competitive to

SOTA models on CIFAR-100, and it outperforms them

on CIFAR-10. Overall, SDPoint considerably improves

classification performance without bringing in additional

parameters and computational costs, unlike the SOTA

models which require about 2× model complexity to

attain slight improvements. In fact, the best SDPoint-

enabled models on CIFAR-10 have reduced inference costs

(FLOPs). We reckon that a prolonged preservation of

spatial details (i.e., no early downsampling) in CNN feature

maps is not crucial to a dataset with relatively low label

complexity such as CIFAR-10. This reveals a drawback
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Model # Params GFLOPs Top-1 Top-5

ResNeXt-d101-c64 [40] ∼89M ∼32 20.4 5.3

DenseNetBC-d264 [28] ∼73M ∼26 20.4 -

ResNeXt-d101-c32 [40] 44.3M 16.0 21.2 5.6

ResNeXt-d101-c32 [40] 44.7M 15.7 22.2 5.9

with Stochastic Depth [15] (↑ 1.0) (↑ 0.3)

ResNeXt-d101-c32 [40] 44.3M 16.0 20.4 5.3

with SDPoint (↓ 0.8) (↓ 0.3)

PreResNet-d101 [11] 44.7M 15.7 22.0 6.1

PreResNet-d101 [11] 44.7M 15.7 22.8 6.4

with Stochastic Depth [15] (↑ 0.8) (↑ 0.3)

PreResNet-d101 [11] 44.7M 15.7 21.4 5.6

with SDPoint (↓ 0.6) (↓ 0.5)

PreResNet-d101 [11] 45.0M 11.1 24.4 7.2

with SACT [4]

PreResNet-d101 [11] 44.7M 7.7 24.3 7.2

with SDPoint

Table 3: ImageNet top-1 and top-5 validation errors (%),

with model parameter numbers and giga-FLOPs (GFLOPs).

of current practice of using CNNs in “one-size-fits-all”

fashion.

6.1.3 Stochastic Training and Inference: Since our

method is related to the stochastic training family, we exper-

imentally compare SDPoint with Dropout [34] and Swapout

[33] (using 2 linear decay rules suggested), with WRN-d28-

w10 as the baseline and CIFAR-100 dataset. The results are

given in Table 2. Stochastic inference was proposed by [33]

as a way to tackle the poor interaction of Swapout/Dropout

with BatchNorm. For fair comparison, we report also the re-

sults of performing stochastic inference (50 trials). In both

deterministic and stochastic inference settings, we find that

SDPoint outperforms the rest.

6.2. ImageNet

We consider ResNeXt-d101-c32 [40] and PreResNet-

d101 [11] as baseline architectures. ‘c’ stands for

ResNeXt’s cardinality. With SDPoint, there are 33 down-

sampling points (N ) per model. We train the models

on ImageNet-1k [31] training set, and evaluate them on

the validation set (224×224 center crops). All models

are trained using training hyperparameters and “scale +

aspect ratio” augmentation [37] similar to [40]. Note that

we do not allocate more training epochs to models with

SDPoint. The cost-error plots are given in Fig. 3 and 4,

for PreResNet-d101 and ResNeXt-d101-c32 respectively,

along with some fixed-cost & carefully designed1 baseline

models from the same architecture families. Overall,

models trained with SDPoint can roughly match the per-

formance of baseline models in the lower-cost range, and

surpass them in the upper-cost range. Notably, to obtain

cost-error plots, SDPoint-enabled models only have to be

trained once. The baseline models are trained separately,

1model hyperparameters are carefully chosen by the authors [11, 40] to

optimize accuracy performances under some budget constraints.
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Figure 3: PreResNets’ [11] cost-error plots on ImageNet.

PreResNet-d101 (SDPoint) only has to be trained once (as a

single model), while the baseline models (without SDPoint)

has to be trained separately with huge training and storage

costs.
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Figure 4: ResNeXts’ [40] cost-error plots on ImageNet.

Like Fig. 3, any of ResNeXt-d101-c32 (SDPoint..) only

has to be trained once (as a single model).

resulting in a huge total number of epochs (#models ×
#epochs per model) and storage cost.

6.2.1 Ablation Study: We study the effects of choice of

SDPoint downsampling points and downsampling ratios on

cost-adjustable inference performance. For this, we train a

ResNeXt-d101-c32 with default SDPoint hyperparameters

(downsampling points at the end of every residual block,

downsampling ratios of {0.5,0.75}), as well as 2 baseline

models with (i) downsampling points at the end of every

other residual block dubbed alternate (ii) downsampling

ratio of just {0.75} dubbed 075. They are shown on

Fig. 4. Either removing the 0.5 downsampling ratio or

alternating blocks for downsampling gives worse results,

due to reduced stochasticity (and regularization strengths).

