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Abstract

This paper introduces a novel algorithm for transductive

inference in higher-order MRFs, where the unary energies

are parameterized by a variable classifier. The considered

task is posed as a joint optimization problem in the con-

tinuous classifier parameters and the discrete label vari-

ables. In contrast to prior approaches such as convex re-

laxations, we propose an advantageous decoupling of the

objective function into discrete and continuous subprob-

lems and a novel, efficient optimization method related to

ADMM. This approach preserves integrality of the discrete

label variables and guarantees global convergence to a crit-

ical point. We demonstrate the advantages of our approach

in several experiments including video object segmentation

on the DAVIS data set and interactive image segmentation.

1. Introduction

Various problems in computer vision, computer graph-

ics and machine learning can be formulated as MAP in-

ference in a (possibly higher order) Markov random field

(MRF) [33, 26, 40, 28, 30, 12, 32, 43]. The resulting opti-

mization problem is defined over a hypergraph (V, C) and a

finite label set L as:

min
y∈Y

∑

i∈V

Ei(yi) +
∑

C∈C
|C|>1

EC(yC). (1)

The optimization variable y ∈ Y := L|V| corresponds to

a labeling of the vertices V and assigns a label yi ∈ L to

each vertex i ∈ V . For convenience, we make a distinction

between the singleton clique energies (unaries) Ei(yi) and

the higher order energies EC(yC), |C| > 1.

In computer vision tasks, where the image is interpreted

as a (higher order) pixelgrid (V, C), the higher order po-

tentials often correspond to priors favoring spatially smooth

Figure 1: A pixel-classifier trained to predict an object mask

(top row) performs well when the distribution of object pix-

els in the training image is similar to the test image (left),

but often fails if it is dissimilar (right). In a transductive in-

ference approach (bottom row), we optimize jointly for the

test labels and classifier parameters, which successfully pre-

vents the hallucination of object pixels in difficult scenes,

such as in the case of occlusion (right), cf. Sec. 4.2.

solutions. In semantic image segmentation, for instance, in-

ference in MRFs is widely used as a post-processing step

to introduce spatial smoothness on the labeling y [10]. In

this sense, the overall task of semantic segmentation is sub-

divided into two tasks: First, a classifier, parameterized

by W , is trained in a supervised fashion on a sufficiently

large labeled training set, which assigns to each pixel in a

test image a class (probability) score. Second, to enforce

spatial smoothness of the labeling of the test image, MAP-

inference in an MRF is performed in a post-processing, in

which the class (probability) scores are interpreted as the

unary energies Ei(yi;W ) for each yi. We argue that it is

advantageous to merge such a two-step approach into a joint

approach, as the training of the classifier profits from both,

(i) the distribution of the unlabeled pixels in the color or

feature space, and (ii) the available structural information
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about the unlabeled pixels, namely the spatial smoothness

prior. Conversely, the segmentation will also profit from an

improved classifier.

A joint formulation has two interpretations; on the one

hand, it is a semi-supervised learning method that makes

use of structural knowledge about the training data to learn

a classifier. Such knowledge may take the form of higher-

order clique energies EC [57, 2] on the labeling and acts

as weak supervision in the training process. This approach

helps to mitigate the need for large amounts of annotated

training data in typical modern machine learning applica-

tions. We, on the other hand, focus on its interpretation as

a transductive inference method [56], i.e. the approach to

directly infer the labels of specific test data given specific

training data, which we accomplish by incorporating a vari-

able classifier in the inference process. Transductive infer-

ence stands in contrast to inductive inference, which refers

to first learning a general model from training data and sub-

sequently applying the model to predict labels of a-priori

unknown test data. We show the benefits of using transduc-

tive inference for the tasks of video object segmentation (cf.

Fig. 1) as well as scribble-based segmentation (cf. Fig. 4).

1.1. Contributions

We propose a general joint model that assumes the unar-

ies not be fixed for inference in the MRF, but rather opti-

mized jointly with the labeling. Let for each i ∈ V , xi ∈ R
d

denote the d-dimensional feature vector associated to the ith
vertex and let ϕ : Rd → R

d′ be a feature map. Then, math-

ematically, such a task can be naturally formulated in terms

of a bilevel optimization problem:

min
y∈Y,

W∈R
|L|×d′

∑

i∈V

ℓ(yi;Wϕ(xi)) +
∑

C∈C

EC(yC) (2)

subject to W = argmin
W∈R|L|×d′

∑

i∈V

ℓ(yi;Wϕ(xi)) + g(W ).

