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Abstract

We present a fast inverse-graphics framework for

instance-level 3D scene understanding. We train a deep

convolutional network that learns to map image regions to

the full 3D shape and pose of all object instances in the

image. Our method produces a compact 3D representation

of the scene, which can be readily used for applications like

autonomous driving. Many traditional 2D vision outputs,

like instance segmentations and depth-maps, can be obtai-

ned by simply rendering our output 3D scene model. We

exploit class-specific shape priors by learning a low dimen-

sional shape-space from collections of CAD models. We

present novel representations of shape and pose, that strive

towards better 3D equivariance and generalization. In or-

der to exploit rich supervisory signals in the form of 2D

annotations like segmentation, we propose a differentiable

Render-and-Compare loss that allows 3D shape and pose

to be learned with 2D supervision. We evaluate our method

on the challenging real-world datasets of Pascal3D+ and

KITTI, where we achieve state-of-the-art results.

1. Introduction

The term “scene understanding” has been used in com-

puter vision to broadly describe high-level understanding

of image content. A scene understanding algorithm builds

a compact representation of the image that is well-suited

for subsequent tasks. Traditional scene understanding algo-

rithms have primarily been used to assign semantic labels to

pixels or to output 2D bounding boxes around objects of in-

terest. However, such 2D representations are insufficient for

tasks like planning and 3D spatial reasoning. In this work,

we argue for the importance of a rich 3D scene model which

can reason about object instances.

A 2D image is a complex function of multiple attribu-

tes, such as the lighting, shape, and surface properties of

objects in the scene. An instance level 3D model provi-

des a representation of the scene that disentangles the 2D
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projection. This disentangled 3D representation makes our

method more suitable for real-world applications. The out-

put from our system can be directly used for tasks like path-

planning, or accurately predicting an object’s 3D location

in the future. Another major benefit of doing scene under-

standing with a rich 3D scene model is that traditional 2D

scene representations like segmentation, bounding box, and

2D depth-maps are all available for free. They can be gene-

rated by simply rendering the output 3D scene model. But

how do we invert the complex image formation process to

obtain the 3D scene model?

One classical approach to solving inverse problems

is analysis-by-synthesis. It consists of using a model that

describes the data generation process (synthesis), which is

then used to estimate the parameters of the model that ge-

nerated the particular observed data (analysis). Analysis-

by-synthesis with a 3D scene model is like “solving vision

as inverse-graphics”. Synthesis describes the process of

generating image content from the 3D scene model in the

style of computer graphics. Vision is then like analysis by

searching the best 3D scene configuration to explain the

observed image. The idea of analysis-by-synthesis can be

traced back to Helmhotz’s 1867 work on unconscious in-

ference [21], and it has a long history [3, 26, 61, 23, 9].

While conceptually elegant, it has only been successful for

a limited set of problems. This is due to the fact that useful

3D scene representations are high-dimensional. So analysis

then becomes a difficult search problem over a vast, high-

dimensional space of scene variables.

Recently there has been a re-emergence of the inverse-

graphics approach [11, 27, 44, 60, 51, 24, 25, 34], in which

an efficient, discriminative bottom-up method like a convo-

lutional network is used to cut down on the search space.

However, most of these approaches are still restricted to

simple scenes often containing only one object. In this work

we present an inverse-graphics approach which is capable

of handling complex real-world 3D scenes. Our approach

uses a deep convolutional network to map image regions to

3D representations of all object instances in an image.

To enable the inverse graphics approach to scale to com-

plex scenes, we made four key design choices: (i) Instead of
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using separately-trained models for the bottom-up and infe-

rence stages [25, 60, 34, 51], we employ a single unified

end-to-end trained network for inverse-graphics. We pro-

pose a differentiable Render-and-Compare loss that allows

the bottom up process to also obtain supervision from 2D

annotations. (ii) We factorize the scene into object instan-

ces with associated shape and pose, so the network can be

bootstraped with direct 3D supervision of shape and pose

whenever such data is available. This helps with network

convergence. Our method provides a disentangled repre-

sentation (shape and pose) of an object instance by design.

