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Abstract

Image cropping aims at improving the aesthetic quali-

ty of images by adjusting their composition. Most weakly

supervised cropping methods (without bounding box super-

vision) rely on the sliding window mechanism. The sliding

window mechanism requires fixed aspect ratios and limits

the cropping region with arbitrary size. Moreover, the slid-

ing window method usually produces tens of thousands of

windows on the input image which is very time-consuming.

Motivated by these challenges, we firstly formulate the aes-

thetic image cropping as a sequential decision-making pro-

cess and propose a weakly supervised Aesthetics Aware Re-

inforcement Learning (A2-RL) framework to address this

problem. Particularly, the proposed method develops an

aesthetics aware reward function which especially bene-

fits image cropping. Similar to human’s decision making,

we use a comprehensive state representation including both

the current observation and the historical experience. We

train the agent using the actor-critic architecture in an end-

to-end manner. The agent is evaluated on several popu-

lar unseen cropping datasets. Experiment results show that

our method achieves the state-of-the-art performance with

much fewer candidate windows and much less time com-

pared with previous weakly supervised methods.

1. Introduction

Image cropping is a common task in image editing,

which aims to extract well-composed regions from ill-

composed images. It can improve the visual quality of im-

ages, because the composition plays an important role in the

image quality. An excellent automatic image cropping algo-

rithm can give editors professional advices and help them

save a lot of time [14].

In the past decades, many researchers have devoted their

efforts to proposing novel methods [34, 10, 12] for auto-

matic image cropping. As the cropping box annotations

are expensive to obtain, several weakly supervised cropping

Input Step 1 Step T-3

Step T-2 Step T-1 Step T: Termination & Output

…

Figure 1. Illustration of the sequential decision-making based au-

tomatic cropping process. The cropping agent starts from the w-

hole image and takes actions to find the best cropping window in

the input image. At each step, it takes an action (yellow and red

arrow) and transforms the previous window (dashed-line yellow

rectangle) to a new state (red rectangle). The agent takes the termi-

nation action and stops the cropping process to output the cropped

image at step T.

methods (without bounding box supervision) [11, 5, 35] are

proposed. Most of these weakly supervised methods follow

a three-step pipeline: 1) Densely extract candidates with the

sliding window method on the input image, 2) Extract care-

fully designed features from each region and 3) Use a clas-

sifier or ranker to grade each window and find the best re-

gion. Although these works have achieved pretty good per-

formance, they may not find the best results due to the limi-

tations of the sliding window method, which requires fixed

aspect ratios and limits the cropping region with arbitrary

size. What’s more, these sliding window based methods

usually need tens of thousands of candidates on image level,

which is very time-consuming. Although we can set sever-

al different aspect ratios and densely extract candidates, it

inevitably costs lots of time and is still unable to cover all

conditions.

Based on above observations, in this paper, we firstly for-

mulate the automatic image cropping problem as a sequen-

tial decision-making process, and propose an Aesthetics
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Aware Reinforcement Learning (A2-RL) model for weak-

ly supervised cropping problem. The sequential decision-

making based automatic image cropping process is illus-

trated in Figure 1. To our knowledge, we are the first to

put forward a reinforcement learning based method for au-

tomatic image cropping. The A2-RL model can finish the

cropping process within several or a dozen steps and get re-

sults of almost arbitrary shape, which can overcome the dis-

advantages of the sliding window method. Particularly, A2-

RL model develops a novel aesthetics aware reward func-

tion which especially benefits image cropping. Inspired by

human’s decision making, the historical experience is also

explored in the state representation to assist the current de-

cision. We test the model on three unseen popular cropping

datasets [34, 11, 4], and the experiment results demonstrate

that our method obtains the state-of-the-art cropping perfor-

mance with much fewer candidate windows and much less

time compared with related methods.

2. Related Work

Image cropping aims at improving the composition of

images, which is very important for the aesthetic quality.

There are a number of previous works for aesthetic quali-

ty assessment. Many early works [15, 7, 19, 9] focus on

designing handcrafted features based on intuitions from hu-

man’s perception or photographic rules. Recently, thanks

to the fast development of deep learning and newly pro-

posed large scale datasets [22], there are many new work-

s [16, 20, 8] which accomplish aesthetic quality assessment

with convolutional neural networks.

