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Abstract

We propose a novel deep learning-based framework to

tackle the challenge of semantic segmentation of large-

scale point clouds of millions of points. We argue that the

organization of 3D point clouds can be efficiently captured

by a structure called superpoint graph (SPG), derived

from a partition of the scanned scene into geometrically

homogeneous elements. SPGs offer a compact yet rich

representation of contextual relationships between object

parts, which is then exploited by a graph convolutional

network. Our framework sets a new state of the art for

segmenting outdoor LiDAR scans (+11.9 and +8.8 mIoU

points for both Semantic3D test sets), as well as indoor

scans (+12.4 mIoU points for the S3DIS dataset).

1. Introduction

Semantic segmentation of large 3D point clouds presents

numerous challenges, the most obvious one being the scale

of the data. Another hurdle is the lack of clear structure

akin to the regular grid arrangement in images. These obsta-

cles have likely prevented Convolutional Neural Networks

(CNNs) from achieving on irregular data the impressive per-

formances attained for speech processing or images.

Previous attempts at using deep learning for large 3D

data were trying to replicate successful CNN architectures

used for image segmentation. For example, SnapNet [5]

converts a 3D point cloud into a set of virtual 2D RGBD

snapshots, the semantic segmentation of which can then be

projected on the original data. SegCloud [44] uses 3D con-

volutions on a regular voxel grid. However, we argue that

such methods do not capture the inherent structure of 3D

point clouds, which results in limited discrimination per-

formance. Indeed, converting point clouds to 2D format

comes with loss of information and requires to perform sur-

face reconstruction, a problem arguably as hard as semantic

segmentation. Volumetric representation of point clouds is
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inefficient and tends to discard small details.

Deep learning architectures specifically designed for 3D

point clouds [37, 43, 40, 38, 10] display good results, but

are limited by the size of inputs they can handle at once.

We propose a representation of large 3D point clouds as

a collection of interconnected simple shapes coined super-

points, in spirit similar to superpixel methods for image seg-

mentation [1]. As illustrated in Figure 1, this structure can

be captured by an attributed directed graph called the super-

point graph (SPG). Its nodes represent simple shapes while

edges describe their adjacency relationship characterized by

rich edge features.

The SPG representation has several compelling advan-

tages. First, instead of classifying individual points or vox-

els, it considers entire object parts as whole, which are eas-

ier to identify. Second, it is able to describe in detail the

relationship between adjacent objects, which is crucial for

contextual classification: cars are generally above roads,

ceilings are surrounded by walls, etc. Third, the size of

the SPG is defined by the number of simple structures in a

scene rather than the total number of points, which is typ-

ically several order of magnitude smaller. This allows us

to model long-range interaction which would be intractable

otherwise without strong assumptions on the nature of the

pairwise connections. Our contributions are as follows:

• We introduce superpoint graphs, a novel point cloud

representation with rich edge features encoding the

contextual relationship between object parts in 3D

point clouds.

• Based on this representation, we are able to apply deep

learning on large-scale point clouds without major sac-

rifice in fine details. Our architecture consists of Point-

Nets [37] for superpoint embedding and graph con-

volutions for contextual segmentation. For the latter,

we introduce a novel, more efficient version of Edge-

Conditioned Convolutions [43] as well as a new form

of input gating in Gated Recurrent Units [8].

• We set a new state of the art on two publicly available

datasets: Semantic3D [14] and S3DIS [3]. In particu-

4558



(a) RGB point cloud (b) Geometric partition (c) Superpoint graph (d) Semantic segmentation

Figure 1: Visualization of individual steps in our pipeline. An input point cloud (a) is partitioned into geometrically simple

shapes, called superpoints (b). Based on this preprocessing, a superpoints graph (SPG) is constructed by linking nearby

superpoints by superedges with rich attributes (c). Finally, superpoints are transformed into compact embeddings, processed

with graph convolutions to make use of contextual information, and classified into semantic labels.

lar, we improve mean per-class intersection over union

(mIoU) by 11.9 points for the Semantic3D reduced test

set, by 8.8 points for the Semantic3D full test set, and

by up to 12.4 points for the S3DIS dataset.