In contrast, other methods [27] have to explicitly train the

network to encourage disentanglement and interpretability

in latent parameters. We do not explicitly model lighting

and material properties, which are nuisance parameters for

our intended application of autonomous driving. (iii) We

exploit rich shape priors by learning a class-specific low-

dimensional embedding of shapes from CAD model col-

lections [5, 1]. The low-dimensionality of shape-space ma-

kes the learning task easier and allows for efficient back-

propagation through the Render-and-Compare loss. Additi-

onally, the shape prior enables a complete (amodal) recon-

struction of an object, even for parts of the object which are

occluded. (iv) We carefully study equivariance [18, 28, 22]

demands for predicting 3D shape and pose from an image

region of interest (RoI). Since shape and pose are 3D en-

tities, normalization of these parameters w.r.t. to 2D RoI

transformations is not possible in the same manner as is

done for 2D entities like bounding box parameters and in-

stance segmentation [18]. Instead, we capture the 2D trans-

formations performed by RoI pooling layers and feed them

to shape and pose classifiers.

Our core contribution is a fast inverse-graphics network

called 3D-RCNN, capable of estimating the amodal 3D

shape and pose of all object instances in an image. Our met-

hod achieves state-of-the-art performance in the complex

real world datasets of PASCAL3D+ [58] and KITTI [13].

2. Related Work

Many recent works have addressed instance-level 3D

scene understanding [36, 4, 6, 29, 38, 33, 50, 47, 56,

64, 35, 2, 63, 62, 12]. However, most of these approa-

ches [47, 50, 33, 38] only predict object orientation. When

it comes to shape, most methods either estimate only 3D

bounding boxes [36, 6, 12], or coarse wire-frame skele-

tons [29, 54, 63, 62], or represent shape via an exemplar

mesh chosen from a small set of meshes [4, 56, 35, 2]. In

contrast, we jointly learn the detailed 3D shape along with

pose. We make use of a compact parametric shape-space

which has much more capacity than a small set of exemplar

meshes and can even represent articulated objects.

There are also several works devoted specifically to

shape modeling, which learn shape via auto-encoders [59,

48, 15], generative adversarial networks [55], and non-

linear dimensionality reduction [40, 39]. In this paper, we

choose to adopt PCA for modeling rigid objects, since it

is simple and efficient. Our method is flexible enough to

incorporate other parametric shape models including arti-

culated shapes, provided they are continuous and relatively

low dimensional. We demonstrate the use of the SMPL [31]

shape model for articulated persons.

Modern rasterized rendering approaches like OpenGL

are fast, but lack a closed-form expression which makes it

harder to compute derivatives. It is also discontinuous at

occlusion boundaries. However, the recent works [32, 25,

43] have demonstrated efficient ways of obtaining approx-

imate derivatives. Chain-rule along with screen-space ap-

proximation around occlusion boundaries is used in [32],

while [25] uses numerical derivatives. However, both these

approaches [32, 25] used differentiable rendering in the

context of test-time optimization for refining certain task

parameters, initialized from a separately trained learning al-

gorithm. We also use numerical derivatives, but we use it for

computing gradients to back-propagate an end-to-end lear-

ned deep convolutional network. In the unsupervised shape

reconstruction work of Rezende et al. [43], gradients of an

OpenGL renderer were computed using [53]. However, it

was only demonstrated for very simple meshes.

A good majority of the related approaches, such as

[29, 36, 49, 54, 50, 47], process only a single object at a

time. This requires multiple passes of their network to cover

all objects in the image, which is prohibitively expensive.

Our method computes the 3D shape and pose of all objects

within a single forward pass of the network, and does not

involve any costly post-processing step. With a ResNet-50

backend, our model reconstructs the 3D shape and pose of

all object instances in an image in under 200ms, and is thus

suitable for real-time applications like autonomous driving.

3. Method Overview

Our goal is to recover the 3D shapes and poses of all

object instances within a given image. We assume that ob-

ject category detector outputs are given, and focus on the

challenging task of recovering the 3D parameters of object

instances from their 2D observations. A basic challenge

which must be addressed is how to represent shape and pose

in 3D. We encode object shape using a class-specific shape

prior – a low-dimensional “shape space” constructed from a

collection of 3D CAD models. This representation encodes

3D shapes of an object class using a small set of parame-

ters. The problem of estimating shape is then framed as

predicting an appropriate set of low dimensional shape pa-

rameters for a particular object instance.

We train a deep network that learns to solve the inverse

problem of mapping 2D image regions to the 3D shape and

pose parameters of an object. Fig.1 presents an overview of
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Figure 1: Our network architecture for instance-level 3D object reconstruction. We use ResNet-50-C4 [20] as backbone feature extractor.