Previous automatic image cropping methods can be di-

vided into two classes, attention-based and aesthetics-based

methods. The basic approach of attention-based method-

s [28, 27, 24, 2] is to find the most visually salient re-

gions in the original images. Attention-based methods can

find cropping windows that draw more attention from peo-

ple, but they may not generate very pleasing cropping win-

dows, because they hardly consider about the image com-

position [4]. For those aesthetics-based methods, they aim

to find the most pleasing cropping windows from original

images. Some of these works [23, 11] use aesthetic quality

classifiers to discriminate the quality of candidate windows.

Other works use RankSVM [4] or RankNet [5] to grade

each candidate window. There are also change-based meth-

ods [34], which compares original images with cropped im-

ages so as to throw away distracting regions and retain high

quality ones. Image retargeting techniques [6, 3] adjust the

aspect ratio of an image to fit the target aspect ratio, while

not discarding important content in an image, which are rel-

evant to our task.

As for the supervision information, these methods can be

divided into supervised and weakly supervised methods, de-

pending on whether they use bounding box annotations. Su-

pervised cropping methods [12, 10, 31, 32] need bounding

box annotations to train the cropper. For example, object

detection based cropping methods [10, 32] are fast and ef-

fective, but they need a mount of bounding box annotations

for training the detector, which is expensive. Most weak-

ly supervised methods [11, 5, 14] still rely on the sliding

window method to obtain the candidate windows. As dis-

cussed above, the sliding window method uses fixed aspect

ratios and limits windows with arbitrary size. What’s more,

these methods are also very time-consuming. In this paper,

we formulate the cropping process as a sequential decision-

making process and propose a weakly supervised reinforce-

ment learning (RL) based strategy to search the cropping

window. Hong et al. [12] also regard the cropping process

as a sequential process, but they use bounding box as super-

vision. Our RL based method can find the final results with

only several or a dozen candidates of almost arbitrary size,

which is much faster and more effective compared to other

weakly supervised methods and doesn’t need bounding box

annotations compared to supervised methods.

RL based strategies have been successfully applied in

many domains of computer vision, including image cap-

tion [26], object detection [1, 13] and visual relationship

detection [18]. The active object localization method [1]

achieves the best performance among detection algorithm-

s without region proposals. The tree-RL method [13] us-

es RL to obtain region proposals and achieves compara-

ble result with much fewer region proposals compared to

RPN [25]. Above RL based object detection methods use

bounding boxes as their supervision, however, our frame-

work only uses the aesthetics information as supervision,

which requires less label information. To our best knowl-

edge, we are the first to put forward a deep reinforcement

learning based method for automatic image cropping.

3. Aesthetics Aware Reinforcement Learning

In this paper, we formulate automatic image cropping

as a sequential decision-making process. In the decision-

making process, an agent interacts with the environment,

and takes a series of actions to optimize a target. As il-

lustrated in Figure 2, for our problem, the agent receives

observations from the input image and the cropping win-

dow. Then it samples action from the action space accord-

ing to the observation and historical experience. The agent

executes the sampled action to manipulate the shape and

position of the cropping window. After each action, the a-

gent receives a reward according to the aesthetic score of

the cropped image. The agent aims to find the most pleas-

ing window in the original image by maximizing the accu-

mulated reward. In this section, we first introduce the state

space, action space and aesthetics aware reward of our mod-

el, then we detail the architecture of our aesthetics aware re-

inforcement learning (A2-RL) model and the training pro-
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Figure 2. Illustration of the A2-RL model architecture. In the forward pass, the feature of the cropping window (local feature) is extracted

and concatenated with the feature of the whole image (global feature) which is extracted and retained previously. Then, the concatenated

feature vector is fed into the actor-critic branch which has two outputs. The actor output is used to sample actions from the action space

so as to manipulate the cropping window. The critic output (state value) is used to estimate the expected reward under the current state.

In addition, the feature of the cropping window is also fed into the aesthetic quality assessment branch. The output of this branch is the

aesthetic score of the input cropping window and stored to compute rewards for actions. In this model, both the global feature and the local

feature are 1000-dim vectors, three fully-connected layers and the LSTM layer all output 1024-dim feature vectors.

cess.