2. Related Work

The classic approach to large-scale point cloud segmen-

tation is to classify each point or voxel independently using

handcrafted features derived from their local neighborhood

[46]. The solution is then spatially regularized using graph-

ical models [35, 22, 32, 42, 20, 2, 36, 33, 47] or structured

optimization [25]. Clustering as preprocessing [16, 13] or

postprocessing [45] have been used by several frameworks

to improve the accuracy of the classification.

Deep Learning on Point Clouds. Several different

approaches going beyond naive volumetric processing of

point clouds have been proposed recently, notably set-

based [37, 38], tree-based [40, 21], and graph-based [43].

However, very few methods with deep learning components

have been demonstrated to be able to segment large-scale

point clouds. PointNet [37] can segment large clouds with

a sliding window approach, therefore constraining contex-

tual information within a small area only. Engelmann et

al. [10] improves on this by increasing the context scope

with multi-scale windows or by considering directly neigh-

boring window positions on a voxel grid. SEGCloud [44]

handles large clouds by voxelizing followed by interpola-

tion back to the original resolution and post-processing with

a conditional random field (CRF). None of these approaches

is able to consider fine details and long-range contextual in-

formation simultaneously. In contrast, our pipeline parti-

tions point clouds in an adaptive way according to their ge-

ometric complexity and allows deep learning architecture to

use both fine detail and interactions over long distance.

Graph Convolutions. A key step of our approach is

using graph convolutions to spread contextual information.

Formulations that are able to deal with graphs of variable

sizes can be seen as a form of message passing over graph

edges [12]. Of particular interest are models supporting

continuous edge attributes [43, 34], which we use to rep-

resent interactions. In image segmentation, convolutions

on graphs built over superpixels have been used for post-

processing: Liang et al. [30, 29] traverses such graphs in

a sequential node order based on unary confidences to im-

prove the final labels. We update graph nodes in parallel

and exploit edge attributes for informative context model-

ing. Xu et al. [48] convolves information over graphs of

object detections to infer their contextual relationships. Our

work infers relationships implicitly to improve segmenta-

tion results. Qi et al. [39] also relies on graph convolutions

on 3D point clouds. However, we process large point clouds

instead of small RGBD images with nodes embedded in 3D

instead of 2D in a novel, rich-attributed graph. Finally, we

note that graph convolutions also bear functional similar-

ity to deep learning formulations of CRFs [49], which we

discuss more in Section 3.4.

3. Method

The main obstacle that our framework tries to overcome

is the size of LiDAR scans. Indeed, they can reach hun-

dreds of millions of points, making direct deep learning

approaches intractable. The proposed SPG representation

allows us to split the semantic segmentation problem into

three distinct problems of different scales, shown in Fig-

ure 2, which can in turn be solved by methods of corre-

sponding complexity:

1 Geometrically homogeneous partition: The first step

of our algorithm is to partition the point cloud into geo-

metrically simple yet meaningful shapes, called super-

points. This unsupervised step takes the whole point

cloud as input, and therefore must be computationally

very efficient. The SPG can be easily computed from

this partition.

2 Superpoint embedding: Each node of the SPG corre-

sponds to a small part of the point cloud correspond-
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Figure 2: Illustration of our framework on a toy scan of a table and a chair. We perform geometric partitioning on the point

cloud (a), which allows us to build the superpoint graph (b). Each superpoint is embedded by a PointNet network. The

embeddings are then refined in GRUs by message passing along superedges to produce the final labeling (c).

ing to a geometrically simple primitive, which we as-

sume to be semantically homogeneous. Such prim-

itives can be reliably represented by downsampling

small point clouds to at most hundreds of points. This

small size allows us to utilize recent point cloud em-

bedding methods such as PointNet [37].