Here, the upper-level task is inference in a MRF with addi-

tional unaries Ei(yi;W ) := ℓ(yi;Wϕ(xi)), parameterized

by linear classifier weights W ∈ R
|L|×d′ , and a loss func-

tion ℓ : L × R
|L| → R. The lower-level task associates to

each given set of labels y the optimal parameters W . For

instance, if ℓ is the hinge loss and g(W ) = ‖W‖2F , then the

lower-level optimization problem amounts to the training

of a classical SVM. Note that in a semi-supervised learn-

ing context it might be more convenient to swap upper and

lower level tasks, since the primary interest is the estimation

of the classifier that minimizes the generalization error and

not the inferred labeling. However, mathematically, both

viewpoints are equivalent.

The model (2) suggests a simple alternating optimiza-

tion scheme as in Lloyd’s algorithm [37] for k-means to

compute a local optimum. However, such an approach

has two major drawbacks: (i) The lower-lever subproblems

are expensive, which is prohibitive for large scale applica-

tions. (ii) The optimization is prone to poor local optima

and therefore sensitive to initialization [61]. Motivated by

the good practical performance of the alternating direction

method of multipliers (ADMM) in nonconvex optimiza-

tion, we propose to generalize vanilla ADMM (commonly

applied in continuous optimization) to discrete-continuous

problems of the form (2), while preserving integrality of

the discrete variables. Since our method serves as a general

algorithmic framework to tackle such problems, it is also

relevant to semi-supervised and transductive learning in a

broader sense.

The main contributions of this work can be summarized

as follows:

• We devise a decomposition of the model into sim-

ple, purely discrete and purely continuous subprob-

lems within the framework of proximal splitting. The

subproblems can be solved in a distributed fashion.

• We devise a tailored ADMM-inspired algorithm,

discrete-continuous ADMM, to compute a local opti-

mum of (2). In contrast to vanilla ADMM, our algo-

rithm allows us to obtain sub-optimal solutions of the

MAP inference problem so that also computationally

more challenging MRFs can be considered.

• We generalize the convergence of nonconvex vanilla

ADMM to the presented inexact discrete-continuous

ADMM.

• In diverse experiments we demonstrate the relevance

and generality of our model and the efficiency of our

method: In contrast to standard k-means, our model

integrates well with deep features. In contrast to a tai-

lored SDP relaxation approach for transductive logistic

regression, our method produces more consistent re-

sults, while being more efficient in terms of both run-

time and memory consumption.

1.2. Related work

To improve image segmentation results it is common

practice to treat the unary terms Ei as additional variables

in the optimization [4, 62, 7, 47, 53, 54, 55]. More re-

cently, [53, 54] revealed the equivalence of k-means cluster-

ing with pairwise constraints [57, 2] and the Chan-Vese [7]

approach, where the average foreground and background in-

tensities (corresponding to the centroids in k-means) are not

assumed to be fixed, but are rather treated as additional vari-

ables. The goal of this approach is to jointly cluster the pix-

els in the color space and regularize the cluster-assignment

(the segmentation) in the image space. The clustering view-

point suggests the application of the “kernel trick”, which
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allows us to separate more complicated, possibly nonlin-

early deformed color clusters [57, 2, 53, 54]. Experimen-

tally, it has been shown that this approach integrates well

with color or even depth pixel features [53, 54]. Due to the

enormous success of deep convolutional neural networks on

computer vision tasks, it is tempting to replace the color fea-

tures by more sophisticated deep features that are capable

of compactly representing complicated semantic informa-

tion [31, 10]. However, high-dimensional deep features are

in general not “k-means friendly” [59] and without further

preprocessing of the features as in [59] the plain Chan-Vese

k-means approach does not generalize very well to deep

features, despite of (almost) linear separability of the data.

Since deep neural network classifiers can be viewed as a

linear model on top of a deep feature extractor, we propose

to alter the approaches from related work by using a (mul-

ticlass) SVM or a (multinomial) logistic regression model

along with deep features. Under the absence of general

higher order terms (i.e. EC = 0, for all C ∈ C) our model

(2) is closely related to transductive SVMs [56, 21, 3] and

transductive logistic regression [22]. In such a setting, op-

timization schemes that alternately optimize w.r.t. to labels

and model parameters as in Lloyd’s algorithm [37] are inef-

fective [61]. Other approaches, such as SDP relaxations are

computationally expensive [22].