Layers colored in gray are shared across classes. Render-and-Compare loss is described in §5.3. H∞ concatenation with RoI features for

3D shape and pose prediction is described in §5.1. Shape and Pose prediction modules are expanded on the right and described in §5.2.

our network. Since the final pose and shape prediction are

done on fixed-size feature-map cropped from a Region of

Interest (RoI), it is important to re-parametrize the traditio-

nal ego-centric object pose representation to an allocentric

one. Equally important is to not ask the network to directly

predict the location (distance) of the object, since it is a fun-

damentally ill-posed problem. We present our novel object

pose representation in §4.2. Real-world 3D ground-truth

data is difficult to collect. So, we leverage a differentia-

ble render-and-compare operation to exploit large existing

datasets with image-level annotations during training. We

achieve equivariance in 3D shape and pose estimation by

modeling the geometric distortion induced by RoI pooling.

The resulting network for 3D shape and pose estimation

from 2D image regions is trained end-to-end, and can le-

arn from both synthetic and real image data. The first stage

of the pipeline performs de-rendering of the input image to

obtain a compact 3D parametrization of the scene, followed

by render-and-compare operation. Once trained, the model

requires only a single very efficient forward pass to obtain

the shape and pose of all objects.

4. 3D Object Instance Representation

4.1. Shape space

We make use of rich shape priors available in the form of

large collections of 3D CAD models [1, 5]. 3D models in

standard mesh or volumetric representations are very high

dimensional. However, object instances belonging to the

same category tend to have similar shapes. The 3D shapes

of instances of the same object category lie on a much

lower-dimensional manifold. We exploit this by learning

a class-specific, low dimensional shape embedding space

from a collection of 3D CAD models. With the learned em-

bedding, the problem of reconstructing shapes is simplified

to finding the corresponding point in the low dimensional

embedding space that best describes the observed data.

Given a collection of CAD models, we first axis-align

them to a common rest pose. We also normalize the shape

vertices, such that longest diagonal is of unit length. Since

CAD models in mesh representations have arbitrary dimen-

sionality and topology, we convert each model to a volume-

tric representation s ∈ R
n with a fixed number of voxels

n. Each voxel in the volumetric representation s, stores a

truncated signed distance function (TSDF) [8].

Given a collection of t TSDF volumes, S = [s1, . . . , st]
generated from CAD mesh models, we use PCA to find

a ten dimensional shape basis, SB ∈ R
n×10. Since n is

very large and n ≫ t, it is important to use the dual form

of PCA [14]. Once we have learned SB, any TSDF shape

s, can be encoded to the low dimensional shape parameter

β = ST
B
s. Likewise, given shape parameters β ∈ R

10, we

can decode it to get back to TSDF space as s = SBβ. Some

points from our learned shape space of cars and motorcycles

are shown in Fig.2. We train our network to predict this low

dimensional shape parameter β ∈ R
10 from images.

There are several different methods for modeling 3D

shape space [40, 39]. We chose to adopt PCA since it is

simple and efficient. Our method is flexible to any other

parametric shape model including articulated shapes, pro-

vided it is relatively low dimensional. We demonstrate the

use of SMPL [31] for articulated persons in addition to para-

metric TSDF shape-space described above for rigid objects.

Since TSDF object shapes have unit diagonal length, we

apply a class-specific fixed scale computed as average dia-

gonal length of 3D box annotations on KITTI. Although it is

possible to learn a per-instance scale parameter, we avoided

it in our current framework for simplicity, as object scale

and distance are better estimated using multiple views.

Figure 2: Samples from shape-space of Car and Motorcycle.
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4.2. Pose Representation

We are interested in obtaining pose parameters for each

object instance in the full-image camera frame. This inclu-

des object root pose PE ∈ SE(3), made of an object’s 3D

orientation and position. For articulated objects, this inclu-

des additional joint angles j relative to the root pose PR.

Allocentric vs. Egocentric: Object orientation can be

egocentric (orientation w.r.t. camera), or allocentric (orien-

tation w.r.t. object). Since orientation is predicted on top

of an RoI feature-map (generated by cropping features on a

box centered on the object), it is better to choose an object-

centric (allocentric) representation for learning. We illus-

trate this with help of Fig.3. Consider a car moving across

the image from right to left in a straight line perpendicu-

lar to the camera axis. The azimuth of the car w.r.t. the

camera (egocentric) does not change, but the appearance

of the cropped RoI around the car changes significantly

as it moves from the right side of the image to the left.