3 Contextual segmentation: The graph of superpoints

is by orders of magnitude smaller than any graph built

on the original point cloud. Deep learning algorithms

based on graph convolutions can then be used to clas-

sify its nodes using rich edge features facilitating long-

range interactions.

The SPG representation allows us to perform end-to-end

learning of the trainable two last steps. We will describe

each step of our pipeline in the following subsections.

3.1. Geometric Partition with a Global Energy

In this subsection, we describe our method for partition-

ing the input point cloud into parts of simple shape. Our

objective is not to retrieve individual objects such as cars

or chairs, but rather to break down the objects into simple

parts, as seen in Figure 3. However, the clusters being ge-

ometrically simple, one can expect them to be semantically

homogeneous as well, i.e. not to cover objects of different

classes. Note that this step of the pipeline is purely unsuper-

vised and makes no use of class labels beyond validation.

We follow the global energy model described by [13] for

its computational efficiency. Another advantage is that the

segmentation is adaptive to the local geometric complexity.

In other words, the segments obtained can be large simple

shapes such as roads or walls, as well as much smaller com-

ponents such as parts of a car or a chair.

Let us consider the input point cloud C as a set of n
3D points. Each point i ∈ C is defined by its 3D position

pi, and, if available, other observations oi such as color or

intensity. For each point, we compute a set of dg geomet-

ric features fi ∈ R
dg characterizing the shape of its local

neighborhood. In this paper, we use three dimensionality

values proposed by [9]: linearity, planarity and scattering,

as well as the verticality feature introduced by [13]. We

also compute the elevation of each point, defined as the z
coordinate of pi normalized over the whole input cloud.

The global energy proposed by [13] is defined with re-

spect to the 10-nearest neighbor adjacency graph Gnn =
(C,Enn) of the point cloud (note that this is not the SPG).

The geometrically homogeneous partition is defined as the

constant connected components of the solution of the fol-

lowing optimization problem:

argmin
g∈Rdg

∑

i∈C

‖gi − fi‖
2
+ µ

∑

(i,j)∈Enn

wi,j [gi − gj 6= 0] ,

(1)

where [·] is the Iverson bracket. The edge weight w ∈ R
|E|
+

is chosen to be linearly decreasing with respect to the edge

length. The factor µ is the regularization strength and deter-

mines the coarseness of the resulting partition.

The problem defined in Equation 1 is known as gen-

eralized minimal partition problem, and can be seen as

a continuous-space version of the Potts energy model, or

an ℓ0 variant of the graph total variation. The minimized

functional being nonconvex and noncontinuous implies that

the problem cannot realistically be solved exactly for large

point clouds. However, the ℓ0-cut pursuit algorithm intro-

duced by [24] is able to quickly find an approximate so-

lution with a few graph-cut iterations. In contrast to other

optimization methods such as α-expansion [6], the ℓ0-cut

pursuit algorithm does not require selecting the size of the

partition in advance. The constant connected components

S = {S1, · · · , Sk} of the solution of Equation 1 define our

geometrically simple elements, and are referred as super-
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Feature name Size Description

mean offset 3 meanm∈δ(S,T ) δm
offset deviation 3 stdm∈δ(S,T ) δm
centroid offset 3 meani∈S pi −meanj∈T pj

length ratio 1 log length (S) /length (T )
surface ratio 1 log surface (S) /surface (T )
volume ratio 1 log volume (S) /volume (T )

point count ratio 1 log |S|/|T |

Table 1: List of df = 13 superedge features characterizing

the adjacency between two superpoints S and T .

points (i.e. set of points) in the rest of this paper.

3.2. Superpoint Graph Construction

In this subsection, we describe how we compute the SPG

as well as its key features. The SPG is a structured represen-

tation of the point cloud, defined as an oriented attributed

graph G = (S, E , F ) whose nodes are the set of superpoints

S and edges E (referred to as superedges) represent the ad-

jacency between superpoints. The superedges are annotated

by a set of df features: F ∈ R
E×df characterizing the adja-

cency relationship between superpoints.