3.1. State and Action Space

At each step, the agent decides which action to execute

according to the current state. The state must provide the

agent with comprehensive information for better decision-

s. As the A2-RL model formulates the automatic image

cropping as a sequential decision-making process, the cur-

rent state can be represented as st = {o0, o1, · · · , ot−1, ot},
where ot is the current observation of the agent. This formu-

lation is similar to human’s decision making process, which

considers not only the current observation but also the his-

torical experience. The historical experience is usually very

valuable for future decision-making. Thus, in the proposed

method, we also take the historical experience into consid-

eration. The A2-RL model uses the features of the cropping

window and the input image as the current observation ot.
Agent can learn about the global information and the local

information with such observation. In the A2-RL model,

we use a LSTM unit to memorize historical observations

{o0, o1, · · · , ot−1}, and combine them with the current ob-

servation ot to form the state st.

We choose 14 pre-defined actions to form the action s-

pace, which can be divided into four groups: scaling ac-

tions, position translation actions, aspect ratio translation

actions and a termination action. The first three groups aim

to adjust the size, position and shape of the cropping win-

dow, including 5, 4 and 4 actions respectively. These three

groups follow similar definitions in [13], but with different

scales. All these actions adjust the shape and position by

0.05 times of the original image size, which could capture

more accurate cropping windows than a large scale. The ter-

mination action is a trigger for the agent, when this action is

chosen, the agent will stop the cropping process and output

the current cropping window as the final result. As the mod-

el learns when to stop the cropping process by itself, it can

stop at the state where the score won’t increase anymore so

as to get the best cropping window. Theoretically, the agent

can cover windows with almost arbitrary size and position

on the original image.

The observation and action space are illustrated in Fig-

ure 2 for an intuitional representation.

3.2. Aesthetics Aware Reward

Our A2-RL model aims to find the most pleasing crop-

ping window on the original image. So the reward function

should lead the agent to find a more pleasing window at

each step. We propose using the aesthetic score to evalu-

ate the pleasing degree of images naturally. When the agent

takes an action, the difference between the aesthetic scores

of the new cropping window and the last one can be utilized

to compute the reward for this action. More detailed, if the

aesthetic score of the new window is higher than the last

one, the agent will get a positive reward. On the contrary,

if the score becomes lower, the agent will get a negative re-

ward. To speed up the cropping process, we also give the

agent an additional negative reward−0.001∗(t+1) at each

step, where t+ 1 is the number of steps the agent has taken

since the beginning and t starts from 0. This constraint will

result in a lower reward when the agent takes too many step-
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s. For an image I, we denote its aesthetic score as saes(I).
The new cropped image and the last one are denoted as It+1

and It respectively, sign(∗) denote the sign function, so the

foundation of our aesthetics aware reward function r′t can

be formulated as :

r′t = sign(saes(It+1)− saes(It))− 0.001 ∗ (t+ 1) (1)

In the above definition of r′t, we use the sign function to

limit the variation range of saes(It+1)−saes(It), because the

training is stable and easy to converge in practice under such

setting. Using the reward function without the sign function

makes it hard for the model to converge in our experiments,

which is mainly due to the dramatic fluctuation of rewards,

especially when the model samples the cropping window

randomly at first.

We also consider other heuristic constraints for better

cropping policies. We believe the aspect ratio of well-

composed images is limited in a particular range. In the

A2-RL model, if the aspect ratio of the new window is low-

er than 0.5 or higher than 2, the agent will receive a negative

reward nr as the penalty term for the corresponding action,

so the agent can learn a strict rule not to let such situation

happen. The limited range of the aspect ratio in our model

is for the common cropping task, we can also modify the

reward function and the action space to meet some special

requirements on the aspect ratio depending on the applica-

tion. Let ar denote the aspect ratio of the new window,

nr denote the negative reward the agent receives when the

aspect ratio of the window exceeds the limited range, the

whole reward function rt for the agent taking an action at
under the state st can be formulated as:

rt(st, at) =

{

r′t + nr, if ar < 0.5 or ar > 2
r′t, otherwise

(2)

3.3. A2­RL Model

With the defined state space, action space and reward

function, we start to introduce the architecture of our

Aesthetics Aware Reinforcement Learning (A2-RL) frame-

work. The detailed architecture of the framework is il-

lustrated in Figure 2. The A2-RL model starts with a 5-

layer convolution block and a fully-connected layer which

outputs 1000-dimensional vector for feature representation.