Instead, we propose an algorithm related to ADMM,

which has recently been successfully applied to many non-

convex continuous optimization problems [9, 42, 50, 39,

34]. ADMM appears similar in form to message passing

and subgradient descent schemes applied to the Lagrangian

dual problem (dual decomposition) [29, 5, 38, 60, 51]. The

latter is a Lagrangian relaxation approach, so that in dif-

ficult nonconvex cases the linear equality constraints may

remain violated in the limit [29]. In contrast, ADMM at-

tempts to solve the problem exactly and enforce the linear

equality constraints strictly via additional quadratic penalty

terms. In order to make mixed discrete-continuous prob-

lems such as (2) amenable to ADMM, related approaches

often relax the discrete variable and perform rounding op-

erations [20, 52]. In contrast, we propose a generalization

of vanilla ADMM that preserves the integrality of the label

variable and admits a theoretical convergence guarantee un-

der affordable conditions. In the traditional convex and con-

tinuous setting, ADMM [18, 17] converges under mild con-

ditions [16, 13]. For more restrictive nonconvex problems,

its convergence has only been established recently [19, 36].

In this case, however, the required assumptions are fairly

strong.

2. Discrete-Continuous ADMM

The coupling of the discrete labeling variable y and the

continuous variable W renders problem (2) hard to solve.

This is not surprising since the related k-means cluster-

ing problem is known to be NP-hard. A common ap-

proach is to compute a local optimum by a simple discrete-

continuous coordinate descent approach as in Lloyd’s algo-

rithm [37]. Instead, we propose an advantageous decou-

pling into purely discrete and purely continuous subprob-

lems, which allows us to compute a local optimum by up-

dating the continuous and discrete variables jointly and ef-

ficiently.

2.1. Variable decoupling via ADMM

To this end, we employ a change of representation to

make the proposed problem amenable to the “kernel trick”.

Note that, for any fixed labeling y, the lower-level task in

(2) amounts to supervised SVM training (resp. supervised

logistic regression). Thus, we can apply the representer the-

orem [48]: Let Φ(X) be the feature matrix for a (possi-

bly infinte-dimensional) matrix feature map Φ : Rd×|V| →
R
d′×|V| and let

g(W ) = h(‖W‖F ), (3)

for h : [0,∞)→ R strictly monotonically increasing. Then,

the weights W⊤ = Φ(X)α can be substituted via their

representation α ∈ R
|V|×|L| in terms of the features.

More precisely, we replace the scalar products Wϕ(xi),
up to transposition, by Kiα = (Wϕ(xi))

⊤ where K :=
Φ(X)⊤Φ(X) denotes the Gram or kernel matrix.

For f : R|V|×|L| → R, being defined as

f(α) := h(‖Φ(X)α‖F ), (4)

this substitution leaves us with the following equivalent

mixed integer nonlinear program formulation of (2):

min
y∈Y,

α∈R
|V|×|L|

∑

i∈V

ℓ(yi;Kiα) + f(α) +
∑

C∈C

EC(y). (5)

In order to decompose problem (5) into simple subproblems

associated with each i ∈ V , we introduce auxiliary variables

βi = Kiα, which yields

min
y∈Y,

α,β∈R
|V|×|L|

∑

i∈V

ℓ(yi;βi) + f(α) +
∑

C∈C

EC(y)

subject to Kα = β.

(6)

Note that the objective of (6) is a separable function over

the βi. This suggests to relax the linear constraint Kα = β
and consider the equivalent saddle point problem:

min
y∈Y,

α,β∈R
|V|×|L|

max
λ∈R|V|×|L|

Lρ(α, β, λ, y),
(7)

where λ ∈ R
|V|×|L| are the Lagrange multipliers cor-

responding to Kα = β and Lρ denotes the “discrete-

continuous” augmented Lagrangian, that for some penalty
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parameter ρ > 0 is defined as

Lρ(α, β, λ, y) :=
∑

i∈V

ℓ(yi;βi) + f(α)

+
∑

C∈C

EC(y) + 〈λ,Kα− β〉+
ρ

2
‖Kα− β‖2F .

(8)

We show in Sec. 2.2 that, for fixed λ and α, the function

Lρ(α, ·, λ, ·) can be minimized (not necessarily to global

optimality) efficiently and jointly over y and β. This central

observation and the good practical performance of ADMM

in nonconvex optimization motivates the following general-

ization to discrete-continuous problems of the form (7).