We define Gvor = (C,Evor) as the symmetric Voronoi

adjacency graph of the complete input point cloud as de-

fined by [19]. Two superpoints S and T are adjacent if there

is at least one edge in Evor with one end in S and one end in

T :

E =
{

(S, T ) ∈ S2 | ∃ (i, j) ∈ Evor ∩ (S × T )
}

. (2)

Important spatial features associated with a superedge

(S, T ) are obtained from the set of offsets δ(S, T ) for edges

in Evor linking both superpoints:

δ (S, T ) = {(pi − pj) | (i, j) ∈ Evor ∩ (S × T )} . (3)

Superedge features can also be derived by comparing the

shape and size of the adjacent superpoints. To this end,

we compute |S| as the number of points comprised in a

superpoint S, as well as shape features length (S) = λ1,

surface (S) = λ1λ2, volume (S) = λ1λ2λ3 derived from

the eigenvalues λ1, λ2, λ3 of the covariance of the positions

of the points comprised in each superpoint, sorted by de-

creasing value. In Table 1, we describe a list of the different

superedge features used in this paper. Note that the break

of symmetry in the edge features makes the SPG a directed

graph.

3.3. Superpoint Embedding

The goal of this stage is to compute a descriptor for every

superpoint Si by embedding it into a vector zi of fixed-size

dimensionality dz . Note that each superpoint is embedded

in isolation; contextual information required for its reliable

classification is provided only in the following stage by the

means of graph convolutions.

Several deep learning-based methods have been pro-

posed for this purpose recently. We choose PointNet [37]

for its remarkable simplicity, efficiency, and robustness. In

PointNet, input points are first aligned by a Spatial Trans-

former Network [18], independently processed by multi-

layer perceptrons (MLPs), and finally max-pooled to sum-

marize the shape.

In our case, input shapes are geometrically simple ob-

jects, which can be reliably represented by a small amount

of points and embedded by a rather compact PointNet. This

is important to limit the memory needed when evaluating

many superpoints on current GPUs. In particular, we sub-

sample superpoints on-the-fly down to np = 128 points to

maintain efficient computation in batches and facilitate data

augmentation. Superpoints of less than np points are sam-

pled with replacement, which in principle does not affect

the evaluation of PointNet due to its max-pooling. How-

ever, we observed that including very small superpoints of

less than nminp = 40 points in training harms the overall

performance. Thus, embedding of such superpoints is set

to zero so that their classification relies solely on contextual

information.

In order for PointNet to learn spatial distribution of dif-

ferent shapes, each superpoint is rescaled to unit sphere be-

fore embedding. Points are represented by their normal-

ized position p′i, observations oi, and geometric features fi
(since these are already available precomputed from the par-

titioning step). Furthermore, the original metric diameter of

the superpoint is concatenated as an additional feature after

PointNet max-pooling in order to stay covariant with shape

sizes.

3.4. Contextual Segmentation

The final stage of the pipeline is to classify each su-

perpoint Si based on its embedding zi and its local sur-

roundings within the SPG. Graph convolutions are naturally

suited to this task. In this section, we explain the propaga-

tion model of our system.

Our approach builds on the ideas from Gated Graph

Neural Networks [28] and Edge-Conditioned Convolutions

(ECC) [43]. The general idea is that superpoints refine their

embedding according to pieces of information passed along

superedges. Concretely, each superpoint Si maintains its

state hidden in a Gated Recurrent Unit (GRU) [8]. The hid-

den state is initialized with embedding zi and is then pro-

cessed over several iterations (time steps) t = 1 . . . T . At

each iteration t, a GRU takes its hidden state h
(t)
i and an

incoming message m
(t)
i as input, and computes its new hid-

den state h
(t+1)
i . The incoming message m

(t)
i to superpoint
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i is computed as a weighted sum of hidden states h
(t)
j of

neighboring superpoints j. The actual weighting for a su-

peredge (j, i) depends on its attributes Fji,·, listed in Ta-

ble 1. In particular, it is computed from the attributes by a

multi-layer perceptron Θ, so-called Filter Generating Net-

work. Formally:

h
(t+1)
i = (1− u

(t)
i )⊙ q

(t)
i + u

(t)
i ⊙ h

(t)
i

q
(t)
i = tanh(x

(t)
1,i + r

(t)
i ⊙ h

(t)
1,i)

u
(t)
i = σ(x

(t)
2,i + h

(t)
2,i), r

(t)
i = σ(x

(t)
3,i + h

(t)
3,i)