6.2.2 State-of-the-art Comparison: We compare

our models with SOTA ResNeXt-d101-c64 [40] and

DenseNetBC-d264-g48 [28] models in Table 3. SDPoint

pushes the top-1 and top-5 validation errors of ResNeXt-

d101-c32 down to 20.4% and 5.3% respectively, which are

(previously) only attainable by SOTA models with roughly

2× inference costs and parameter counts. We also display
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Figure 5: Some Imagenet validation examples grouped according to the minimum inference costs (FLOPs) required by

ResNeXt-d101-c32 (with SDPoint) to classify them correctly, in terms of top-5 accuracy. The ground-truth label names are

shown below their corresponding images.

the results (and mean FLOPs) of Spatially Adaptive Com-

putation Time (SACT) [4] paired with PreResNet-d101, and

compare it to a SDPoint instance of our PreResNet-d101

that achieves similar classification errors. SDPoint merely

needs 69% of FLOPs needed by SACT to achieve similar

results. SACT saves computation by skipping layers (and

network parameters) for certain locations in feature maps

according to learned policy and inputs, while SDPoint

downsamples feature maps to save computation (but

makes full use of network parameters & capacity during

inference). We contend that in cost-accuracy trade-off for

inference, reducing feature map spatial sizes is less harmful

to accuracy than skipping network parameters/layers. As

a regularization study, we train the 2 baseline models

with Stochastic Depth [15] (using suggested decay rule),

and find that they considerably degrade the classification

performance unlike SDPoint.

6.2.3 Analysis: We provide some analyses of ResNeXt-

d101-c32 (trained with SDPoint on ImageNet) with regards

to certain aspects of downsampling and SDPoint.

Cost-dependent misclassifications: We group ImageNet

validation images (which are correctly classified with

full inference cost) according to the minimum inference

costs required to classify them correctly, and present some

examples on Fig. 5. More difficult examples that require

higher inference costs (9.9, 16.0 GFLOPs) to be classi-

fied correctly, generally have size-dominant interfering

objects/scenes (e.g., hair dryer, cab, caldron,

cock, tench), in contrast to the easier examples (4.3

GFLOPs). Intuitively, pooling-based downsampling causes

more information loss to smaller objects than to larger

(size-dominant) objects, especially when it occurs at some

early layer, where the semantic/context information is

still relatively weak to distinguish objects of interest from

interfering objects. So, for those difficult examples, it

makes sense to preserve spatially informative object details

longer in the CNN layer hierarchy, and downsample the

feature maps only after they are semantically rich enough.

Scale sensitivity: Training CNNs with SDPoint involves

stochastic downsampling of intermediate feature maps,

which we hypothesize to be beneficial for scale sensitiv-

ity/invariance, as mentioned in Sect. 4.5. To validate this

hypothesis, we vary the pre-cropping2 sizes of ImageNet

validation images in the range of 256, ..., 352 with step size

of 16, resulting in 7 pre-cropping sizes. For every pre-

cropping size, 224× 224 center image regions are cropped

out for evaluation. The models involved are SDPoint-

enabled ResNeXt-d101-c32, and the baseline without SD-

Point. We compute the mean of all pairwise cosine simi-

larities (a total of 21 pairs) resulted from the different pre-

cropping sizes, in terms of ImageNet 1k-class probabil-

ity scores. This is done for entire ImageNet validation set.

The pairwise cosine-similarity mean obtained for baseline

model is 0.944, while for the SDPoint-enabled model, it is

0.961. A higher cosine similarity is a strong indicator of the

model being less sensitive to scales. This demonstrates that

SDPoint can indeed benefit CNNs, in terms of scale sensi-

tivity.

7. Conclusion

We propose Stochastic Downsampling Point (SDPoint),

a novel approach to train CNNs by downsampling inter-

mediate feature maps. At no extra parameter and training

costs, SDPoint facilitates effective cost-adjustable inference

and greatly improves network regularization (thus accuracy

performance). Through experiments, we additionally find

out that SDPoint can help to identify more optimal (yet less

costly) sub-networks (Sect. 6.1.2), sort input examples by

various levels of classification difficulties (Fig. 5), and mak-

ing CNNs less scale-sensitive (Sect. 6.2.3).
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2It is a standard practice [10, 11, 40, 14] to resize images to a shorter
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