We propose an algorithm that, similar to continu-

ous ADMM, updates the discrete-continuous variable-pair

(βt+1, yt+1) via joint (and possibly suboptimal) minimiza-

tion of Lρ(α
t, ·, λt, ·). Subsequently, it updates αt+1 via

minimization of Lρ(·, β
t+1, λt, yt+1) and the Lagrange

multiplier λt by performing one iteration of gradient ascent

on Lρ(α
t+1, βt+1, ·, yt+1) with step size ρ > 0. In sum-

mary, the update steps at iteration t are given as

(βt+1, yt+1) = argminβ,y Lρ(α
t, β, λt, y), (9)

αt+1 = argminα Lρ(α, β
t+1, λt, yt+1), (10)

λt+1 = λt + ρ(Kαt+1 − βt+1). (11)

In practice, we choose the step size adaptively, as this of-

ten leads to better solutions in terms of objective value: For

finitely many iterations, the penalty parameter ρ is increased

according to the schedule ρt+1 = min {ρmax, τρt} with

τ > 1 and some ρmax > 0 that guarantees theoretical con-

vergence of the algorithm (cf. Sec. 3).

2.2. Distributed solution of the subproblems

In this section, we describe the implementation of up-

date steps (9)–(11) in our algorithm. In principle, (9) could

be solved by minimization over β for every feasible label-

ing y ∈ Y . Obviously, this is not a viable approach, as it

implies performing exhaustive search over the set Y , which

has size |L||V|. Instead, we pursue the following more effi-

cient strategy.

Solution via lookup-tables. Assume first the absence of

any higher order energies, i.e. EC = 0, for all C ∈ C.

Then, since Lρ(α
t, β, λt, y) is separable w.r.t. βi and yi, we

can decompose problem (9) into |V| independent problems

of the form

argmin
βi,yi

ℓ(yi;βi) +
ρ

2
‖βi −Kiα

t − λt
i/ρ‖2F

︸ ︷︷ ︸

ψi(βi,yi;αt,λt
i
)

, (12)

which can thus be solved in parallel. In the presence of

higher-order energies, however, the problems (12) are not

completely independent, because the variables yi are cou-

pled via the energies EC in which they appear. In this case,

we first solve (12) w.r.t. only the continuous variables βi
for every possible label yi ∈ L and store the results in a

lookup-table (ut+1, Bt+1).
Precisely, for each 1 ≤ i ≤ |V| and each yi ∈ L we

create an entry (ut+1
i,yi

, Bt+1
i,yi

) according to

Bt+1
i,yi

:= argmin
βi

ψi(βi; yi, α
t, λti),

ut+1
i,yi

:= min
βi

ψi(βi; yi, α
t, λti).

(13)

In a second step, we determine the discrete variable up-

date yt+1 as the (possibly suboptimal) solution of the MRF

yt+1 = argmin
y∈Y

∑

i∈V

ut+1
i,yi

+
∑

C∈C

EC(y). (14)

Afterwards, the continuous variable updates βt+1
i can be

read off from the solution of (13) via

βt+1
i = Bt+1

i,y
t+1

i

. (15)

Note that there is an abundance of algorithms available

to tackle problems of the form (14) such as graph cuts for

binary submodular MRFs [28], move making and message

passing algorithms [12, 27], primal-dual algorithms [30, 14]

and more. For an overview, see also [23].

The matrix u specifies the unary energies in problem (14)

that pushes the MRF to attain a labeling which corresponds

to a more suitable classifier. The latter is determined by a

tradeoff between minimizing the distance of βi to the cur-

rent consensus parameters Kiα
t + λt

i/ρ and minimizing the

loss term corresponding to sample i.
In case of suboptimality of yt+1 we require that yt+1, for

some δ ≥ 0, satisfies a (sufficient) descent condition

Lρ(α
t, βt+1, λt, yt+1)− Lρ(α

t, Bt+1
:,yt , λ

t, yt) ≤ −δ.

(16)

If this condition is violated, then we keep the previous it-

erate yt+1 = yt. Under condition (16), the overall conver-

gence of our algorithm is guaranteed (cf. Prop. 1 and Prop. 2

in Sec. 3). We summarize our method in Alg. 1.