(4)

(h
(t)
1,i,h

(t)
2,i,h

(t)
3,i)

T = ρ(Whh
(t)
i + bh)

(x
(t)
1,i,x

(t)
2,i,x

(t)
3,i)

T = ρ(Wxx
(t)
i + bx)

(5)

x
(t)
i = σ(Wgh

(t)
i + bg)⊙m

(t)
i (6)

m
(t)
i = meanj|(j,i)∈E Θ(Fji,·;We)⊙ h

(t)
j (7)

h
(1)
i = zi, yi = Wo(h

(1)
i , . . . ,h

(T+1)
i )T , (8)

where ⊙ is element-wise multiplication, σ(·) sigmoid func-

tion, and W· and b· are trainable parameters shared among

all GRUs. Equation 4 lists the standard GRU rules [8] with

its update gate u
(t)
i and reset gate r

(t)
i . To improve stability

during training, in Equation 5 we apply Layer Normaliza-

tion [4] defined as ρ(a) := (a−mean(a))/(std(a)+ǫ) sep-

arately to linearly transformed input x
(t)
i and transformed

hidden state h
(t)
i , with ǫ being a small constant. Finally, the

model includes three interesting extensions in Equations 6–

8, which we detail below.

Input Gating. We argue that GRU should possess the

ability to down-weight (parts of) an input vector based on

its hidden state. For example, GRU might learn to ignore its

context if its class state is highly certain or to direct its atten-

tion to only specific feature channels. Equation 6 achieves

this by gating message m
(t)
i by the hidden state before using

it as input x
(t)
i .

Edge-Conditioned Convolution. ECC plays a crucial

role in our model as it can dynamically generate filter-

ing weights for any value of continuous attributes Fji,·

by processing them with a multi-layer perceptron Θ. In

the original formulation [43] (ECC-MV), Θ regresses

a weight matrix to perform matrix-vector multiplication

Θ(Fji,·;We)h
(t)
j for each edge. In this work, we propose

a lightweight variant with lower memory requirements and

fewer parameters, which is beneficial for datasets with few

but large point clouds. Specifically, we regress only an

edge-specific weight vector and perform element-wise mul-

tiplication as in Equation 7 (ECC-VV). Channel mixing, al-

beit in an edge-unspecific fashion, is postponed to Equa-

tion 5. Finally, let us remark that Θ is shared over time iter-

ations and that self-loops as proposed in [43] are not neces-

sary due to the existence of hidden states in GRUs.

State Concatenation. Inspired by DenseNet [17], we

concatenate hidden states over all time steps and linearly

transform them to produce segmentation logits yi in Equa-

tion 8. This allows to exploit the dynamics of hidden states

due to increasing receptive field for the final classification.

Relation to CRFs. In image segmentation, post-

processing of convolutional outputs using Conditional

Random Fields (CRFs) is widely popular. Several infer-

ence algorithms can be formulated as (recurrent) network

layers amendable to end-to-end learning [49, 41], possibly

with general pairwise potentials [31, 7, 26]. While our

method of information propagation shares both these

characteristics, our GRUs operate on dz-dimensional

intermediate feature space, which is richer and less con-

strained than low-dimensional vectors representing beliefs

over classes, as also discussed in [11]. Such enhanced

access to information is motivated by the desire to learn

a powerful representation of context, which goes beyond

belief compatibilities, as well as the desire to be able to

discriminate our often relatively weak unaries (superpixel

embeddings). We empirically evaluate these claims in

Section 4.3.