Objects with similar allocentric orientation will also have

similar appearance. Therefore, an allocentric representa-

tion is equivariant w.r.t. to RoI image appearance, and is

better-suited for learning. We represent object orientation in

terms of viewpoint, which is an allocentric representation.

Viewpoint describes the relative camera orientation angles

v = [θ, φ, ψ] with the camera always looking towards the

center of the object (Fig.3(c)). θ, φ, ψ denotes the azimuth,

elevation, and tilt angles.

Figure 3: In (a) all cars in the image are at same egocentric orien-

tation w.r.t. camera, and yet there is significant appearance change.

The egocentric representation requires the network to predict the

same angle for different image appearances. In (b) all cars in the

image have the same allocentric orientation, and we do not see

any appearance change. Thus allocentric orientation is a better

representation for learning object orientation. In (c) and (d), we

illustrate the pose representation used in this paper (see §4.2).

Object Position: Directly estimating the 3D object posi-

tion from cropped and resized RoI features is fundamen-

tally an ill-posed problem. Humans are only able to esti-

mate depth from single image when the object is of a known

type, and is placed in context of a bigger background. For

this reason, we also do not task our network to directly esti-

mate the depth or 3D position of the object. We instead ask

our network to estimate the 2D projection of the canonical

object center c = [xc, yc, 1], and the 2D amodal bounding

box of the object a = [xa, ya, wa, ha] where (xa, ya) is the

center of the box and (wa, ha) denotes the size of the box.

These entities are easier to learn, and ground-truth data is

easy to obtain [30] or already available from real-world da-

tasets like KITTI [13] and Pascal3D+ [58].

Recovering Egocentric Pose: Given an object viewpoint

estimate v, the 2D projection of the object center c on the

image, an amodal box a around the object, and the camera

intrinsics Kc, we can easily obtain the egocentric 3D object

pose PE ∈ SE(3) w.r.t. to the camera. We first compute

the rotation Rc ∈ SO(3), between the camera principal axis

[0, 0, 1]T and the ray through the object center projection

K−1

c c. ThenRc = Ψ([0, 0, 1]T ,K−1

c c), where the function

Ψ(p, q) computes the rotation that takes vector p to align

with vector q: Ψ(p, q) = I + [r]× + [r]2×/ (1 + p · q),
where r = p × q. We denote Rv ∈ SO(3) as the rotation

matrix form of the viewpoint v. The object center distance

from camera d is computed such that the resulting shape

projection tightly fits the amodal box a. Then object pose

PE w.r.t. the camera is given by:

PE =

[

R t

0
T 1

]

where R = RcRv , t = Rc[0, 0, d]
T

5. 3D-RCNN Network Architecture

Our method adopts the Faster-RCNN/Network-on-

Convolution meta-architecture [41, 42, 16]. The network

consists of a shared backbone feature extractor for the full-

image, followed by region-wise sub-networks (heads) that

predict 3D shape and 3D pose in addition to traditional 2D

box and class label. Fig.1 provides an overview.

5.1. Striving for 3D Equivariance

As with any Fast-RCNN++ system, features from a RoI
of arbitrary size and location r = [xr, yr, wr, hr] are ex-
tracted from the shared feature-map and then resized to a
fixed resolution fw × fh (typically 14× 14). The fixed size
of the RoI features allows FC layers on top of the RoI featu-
res, to share weights in-between different RoIs performing
the same task. RoI feature extraction methods like RoI-
Pool [16] or RoI-Align [19], transform the original feature-
map with a 2D transformation to bring them to a fixed size.
This 2D transformation makes it necessary, for the targets
(e.g. 2D detection box targets) to be normalized w.r.t. RoI
box. Once we have a prediction of the target by the network,
they are un-normalized back for the final output. The same
is true for targets like 2D instance segmentation [18]. So for
the 2D targets amodal-box and center-proj in our network,
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we normalize them w.r.t. to RoI box r similar to [41, 16]:

amodal-box â =

[

xa − xr

wr
,
ya − yr

hr
, log

wa

wr
, log

ha

hr

]

center-proj ĉ =

[

xc − xr

wr
,
yc − yr

hr

]

However, such 2D normalization is not possible for 3D tar-

gets like shape and pose. This is problematic and destroys

equivariance, which is important for the task of shape and

pose estimation. We illustrate this in Fig.4. Our solution to

this problem is to provide the underlying 2D transformation

information to the classifiers for shape and pose prediction,

so that it can undo this 2D transformation.