Note that if the discrete subproblem (14) is solved

to global optimality, our method specializes to classi-

cal nonconvex ADMM applied to a purely continuous

problem minαE(Kα) + f(α). The function E(β) =
miny∈Y

∑

i∈V ℓ(yi;β) +
∑

C∈C EC(y) encapsulates the

minimization over the discrete labelings y. This results in a

pointwise minimum over exponentially many functions.

Distributed optimization. Distributed optimization is

considered one of the main advantages of ADMM in su-

pervised learning [15, 5]. In our method, the (β, y) update
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Algorithm 1 Discrete-Continuous ADMM

Require: initialize α0, λ0, ρ0 > 0, τ > 1, ρmax as in (18)

1: while (not converged) do

2: Compute lookup-table (ut+1, Bt+1):
3: for all i ∈ {1, . . . , |V|} and yj ∈ L do

4: In parallel update (ut+1
i,yj

, Bt+1
i,yj

) as in (13).

5: end for

6: Update yt+1 as in (14).

7: if yt+1 violates condition (16) then

8: yt+1 ← yt.
9: end if

10: βt+1
i ← Bt+1

i,y
t+1

i

11: Perform updates, as in (10),(11).

12: if ρ violates condition (18) then

13: ρt+1 ← min {ρmax, τρt}.
14: end if

15: t← t+ 1
16: end while

requires the solution of only |L|· |V|many (instead of |L||V|

for the naive approach) independent and small-scale contin-

uous minimization problems of the form (13) and one addi-

tional discrete problem (14). This suggests the distributed

solution of the subproblems (13), for instance on a GPU.

Subsequently, the optimization of the MRF (14) and the up-

date of the consensus variable is carried out after gathering

the solutions of the subproblems. Since (14) need not be

solved to optimality, the MRF solver may be stopped early

to speed up computation. This is particularly useful if a

primal-dual algorithm for solving the LP-relaxation is used

[30, 14].

Exploit duality. If the loss terms ℓ(yi; ·) are convex and

lower semicontinuous, then the independent subproblems

(13) can be solved efficiently via duality as follows. For all

loss functions we consider, it is convenient to solve the dual

problem as it scales linearly with the number of training

samples (which is equal to one in our case). For the Cram-

mer and Singer multiclass SVM loss [11], for instance,

there exists an efficient variable fixing algorithm [25] for

solving the dual problem. For the softmax loss the dual

problem reduces to a one-dimensional nonlinear equation

via the Lambert-W function [35] and may be solved by per-

forming a few iterations of Newton’s or Halley’s method.

For the special case of the one-vs.-all hinge loss, (13) can

be solved in closed form. In any case, each subproblem

involves only a small number of instructions, which is im-

portant for a GPU-based implementation.

2.3. Consensus update

For a quadratic regularizer h(x) = νx2, where ν is the

regularization parameter, the update step (10) is equivalent

to

αt+1 = argmin
α

ν 〈α,Kα〉+
ρ

2
‖Kα− βt+1 + λt

/ρ‖2F .

(17)

This is a quadratic problem that can be solved via a normal

equation using either a cached eigenvalue decomposition of

the kernel matrix, or an iterative algorithm such as conju-

gate gradient (CG). The latter is preferred for large scale

applications, as each CG iteration involves a kernel-matrix-

vector multiplicationKv. For the linear kernelK = X⊤X ,

this guarantees efficiency of our method, since K does not

have to be stored explicitly. For general kernels such as the

RBF kernel, a low rank approximation to the kernel matrix

K ≈ GG⊤, for some G ∈ R
|V|×l with l ≪ |V| can be

obtained for instance via the Nyström method [41, 58] or

random features [45]. Furthermore, in practice, often only a

small number of conjugate gradient iterations are necessary.

3. Convergence analysis

In this section, we provide a complete convergence anal-

ysis of the proposed algorithm. To this end, we make the

following assumptions:

• The function f isL-smooth,m-semiconvex and lower-

bounded, i.e. f is differentiable and ∇f is Lipschitz-

continuous with modulus L and there exists m > 0
sufficiently large so that f + m

2 ‖ · ‖
2
F is convex.

• For all yi ∈ L, ℓ(yi; ·) is lower-bounded.

• The kernel matrix K ∈ R
|V|×|V| is surjective, i.e. the

smallest eigenvalue σmin(K
⊤K) > 0 is positive.