3.5. Further Details

Adjacency Graphs. In this paper, we use two different

adjacency graphs between points of the input clouds: Gnn in

Section 3.1 and Gvor in Section 3.2. Indeed, different defini-

tions of adjacency have different advantages. Voronoi adja-

cency is more suited to capture long-range relationships be-

tween superpoints, which is beneficial for the SPG. Nearest

neighbors adjacency tends not to connect objects separated

by a small gap. This is desirable for the global energy but

tends to produce a SPG with many small connected com-

ponents, decreasing embedding quality. Fixed radius adja-

cency should be avoided in general as it handles the variable

density of LiDAR scans poorly.

Training. While the geometric partitioning step is unsu-

pervised, superpoint embedding and contextual segmenta-

tion are trained jointly in a supervised way with cross en-

tropy loss. Superpoints are assumed to be semantically ho-

mogeneous and, consequently, assigned a hard ground truth

label corresponding to the majority label among their con-

tained points. We also considered using soft labels cor-

responding to normalized histograms of point labels and
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training with Kullback-Leibler [23] divergence loss. It per-

formed slightly worse in our initial experiments, though.

Naive training on large SPGs may approach memory

limits of current GPUs. We circumvent this issue by ran-

domly subsampling the sets of superpoints at each itera-

tion and training on induced subgraphs, i.e. graphs com-

posed of subsets of nodes and the original edges connecting

them. Specifically, graph neighborhoods of order 3 are sam-

pled to select at most 512 superpoints per SPG with more

than nminp points, as smaller superpoints are not embed-

ded. Note that as the induced graph is a union of small

neighborhoods, relationships over many hops may still be

formed and learned. This strategy also doubles as data aug-

mentation and a strong regularization, together with ran-

domized sampling of point clouds described in Section 3.3.

Additional data augmentation is performed by randomly

rotating superpoints around the vertical axis and jittering

point features by Gaussian noise N (0, 0.01) truncated to

[−0.05, 0.05].

Testing. In modern deep learning frameworks, testing can

be made very memory-efficient by discarding layer activa-

tions as soon as the follow-up layers have been computed.

In practice, we were able to label full SPGs at once. To com-

pensate for randomness due to subsampling of point clouds

in PointNets, we average logits obtained over 10 runs with

different seeds.

4. Experiments

We evaluate our pipeline on the two currently largest

point cloud segmentation benchmarks, Semantic3D [14]

and Stanford Large-Scale 3D Indoor Spaces (S3DIS) [3], on

both of which we set the new state of the art. Furthermore,

we perform an ablation study of our pipeline in Section 4.3.

Even though the two data sets are quite different in nature

(large outdoor scenes for Semantic3D, smaller indoor scan-

ning for S3DIS), we use nearly the same model for both.

The deep model is rather compact and 6 GB of GPU mem-

ory is enough for both testing and training. We refer to the

Supplementary for precise details on hyperparameter selec-

tion, architecture configuration, and training procedure.

Performance is evaluated using three metrics: per-class

intersection over union (IoU), per-class accuracy (Acc), and

overall accuracy (OA), defined as the proportion of cor-

rectly classified points. We stress that the metrics are com-

puted on the original point clouds, not on superpoints.

4.1. Semantic3D

Semantic3D [14] is the largest available LiDAR dataset

with over 3 billion points from a variety of urban and rural

scenes. Each point has RGB and intensity values (the latter

of which we do not use). The dataset consists of 15 training

scans and 15 test scans with withheld labels. We also eval-

uate on the reduced set of 4 subsampled scans, as common

in past work.

In Table 2, we provide the results of our algorithm com-

pared to other state of the art recent algorithms and in Fig-

ure 3, we provide qualitative results of our framework. Our

framework improves significantly on the state of the art of

semantic segmentation for this data set, i.e. by nearly 12

mIoU points on the reduced set and by nearly 9 mIoU points

on the full set. In particular, we observe a steep gain on the

”artefact” class. This can be explained by the ability of the

partitioning algorithm to detect artifacts due to their singu-

lar shape, while they are hard to capture using snapshots, as

suggested by [5]. Furthermore, these small object are often

merged with the road when performing spatial regulariza-

tion.