Then the model splits into two branches, the first one is the

actor-critic branch, the other is the aesthetic quality assess-

ment branch. The actor-critic branch is composed of three

fully-connected layers and a LSTM layer. The LSTM layer

is used to memorize the historical observations. The actor-

critic branch has two outputs, the first one is the policy out-

put, which is also named Actor, the other output is the value

output, also named Critic. The policy output is a fourteen-

dimensional vector, each dimension corresponding to the

probability of taking relevant action. The value output is

the estimation of the current state, which is the expected

accumulated reward in the current situation. The aesthetic

quality assessment branch outputs an aesthetic quality score

for the cropped image, which is used to compute the reward.

In the image cropping process, the A2-RL model pro-

vides the agent with the probability of each action under the

current state. As shown in Figure 2, the model feeds the

cropped image into the feature representation unit and ex-

tracts the local feature at first. Then the feature is combined

with the global feature which is extracted in the first forward

pass and retained for the following process. The combined

feature vector is then fed into the actor-critic branch. Ac-

cording to the policy output, the agent samples the relevant

action and adjusts the size and position of the cropping win-

dow correspondingly. For example, in Figure 2, the agent

executes the sampled action to shrink the cropping window

from left and top with 0.05 times the size of the image. For-

ward pass will continue until the termination action is sam-

pled.

3.4. Training A2­RL Model

In the A2-RL, we propose using the asynchronous ad-

vantage actor-critic (A3C) algorithm [21] to train the crop-

ping policy. Different from the original A3C, we replace

the asynchronous mechanism with mini-batch to increase

the diversity. In the training stage, we use the advantage

function [21] and entropy regularization term [33] to for-

m the optimization objective of the policy output. We use

Rt to denote the accumulated reward at step t, which is
∑k−1

i=0
γirt+i+γkV (st+k; θv), where γ is the discount fac-

tor, rt is the aesthetics aware reward at step t, V (st; θv)
is the value output under state st, θv denotes the network

parameters of Critic branch and k ranges from 0 to tmax.

tmax is the maximum number of steps before updating. The

optimization objective of the policy output is to maximize

the advantage function Rt − V (st; θv) and the entropy of

the policy output H(π(st; θ)), where π(st; θ) is the prob-

ability distribution of policy output, θ denotes the network

parameters of Actor branch, and H(∗) is the entropy func-

tion. The entropy in the optimization objective is used to

increase the diversity of actions, which can make the a-

gent learn flexible policies. The optimization objective of

the value output is to minimize (Rt − V (st; θv))
2/2. So

gradients of the actor-critic branch can be formulated as

∇θlogπ(at|st; θ)(Rt − V (st; θv)) + β∇θH(π(st; θ)) and

∇θv (Rt−V (st; θv))
2/2, where β is to control the influence

of entropy and π(at|st; θ) is the probability of the sampled

action at under the state st.

The whole training procedure of the A2-RL model is de-

scribed in Algorithm 1. Tmax means maximum number of

steps the agent takes before termination.
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Algorithm 1: Training procedure of the A2-RL model

Input: original image I

1 fglobal = Feature extractor(I)
2 I0 ← I , t← 0
3 repeat

4 tstart = t, dθ ← 0, dθv ← 0
5 repeat

6 flocal = Feature extractor(It)
7 ot = concat(fglobal, flocal)
8 st = LSTMAC(ot) //LSTM of Actor-Critic

9 Perform at according to the policy output

π(at|st; θ) and get the new image It+1

10 rt = reward(It, It+1, t)
11 t = t+ 1

12 until t− tstart == tmax or at−1 is termination

action;

13 R =

{

0 if at−1 is termination action

V (st; θv) for other actions

14 for i ∈ {t− 1, ..., tstart} do

15 R← ri + γR
16 dθ ← dθ +∇θlogπ(ai|si; θ)(R− V (si; θv))

+β∇θH(π(si; θ))
17 dθv ← dθv +∇θv (R− V (si; θv))

2/2

18 end

19 Update θ with dθ and θv with dθv
20 until t == Tmax or at−1 is termination action;

4. Experiments

4.1. Experimental Settings

Training Data To train our network, we select images

from a large scale aesthetics image dataset named AVA [22],

which consists of∼250000 images. All these images are la-

beled with aesthetic score rating from one to ten by several

people. As the score distribution is extremely unbalanced,

we simply divide them into three classes: low quality, mid-

dle quality and high quality. These three classes correspond

to score from one to four, four to seven and seven to ten re-

spectively. We choose about 3000 images from each class

to compose the training set. Finally, there are ∼9000 im-

ages in the training set. With these training data, our model

can learn policies with images of diverse quality, which can

make the model generalize well to different images.