• After finitely many iterations t the penalty parameter ρ
is sufficiently large and kept fixed such that

L2

ρσmin(K⊤K)
+
m− ρσmin(K

⊤K)

2
< 0. (18)

When the MRF subproblem is solved to global optimality,

convergence can be guaranteed by considering a pointwise

minimum over exponentially many augmented Lagrangians

and applying existing theory [36, 19]. For the general case,

however, the theory needs to be extended. Our convergence

proof borrows arguments from [36, 19], where the conver-

gence of ADMM in the nonconvex setting is shown via a

monotonic decrease of the augmented Lagrangian. In our

case, for a sufficiently large penalty parameter ρ, we can

achieve a monotonic decrease of the “discrete-continuous”

augmented Lagrangian (8), even if the MRF subproblem

(14) is not solved globally optimal. This allows us to stop

exact MRF solvers early or to apply heuristic solvers if com-

puting global optima is intractable.

For the complete proofs of all the theoretical results, pre-

sented in this section, cf. the supplementary material.
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Lemma 1. Let K ∈ R
|V|×|V| be surjective and δ ≥ 0. For

ρ meeting condition (18) we have that

1. The “discrete-continuous” augmented Lagrangian

(8) decreases monotonically with the iterates

(αt, βt, λt, yt):

Lρ(α
t+1, βt+1, λt+1, yt+1)− Lρ(α

t, βt, λt, yt)

≤
(

L2

ρσmin(K⊤K)
+ m−ρσmin(K

⊤K)
2

)

‖αt+1 − αt‖2F

− δJyt+1 6= ytK, (19)

where J·K denotes the Iverson bracket.

2. {Lρ(α
t+1, βt+1, λt+1, yt+1)}t∈N is lower bounded.

3. {Lρ(α
t+1, βt+1, λt+1, yt+1)}t∈N converges.

We are now able to guarantee that feasibility is achieved

in the limit. This is in contrast to a dual-decomposition

approach [29, 60, 51] or a Gauss-Seidel quadratic penalty

method (with finite penalty parameter ρ), used for instance

in [49, 24], where a violation of the consensus constraint re-

mains in the limit. Moreover, if δ > 0 is chosen strictly pos-

itive, then the discrete variable is guaranteed to converge,

i.e. for T sufficiently large, we have yt+1 = yt for all t > T .

Lemma 2. Let {(αt, βt, λt, yt)}t∈N be the iterates pro-

duced by Alg. 1. Then {(αt, βt, λt, yt)}t∈N is a bounded

sequence. Furthermore, for t → ∞ the distance of two

consecutive continuous iterates vanishes, and feasibility is

achieved in the limit:

‖αt+1 − αt‖F → 0, (20)

‖βt+1 − βt‖F → 0, (21)

‖λt+1 − λt‖F → 0, (22)

‖Kαt+1 − βt+1‖F → 0. (23)

Finally, if δ > 0 is chosen strictly positive, then there exists

some T ∈ N such yt+1 = yt for all t > T .

The limit points of our algorithm correspond to

“discrete-continuous” critical points of the augmented La-

grangian.

Definition 1 (“Discrete-continuous” critical point). We call

(α∗, β∗, λ∗, y∗) a “discrete-continuous” critical point of the

“discrete-continuous” augmented Lagrangian (8) if it sat-

isfies

0 ∈ ∂(ℓ(y∗i ; ·))(β
∗
i )− λ

∗
i , ∀ i ∈ V (24)

0 ∈ ∂g(α∗) +K⊤λ∗ (25)

Kα∗ = β∗, (26)

for y∗ with EC(y
∗) < ∞ for all C ∈ C. Here, ∂f(x)

denotes the “limiting” subdifferential [46, Definition 8.3]

of the function f at x with f(x) <∞.

Proposition 1. Let δ ≥ 0. Then any limit point

(α∗, β∗, λ∗, y∗) of the sequence {(αt, βt, λt, yt)}t∈N is a

“discrete-continuous” critical point.

Finally, under convexity of f and ℓ(yi; ·), for all yi ∈ L
and strictly positive δ > 0, we can guarantee that the se-

quence of iterates produced by Alg. 1 globally converges to

a point (α∗, β∗, λ∗, y∗) which has the following property:

α∗ is the global optimum of the supervised learning prob-

lem w.r.t. the estimated training labels y∗:

α∗ = argmin
α

∑

i∈V

ℓ(y∗i ;Kiα) + f(α). (27)

Proposition 2. Let ℓ(yi; ·) and g be proper, convex and

lower-semicontinuous and let δ > 0. Then the sequence

{(αt, βt, λt, yt)}t∈N produced by Alg. 1 converges to a

“discrete-continuous” critical point (α∗, β∗, λ∗, y∗) of (8)

and α∗ solves the problem (27) to global optimality.