Figure 4: All three persons in left image have the exact same

shape. In right, we show the corresponding RoI transformations

when done on the raw image. Since normalization of 3D para-

meters w.r.t. RoI is not possible, simply training the network to

predict same shape from these RoI features is sub-optimal.

We interpret the RoI crop and resize process, as an image

formed by a secondary, virtual RoI camera, that is rotated

from the original full-image camera to look directly at a ob-

ject, and having different intrinsics (zoomed-in with aspect-

ratio change). Assuming known full-image camera intrin-

sics Kc, we compute the RoI camera intrinsics Kr as:

Kc =





fx 0 px
0 fy py
0 0 1



 ,Kr =





fxfw/rw 0 fw/2
0 fyfh/rh fh/2
0 0 1





The rotation between the full-image camera and RoI camera

Rc is computed in same way as described in §4.2, using the

prediction of object center projection center-proj. The two

cameras Kc and Kr, under pure rotation Rc, is related by

the infinite homography matrix [17], H∞ = KrR
−1

c K−1

c .

H∞ captures the 2D transformation done by RoI pooling

layer, in addition to perspective distortion due to the ori-

ginal camera not directly looking at the center of the RoI.

We then concatenate the 9 parameters of H−1

∞ to the orgi-

nal RoI features before using them for 3D shape and pose

prediction. We denote this as H∞ concat. (see Fig.1). The

shape and pose targets, that our network learns to predict

are the original 3D shape and pose parameters [vT , jT ]T .

With the additional information of H−1

∞ they have a better

chance of learning the 3D shape and pose targets.

5.2. Direct 3D supervision

While it is possible to just use continuous regression

loss for pose and shape, classification loss obtained by first

discretizing the output-space into bins performs much bet-

ter [33, 36]. Classification over-parametrizes the problem,

and thus allows the network more flexibility to learn the

task. It also naturally allows us to bound the range of out-

puts. Pose angles need to be bounded in [−π, π] and each

shape parameters are bounded to [−3σ, 3σ]. However, one

disadvantage of classification is that the accuracy is limited

to the discretization granularity, set by the finite number of

bins used. We take best of the both by combining classifi-

cation and regression loss. We first perform soft argmax
with an additional temperature T on activations of the FC

layer. We then have a cross-entropy classification loss, and

L1 regression loss over expectation of the soft argmax pro-

babilities.

Assuming b bins for each shape parameter β ∈ β, and

β̃p to be the center of p-th bin, we compute β as

β =

b
∑

p=1

P p
β β̃p, P p

β =
exp(FC

p
shape/Tshape)

∑b
q=1

exp(FC
q
shape/Tshape)

(1)

where Pβ is the result of applying soft argmax with tem-

perature Tshape on activations of FCshape.

Since pose targets are actually angles which are periodic,

we have to instead take the complex expectation. Thus each

angle estimate θ ∈ [vT , jT ]T is computed as

θ = arg

(

b
∑

p=1

P p
θ e

iθ̃p

)

, θ̃p = 2π
p− 0.5

b
− π (2)

where Pθ like before is the result of applying softmax with

temperature on activations of FCpose. θ̃p is the center of the

p-th bin.

For both the shape and pose targets, we combine a cross-

entropy loss on the softmax output, along with L1 loss on

the continuous output after expectation:

Lshape = − log(P ∗
β ) + ‖β − β∗‖L1

(3)

Lpose = − log(P ∗
θ ) + ‖θ − θ∗‖L1

(4)

where β∗ and θ∗ are the continuous ground-truth shape

and pose parameters, and P ∗
β and P ∗

θ are the corresponding

softmax probabilities for the ground-truth bin.

Note that center-proj and amodal-bbx targets, are not re-

quired to be bounded like angles. Also, these targets are

normalized w.r.t. RoI, which has already gone through a dis-

cretization process via anchors [41] in the detection module.

So we simply use L1 loss fo these two 2D targets:

Lcenter-proj = ‖ĉ− ĉ
∗‖L1

, Lamodal-bbx = ‖â− â
∗‖L1

Equations (1) and (2) can also be interpreted as

soft argmax, and it approaches argmax as T → 0. We ini-

tialize the temperature parameters at 0.5 during training. An
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argmax estimate of shape and pose instead of soft argmax
would have prevented us to back-propagate gradients from

the Render-and-Compare layer, which is on top of shape

and pose parameters. Our loss formulation is different from

that of [36], which combines classification loss along with

regression of orientation offset, thus requiring additional

FC layers on top of classification FC layers. Our formula-

tion avoids non-differentiable operations like argmax, and

only introduces a scalar soft argmax temperature parame-

ter, which is much less than parameter-heavy FC layers.