4.2. Stanford LargeScale 3D Indoor Spaces

The S3DIS dataset [3] consists of 3D RGB point clouds

of six floors from three different buildings split into indi-

vidual rooms. We evaluate our framework following two

dominant strategies found in previous works. As advocated

by [37, 10], we perform 6-fold cross validation with micro-

averaging, i.e. computing metrics once over the merged pre-

dictions of all test folds. Following [44], we also report

the performance on the fifth fold only (Area 5), correspond-

ing to a building not present in the other folds. Since some

classes in this data set cannot be partitioned purely using ge-

ometric features (such as boards or paintings on walls), we

concatenate the color information o to the geometric fea-

tures f for the partitioning step.

The quantitative results are displayed in Table 3, with

qualitative results in Figure 3 and in the Supplementary.

S3DIS is a difficult dataset with hard to retrieve classes such

as white boards on white walls and columns within walls.

From the quantitative results we can see that our framework

performs better than other methods on average. Notably,

doors are able to be correctly classified at a higher rate than

other approaches, as long as they are open, as illustrated in

Figure 3. Indeed, doors are geometrically similar to walls,

but their position with respect to the door frame allows our

network to retrieve them correctly. On the other hand, the

partition merges white boards with walls, depriving the net-

work from the opportunity to even learn to classify them:

the IoU of boards for theoretical perfect classification of su-

perpoints (as in Section 4.3) is only 51.3.

Computation Time. In Table 4, we report computation

time over the different steps of our pipeline for the infer-

ence on Area 5 measured on a 4 GHz CPU and GTX 1080

Ti GPU. While the bulk of time is spent on the CPU for

partitioning and SPG computation, we show that voxeliza-

tion as pre-processing, detailed in Supplementary, leads to

a significant speed-up as well as improved accuracy.
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Method OA mIoU
man-made

terrain

natural

terrain

high

vegetation

low

vegetation
buildings

hard-

scape

scanning

artefact
cars

reduced test set: 78 699 329 points

TMLC-MSR [15] 86.2 54.2 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7

DeePr3SS [27] 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2

SnapNet [5] 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4

SegCloud [44] 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

SPG (Ours) 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2

full test set: 2 091 952 018 points

TMLC-MS [15] 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3

SnapNet [5] 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2

SPG (Ours) 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4

Table 2: Intersection over union metric for the different classes of the Semantic3D dataset. OA is the global accuracy, while

mIoU refers to the unweighted average of IoU of each class.

(a) RGB point cloud (b) Geometric partitioning (c) Prediction (d) Ground truth

Semantic3D

road

grass

tree

bush

buildings

hardscape

artefacts

cars

S3DIS

ceiling

floor

wall

column

beam

window

door

table

chair

bookcase

sofa

board

clutter

unlabelled

Figure 3: Example visualizations on both datasets. The colors in (b) are chosen randomly for each element of the partition.

4.3. Ablation Studies

To better understand the influence of various design

choices made in our framework, we compare it to several

baselines and perform an ablation study. Due to the lack of

public ground truth for test sets of Semantic3D, we evaluate

on S3DIS with 6-fold cross validation and show comparison

of different models to our Best model in Table 5.

Performance Limits. The contribution of contextual

segmentation can be bounded both from below and above.

The lower bound (Unary) is estimated by training PointNet

with dz = 13 but otherwise the same architecture, denoted

as PointNet13, to directly predict class logits, without SPG

and GRUs. The upper bound (Perfect) corresponds to as-

signing each superpoint its ground truth label, and thus sets

the limit of performance due to the geometric partition. We

can see that contextual segmentation is able to win roughly

22 mIoU points over unaries, confirming its importance.