Discussion of the assumptions. Note that in general the

kernel matrix K is not surjective. However, for the strictly

positive definite RBF kernel, K is strictly positive definite

so that convergence can be achieved for finite ρ. In order to

enforce theoretical convergence for general kernels, we may

add a small constant to the diagonal of the kernel matrix

K := K + γI that alters the model only slightly. In fact,

for the binary SVM, this change is equivalent to replacing

the hinge loss with its square.

4. Experiments

In this section, we present the experimental results of

our method on several transductive learning tasks. First, we

compare our method to an SDP relaxation method for trans-

ductive multinomial logistic regression by [22]. Second, we

use our model and solver for the tasks of object video seg-

mentation as well as image segmentation with user inter-

action, showing improvements on the false positive rate of

object pixels.

4.1. Comparison with SDP relaxation for transduc
tive learning

In this experiment, we consider the standard SSL bench-

mark [8] for a comparison with the SDP relaxation method

for transductive multinomial logistic regression by [22].

The benchmark is a collection of several datasets, with vary-

ing feature dimensions and number of classes. Each dataset

is provided with 12 splits into l = 10 or l = 100 labeled and

N − l unlabeled samples. We introduce additional unary

energies EC with |C| = 1 for all the labeled examples, to

constrain their label to be fixed during optimization. While

[22] incorporates an entropy prior on the labeling which fa-

vors an equal balance distribution, we introduce a higher
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Figure 2: Exemplary results for video object segmentation on the DAVIS benchmark [44]. It can be seen that both, the

inductive MRF inference approach and OSVOS produce a large number of false positive object pixels for the frames where

the object is occluded.

Table 1: Comparison with the method of [22] on the SSL

benchmark [8]. Reported are the average label-accuracy (in

%) and variance over the splits. Our evaluation suggests

that our method performs better for a standard hyperparam-

eter setting except for three out of 20 settings. Moreover, it

produces more consistent results, i.e. lower variances over

the splits.

Linear Kernel RBF Kernel

Dataset SDP Ours SDP Ours

Digit1,10l 69.27±27.56 82.20±4.54 53.93±9.43 78.18±8.43

USPS,10l 57.72±13.73 64.58±3.37 40.10±11.67 48.19±5.84

BCI,10l 50.44±3.16 50.62±2.08 50.00±3.06 51.67±0.44

g241c,10l 49.88±38.92 55.42±3.95 62.33±36.84 89.98±0.32

g241n,10l 52.77±34.37 57.61±4.44 50.13±0.53 51.13±0.13

Digit1,100l 75.74±29.73 85.60±2.91 88.65±0.49 87.61±3.44

USPS,100l 63.44±9.97 72.14±0.84 39.83±12.63 56.54±3.31

BCI,100l 60.58±6.87 65.23±1.25 64.19±1.23 62.62±1.00

g241c,100l 64.92±17.47 86.31±0.91 85.63±0.76 89.34±1.07

g241n,100l 54.14±17.13 54.11±0.64 52.23±1.61 53.98±0.38

order potential EC , with C = V , that restricts the solution

to deviate at most 10 percent from the equal balance dis-

tribution. We solve the LP-relaxation of the higher-order

MRF subproblem (14) with the dual-simplex method and

round the solution. The baseline results are computed with

a MATLAB implementation that is provided by the authors.

For these experiments, we use the softmax loss and set the

regularization parameter ν = 0.05 for the linear kernel. For

the RBF kernel we manually chose the variance parameter

σ = 0.5477 and the regularization parameter ν = 0.0025.

We chose the initial penalty parameter ρ0 = 0.001 and

τ = 1.003. All values are averaged over 12 different splits.

The evaluation in Tab. 1 suggests, that our method performs

better for a standard hyperparameter setting except for three

out of 20 settings. Moreover, it produces more consistent

results, i.e. lower variances over the splits, which suggests

that our method is more robust towards noise and poorly

labeled data.

4.2. Video object segmentation

In this experiment, we evaluated our method on video

object segmentation. Here, the task is to segment an ob-

ject throughout a video, given its mask in the first frame.