5.3. RenderandCompare Loss

Once we have a compact 3D representation of the object,

it can be readily rendered from known camera calibration,

and compared with 2D annotations like instance segmenta-

tion, depth-map. This allows the network to obtain supervi-

sion from more easily obtainable 2D ground-truth data.

For each RoI, we have ground-truth 2D segmentation

mask Gs and/or 2D depth-map Gd. From the 3D shape and

pose prediction of each RoI, we render the corresponding

segmentation mask Rs, and depth-map Rd. In addition we

have known binary ignore masks Is and Id, which have va-

lue of one at pixels which does not contribute to loss. This

is useful to ignore pixels with no label, being occluded, or

with undefined depth value. In its generic form Render-

And-Compare loss measures the discrepancy between the

rendered and ground-truth image:

Lrender-and-compare = dJ(Rs, Gs; Is) + dL2(Rd, Gd, ; Id)

where dJ = 1 − J(Rs, Gs; Is) is the Jaccard distance,

complementary to the Jaccard index (segmentation IoU)

J(Rs, Gs; Is) between Rs and Gs.

However, standard 3D rendering is not differentiable.

We use finite difference to approximate the gradients. This

is feasible since non-photorealistic rendering is fast with

GPUs (∼10k FPS), and dimensionality of our 3D object re-

presentation (§4) is rather small. There exists other schemes

like OpenDR [32], SPSA [46] but we found simple central

derivatives to be effective and fast, since we avoid all CPU-

GPU memory transfer by making use of CUDA-OpenGL

interop functionality available in all recent GPUs. When

using TSDF shape space, we use volume ray-casting, while

SMPL shapes are rendered with traditional mesh rendering.

Render-and-Compare loss does not introduce any new

learn-able parameters, yet provides a joint structured loss

over all the shape and pose parameters of an object. Since

both shape and pose representations are low dimensional

and they can be readily rendered, computing gradients using

numerical derivatives is feasible. We note that compactness

(low dimensionality) of object representation, and fast ren-

dering are desirable properties in itself.

5.4. Training and Inference

Joint Multi-task Loss: The final joint loss objectiveLjoint

that our network minimizes is the combination of los-

ses of all the prediction targets = {shape, pose, center-

proj, amodal-bbx, render-and-compare}. So, Ljoint =
∑

τ∈targets λτLτ where the hyper-parameters λτ balances

individual terms. Depending on the data source, certain loss

terms will be unavailable. For example, we do not have

ground-truth shape for real-world data-samples.

Training: Starting with ImageNet [10] pre-training, we

first train our network on the synthetic images rendered

from CAD models similar to [47, 52]. Bootstrapping the

learning process with synthetic data helps in stabilizing and

speeding-up the learning, since we have ground-truth for all

shape and pose targets . Unlike [47, 52], we render mul-

tiple objects per-image and we use roughly 20K synthetic

images per class, compared to a million images per class

as in [47, 52]. After this bootstrapping, we then fine-tune

the network on KITTI and PASCAL datasets for our ex-

periments along with Render-and-Compare loss, whenever

such data is available. We use SGD for all our experiments,

and the network is trained end-to-end.

Inference: Our inference step is efficient and only invol-

ves a feed forward pass through the network, without any

post-processing or costly test time optimization steps. With

ResNet-50 backbone, our method produces full 3D shape

and pose of all objects in an image in under 200ms. In com-

parison to previous methods [50, 47], our method is >30x

faster (without considering the time for object detection),

and provides richer 3D outputs (both shape and pose)

6. Experiments

We benchmark our method on challenging PAS-

CAL3D+ [58] and KITTI [13] dataset. Apart from evalu-

ating on joint detection and pose estimation task, we also

provide controlled study for 3D pose estimation with fixed

object detection input. Our method achieves superior per-

formance on both PASCAL3D+ [58] and KITTI [13] da-

tasets, and outperformed all recent methods by a signifi-

cant margin. We focus our experiments on the two most

common object categories in urban scene: Car and Person.