Nevertheless, the learned model still has room of up to 26
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Method OA mAcc mIoU ceiling floor wall beam column window door chair table bookcase sofa board clutter

A5 PointNet [37] – 48.98 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22

A5 SEGCloud [44] – 57.35 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60

A5 SPG (Ours) 86.38 66.50 58.04 89.35 96.87 78.12 0.0 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

PointNet [37] in [10] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2

Engelmann et al. [10] 81.1 66.4 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 47.4 58.1 39.0 6.9 30.0 41.9

SPG (Ours) 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

Table 3: Results on the S3DIS dataset on fold “Area 5” (top) and micro-averaged over all 6 folds (bottom). Intersection over

union is shown split per class.

Step Full cloud 2 cm 3 cm 4 cm

Voxelization 0 40 24 16
Feature computation 439 194 88 43
Geometric partition 3428 1013 447 238
SPG computation 3800 958 436 252

Inference 10× 24 10× 11 10× 6 10× 5
Total 7907 2315 1055 599

mIoU 6-fold 54.1 60.2 62.1 57.1

Table 4: Computation time in seconds for the inference on

S3DIS Area 5 (68 rooms, 78 649 682 points) for different

voxel sizes.

mIoU points for improvement, while about 12 mIoU points

are forfeited to the semantic inhomogeneity of superpoints.

CRFs. We compare the effect of our GRU+ECC-

based network to CRF-based regularization. As a baseline

(iCRF), we post-process Unary outputs by CRF inference

over SPG connectivity with scalar transition matrix, as de-

scribed by [13]. Next (CRF− ECC), we adapt CRF-RNN

framework of Zheng et al. [49] to general graphs with edge-

conditioned convolutions (see Supplementary for details)

and train it with PointNet13 end-to-end. Finally (GRU13),

we modify Best to use PointNet13. We observe that iCRF
barely improves accuracy (+1 mIoU), which is to be ex-

pected, since the partitioning step already encourages spa-

tial regularity. CRF− ECC does better (+15 mIoU) due

to end-to-end learning and use of edge attributes, though it

is still below GRU13 (+18 mIoU), which performs more

complex operations and does not enforce normalization of

the embedding. Nevertheless, the 32 channels used in Best
instead of the 13 used in GRU13 provide even more free-

dom for feature representation (+22 mIoU).

Ablation. We explore the advantages of several design

choices by individually removing them from Best in order

to compare the framework’s performance with and without

them. In NoInputGate we remove input gating in GRU; in

NoConcat we only consider the last hidden state in GRU

for output as yi = Woh
(T+1)
i instead of concatenation of

all steps; in NoEdgeFeat we perform homogeneous regu-

larization by setting all superedge features to scalar 1; and

Model mAcc mIoU

Best 73.0 62.1

Perfect 92.7 88.2

Unary 50.8 40.0

iCRF 51.5 40.7

CRF− ECC 65.6 55.3

GRU13 69.1 58.5

NoInputGate 68.6 57.5

NoConcat 69.3 57.7

NoEdgeFeat 50.1 39.9

ECC−VV 70.2 59.4

Table 5: Ablation study and comparison to various base-

lines on S3DIS (6-fold cross validation).

in ECC−VV we use the proposed lightweight formula-

tion of ECC. We can see that each of the first two choices

accounts for about 5 mIoU points. Next, without edge fea-

tures our method falls back even below iCRF to the level

of Unary, which validates their design and overall motiva-

tion for SPG. ECC−VV decreases the performance on the

S3DIS dataset by 3 mIoU points, whereas it has improved

the performance on Semantic3D by 2 mIoU. Finally, we in-

vite the reader to Supplementary for further ablations.

5. Conclusion

We presented a deep learning framework for perform-

ing semantic segmentation of large point clouds based on

a partition into simple shapes. We showed that SPGs al-

low us to use effective deep learning tools, which would not

be able to handle the data volume otherwise. Our method

significantly improves on the state of the art on two publicly

available datasets. Our experimental analysis suggested that

future improvements can be made in both partitioning and

learning deep contextual classifiers.

The source code in PyTorch as well as the trained models

are available at https://github.com/loicland/

superpoint_graph.
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