This problem has been successfully approached by [6], us-

ing end-to-end deep learning with fully convolutional neu-

ral networks. At test time, their classifier is fine-tuned on

the appearance of the object and the background in the

first frame and predicts the object pixels of individual later

frames. However, this method struggles with drastic appear-

ance changes of the object, which have not been learned

in advance. These include pose changes, sharp lighting

and background changes or severe occlusions as shown in

Fig. 2.

We propose to use a transductive approach instead. More

precisely, we use the pre-trained (not fine-tuned) OSVOS

parent network [6] as a deep feature extractor and a MRF

model with a variable classifier in the form of (2). We use

a simple linear kernel SVM in our model, as the extracted

deep features are almost linearly separable. Further, we in-

troduce unary indicator energies Ei to fix the labels of the

user-annotated pixels in the first frame and pairwise ener-

gies Eij for adjacent pixels in any frame to favor spatially

smooth solutions. Similar to [6], we do not use any tempo-

ral consistency terms. To reduce the number of examples,

we apply our method on a superpixel level and extract 6000

super-pixels [1] for each frame and apply average pooling
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Figure 3: Further results for video object segmentation on

the car-shadow sequence from the DAVIS benchmark [44].

over the superpixels. We compare the proposed transductive

approach to OSVOS [6] and the classical (inductive) MRF

inference approach (where the classifier is learned with the

first frame only) on the DAVIS benchmark [44]. For both

the inductive and the transductive approach the used linear

kernel SVM model, the higher order energies EC and the

extracted superpixels are the same. The results are shown

in Fig. 2. It can be seen that [6] works well as long as the ap-

pearance of the object and background are sufficiently sim-

ilar to the first frame (first column). In frames 60 to 68,

where the object is occluded, both the inductive MRF infer-

ence approach and OSVOS produce a large number of false

positive object pixels. In this experiment the intersection-

over-union scores (the higher the better) are 0.7087 for our

method, 0.6452 for OSVOS and 0.5063 for the inductive

approach. Similarly in the car-shadow sequence, OSVOS

and the inductive approach mask additionally the other car

and the motorbike in frame 39 (cf. Fig. 3). In contrast our

method masks the correct car only. Here, the intersection-

over-union scores are 0.9262 for OSVOS, 0.9196 for our

method and 0.8844 for the inductive approach.

4.3. Image segmentation with user interaction

We evaluated our method on the task of interactive

foreground-background segmentation with deep features.

Like in the previous experiment we used OSVOS as a deep

feature extractor. On this task we compare our method

to the Chan-Vese kernel k-means approach proposed in

[53, 54] as a baseline method. Since the features are almost

linearly separable, we use a simple linear kernel for both our

model and the baseline model. As it is shown in Fig. 4, the

k-means approach often fails to find a good cluster-center

Annotation [53, 54] Ours

Figure 4: Exemplary results for interactive binary image

segmentation with deep features. Left: Input images along

with user scribbles in red for foreground and blue for back-

ground. Middle: Segmentation results (red masks) ob-

tained from k-means. Right: Segmentation results (red

masks) obtained with the proposed method.

assignment, despite of strong supervision (provided in the

form of user-scribbles) and richness of the features. This

is due to the fact that deep high dimensional features are in

general not k-means friendly [59], which means further pre-

processing or a k-means suited kernel would be required.

In contrast, our method provides a reasonable result for all

cases, without the need for feature-pre-processing or kernel-

parameter tuning.

5. Conclusion

We considered the joint solution of MAP-inference in

MRFs and parameter learning, which can be viewed as a

transductive inference problem. To solve this task, we pro-

posed a novel algorithm that jointly optimizes over the dis-

crete label variables and the continuous model parameters.

The proposed method is related to classical ADMM from

continuous optimization and admits a convergence proof

under suitable assumptions even though the objective func-

tion is discrete-continuous and nonconvex. Our algorithm

makes use of a decoupling of the problem into purely dis-

crete and purely continuous subproblems and can be imple-

mented in a distributed fashion. We evaluated our approach

in several experiments including video object segmentation

and interactive image segmentation. Our results suggest

that the proposed optimization method performs favorable

compared to alternating optimization (as in k-means) and

convex relaxations. In particular, this indicates that the pre-

sented method also serves as an alternative approach to op-

timization problems arising in semi-supervised or transduc-

tive learning, e.g., in the case of SVMs. Furthermore, the

visual results show that the transductive inference model is

able to reduce the hallucination of false object pixels in im-

age and video segmentation tasks.
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