These two object classes also covers both rigid (Car) and

articulated (Person) objects and thus demonstrates our met-

hod’s applicability to diverse shape and pose models. Fig.5

shows qualitative results on [52], by training our pipeline

for Person using our synthetic dataset (see §5.4). Additional

results, source code, shape-space models, and the synthetic

data are available at our project-page1.

1http://abhijitkundu.info/projects/3D-RCNN
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Figure 5: Qualitative comparison of our approach with [52] on recently released SURREAL [52] dataset. Note that [52] trains two distinct

conv-nets specific to the task of depth prediction and body parts segmentation. Our method predicts the 3D shape and pose of each body.

Depth and body pats segmentation are generated by simply rendering the predicted output shape from camera view.

Bicycle Motorcycle Car
Method

AV P4 AV P8 AV P16 AV P24 AV P4 AV P8 AV P16 AV P24 AV P4 AV P8 AV P16 AV P24

Pepik et al. [37] 43.9 40.3 22.9 16.7 31.8 32.0 16.7 10.5 36.9 36.6 29.6 24.6

Viewpoints & KeyPoints [50] 59.4 54.8 42.0 33.4 61.1 59.5 38.8 34.3 55.2 51.5 42.8 40.0

RenderForCNN [47] 50.5 41.1 25.8 22.0 50.8 39.9 31.4 24.4 41.8 36.6 29.7 25.5

Poirson et al. [38] 62.1 56.4 39.6 29.4 62.7 58.6 40.4 30.3 51.4 45.2 35.4 35.7

Massa et al. [33] 67.0 62.5 43.0 39.4 71.5 64.0 49.4 37.5 58.3 55.7 46.3 44.2

Xiang et al. [57] 60.4 36.3 23.7 16.4 60.7 37.0 23.4 19.9 48.7 37.2 31.4 24.6

Our method 74.3 67.2 51.0 42.1 74.4 72.3 52.2 47.1 71.8 65.5 55.6 52.1

Table 1: Joint detection and viewpoint evaluation on Pascal3D+ dataset [58] for Bicycle, Motorcycle, and Car category.

Method Accπ/6 ↑ MedErr ↓

Viewpoints & KeyPoints (TNet) [50] 0.90 8.8◦

Viewpoints & KeyPoints (ONet) [50] 0.89 9.1◦

RenderForCNN [47] 0.88 6.0◦

Deep3DBox (VGG16) [36] 0.90 5.8◦

Our method (VGG16) 0.94 3.4◦

Our method (ResNet50) 0.96 3.0◦

Table 2: Evaluation of viewpoint estimation with ground-truth de-

tections on Pascal3D+ [58] for Car. We also get significant impro-

vement when using VGG16 as backbone.

6.1. Analysis on Pascal3D+ dataset

We first evaluate our method on the primary PAS-

CAL3D+ task of joint detection and viewpoint estimation.

We report results using Average Viewpoint Precision (AVP)

under different quantization of the angles, as proposed

by [58]. Our results are listed in Table 1. We additionally

include results for the categories of Bicycle and Motorcy-

cle. In summary, our system improves upon all previous

methods by at least 10 points over all quantizations.

To better understand the efficacy of pose estimation of

our network, we follow [50, 47, 36] to evaluate viewpoint

on ground-truth boxes. Evaluating viewpoint prediction on

ground-truth boxes provides an upper-bound of viewpoint

accuracy independent of the object detector used. The view-

point estimation error is measured as geodesic distance over

the rotation group SO(3). We report Accπ/6 which measu-

res accuracy thresholded at π
6

and the median angular er-

ror MedErr. This is the same evaluation metric originally

used in [50] and then in [47] and [36]. Please refer to [47]

or [50] for more details. Our results are summarized in

Table 2. Our method improves Accπ/6 by 5 points over the

previous best, and median angular error is reduced by ∼50%
from 5.8◦ to 3.0◦. We also experimented with VGG16 [45]

as our backbone and got similar improvements.

6.2. Analysis on KITTI dataset

In this section, we evaluate our method on KITTI ob-

ject detection and orientation benchmark [13]. We envision

our system for autonomous driving applications. So, KITTI

is a good test-bed as it involves many challenges of real-

world urban driving. Qualitative results on KITTI dataset

are shown in Fig.6. Note that our method also produces

accurate instance segmentation. We adopt the official eva-

luation metric of Average Precision (AP) for detection and

Average Orientation Similarity (AOS) for joint detection

and pose estimation. We also report Average Angular Error

(AAE) defined as arccos(2∗(AOS/AP )−1) which gives a

detection normalized measure of average orientation error.

Results on the KITTI test set is shown in Table 4. Since

test set labels are not publicly available, we follow [57, 36]

to divide the official training set into disjoint training and

validation set for a controlled study with fixed detection in-

put. For the controlled study, we use the same detection in-

put as Deep3DBox [36] and SubCNN [57] provided by the

authors. The results are summarized in Table 3. Our met-
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Figure 6: Qualitative demonstration of our approach working on KITTI [13] dataset. Input images are shown in first column, and the

corresponding 3D object pose and shape output are shown in second column. Each object instance has been colored randomly. Third

column shows the projection of the 3D object instance reconstructions on the input image which demonstrates the capability of producing

accurate 2D instance segmentation, which comes for free due our holistic 3D representation.

Easy Moderate Hard
Method

AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓

SubCNN [57] 90.5% - 85.9% - 12.2◦ - 85.7% - 84.2% - 15.2◦ - 72.7% - 70.6% - 17.1◦ -

Deep3DBox [36] - 97.8% - 97.5% - 5.7◦ - 96.8% - 96.3% - 8.3◦ - 81.1% - 80.4% - 10.2◦

Ours (orginal box) 90.5% 97.8% 90.5% 97.7% 2.0◦
3.1◦ 85.7% 96.8% 85.6% 96.6% 4.5◦ 5.8◦ 72.7% 81.1% 72.0% 80.8% 6.5◦ 6.9◦

Ours (rendered box) 90.8% 97.8% 90.7% 97.7% 2.0◦
3.1◦

89.3% 96.8% 89.1% 96.5% 4.9◦ 5.6◦
79.9% 81.0% 79.5% 80.7% 7.9◦ 6.8◦

Table 3: Controlled study on KITTI train/validation split of [56] with fixed detection input. We use two set of detections provided by authors

of SubCNN [57] and Deep3DBox [36]. Notice the big improvement in object detection AP when using rendered box, specifically for hard

category compared to SubCNN [57]. Our orientation estimate is also more accurate. Since the detections provided by Deep3DBox [36]

have been trained on additional data, they are already pretty good and so we do not see much improvement with rendered box.

Easy Moderate Hard
Method

AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓ AP ↑ AOS ↑ AAE ↓

3DOP [7] 93.04% 91.44% 15.07◦ 88.64% 86.10% 19.49◦ 79.10% 76.52% 20.81◦

Mono3D [6] 92.33% 91.01% 13.73◦ 88.66% 86.62% 17.45◦ 78.96% 76.84% 18.86◦

SubCNN [57] 90.81% 90.67% 4.50◦ 89.04% 88.62% 7.88◦ 79.27% 78.68% 9.90◦

Deep3DBox [36] 92.98% 92.90% 3.36◦ 89.04% 88.75% 6.54◦ 77.17% 76.76% 8.36◦

DeepMANTA [4] 97.25% 97.19% 2.85◦ 90.03% 89.86% 4.98◦ 80.62% 80.39% 6.12◦

Our Method 90.02% 89.98% 2.42◦ 89.39% 89.25% 4.54◦ 80.29% 80.07% 6.00◦

Table 4: Joint detection and orientation evaluation on official KITTI test split. Apart from AP and AOS, we also report Average Angular

Error (AAE). AAE (lower is better) gives a measure of average angular error in orientation normalized by the detector precision and is

thus a better metric to study the performance of orientation prediction (see §6.2). Our method has the lowest AAE for all cases.

hods beats [36, 57] on both AOS and AAE metrics. Instead

of just using the input detector boxes as final box output

(original box), we can also generate 2D detection box by

simply rendering our output 3D scene representation (ren-

dered box). This significantly improves the detection AP

over the input detector of [57] (See Table 3).

7. Conclusion

We present a fast inverse-graphics approach for 3D scene

understanding from images. Our network reconstructs each

object instance in an image by predicting its full 3D shape

and pose. This rich 3D representation brings several ad-

vantages: (a) traditional vision outputs like 2D detection,

segmentation, and depth-maps comes free and; (b) allows

the network to be also trained with 2D supervision. We

present novel representation of shape and pose, that strives

towards better 3D equivariance and helps the deep model to

learn the mapping from input image region to full 3D shape

and pose. We evaluate on challenging real-world datasets

of Pascal3D+ and KITTI where our method achieves state-

of-the-art results in multiple tasks. Our work is suitable for

several real-world applications like autonomous driving.
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