Implementation Details In our experiment, the aesthet-

ic score saes(I) of the image I is the output of the pre-

trained view finding network (VFN) [5], which is an aes-

thetic ranker modified from the original AlexNet [17]. The

VFN is trained with the same training data and ranking loss

as the original settings [5]. As shown in Figure 2, the actor-

critic branch share the feature extractor unit with the VFN.

Method Avg IoU Avg Disp Error

eDN [30] 0.4857 0.1372

RankSVM+DeCAF7 [4] 0.6019 0.1060

VFN+SW [5] 0.6328 0.0982

A2-RL w/o nr 0.5720 0.1178

A2-RL w/o LSTM 0.6310 0.1014

A2-RL(Ours) 0.6633 0.0892
Table 1. Cropping Accuracy on FCD [4].

RMSProp [29] algorithm is utilized to optimize the A2-

RL model, the learning rate is set to 0.0005 and the other

arguments are set by default values. The mini batch size in

training is set to 32. The discount factor γ is set as 0.99 and

the weight of entropy loss β is set as 0.05 respectively. The

Tmax is set as 50, and the update period tmax is set to 10.

The penalty term nr in reward function is empirically set to

-5, which can lead to a strict rule that prevents the aspect

ratio of the cropping window exceeding the limited range.

We also choose 900 images from AVA dataset as the val-

idation set following the way of the training set. As the

A2-RL model aims to find the cropping window with the

highest aesthetic score, on the validation set, we use the

improvement of aesthetic score between the original and

cropped images as metric. We train the networks on the

training set for 20 epochs and validate the models on the

validation set every epoch. The model which achieves the

best average improvement on the validation set is chosen as

the final model.

Evaluation Data and Metrics To evaluate the capaci-

ties of our agent, we test it on three unseen automatic

image cropping datasets, including CUHK Image Crop-

ping Dataset (CUHK-ICD) [34], Flickr Cropping Dataset

(FCD) [4] and Human Cropping Dataset (HCD) [11]. The

first two datasets use the same evaluation metrics, while the

last one uses different metrics. We adopt the same metrics

as the original works for fair comparison.

There are 950 test images in CUHK-ICD, which are an-

notated by three different expert photographers. FCD con-

tains 348 test images, and each image has only one annota-

tion. On these two datasets, previous works [34, 4, 5] use

the same evaluation metrics to measure the cropping accu-

racy, including average intersection-over-union (IoU) and

average boundary displacement. In this paper, we denote

the ground truth window of the image i as W g
i and the crop-

ping window as W c
i . The average IoU of N images can be

computed as

1/N

N
∑

i=1

area(W g
i ∩W c

i )/area(W
g
i ∪W c

i ) (3)

The average boundary displacement computes the average

distance between the four edges of the ground truth win-
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Method
Annotation I Annotation II Annotation III

Avg IoU Avg Disp Error Avg IoU Avg Disp Error Avg IoU Avg Disp Error

eDN [30] 0.4636 0.1578 0.4399 0.1651 0.4370 0.1659

RankSVM+DeCAF7 [4] 0.6643 0.092 0.6556 0.095 0.6439 0.099

LearnChange [34] 0.7487 0.0667 0.7288 0.0720 0.7322 0.0719

VFN+SW [5] 0.7401 0.0693 0.7187 0.0762 0.7132 0.0772

A2-RL w/o nr 0.6841 0.0852 0.6733 0.0895 0.6687 0.0895

A2-RL w/o LSTM 0.7855 0.0569 0.7847 0.0578 0.7711 0.0578

A2-RL(Ours) 0.8019 0.0524 0.7961 0.0535 0.7902 0.0535
Table 2. Cropping Accuracy on CUHK-ICD [34].

dow and the cropping window. In image i, we denote four

edges of the ground truth window as Bg
i (l), B

g
i (r), B

g
i (u),

Bg
i (b), correspondingly, four edges of the cropping window

are denoted as Bc
i (l), B

c
i (r), B

c
i (u), B

c
i (b). The average

boundary displacement of N images can be computed as

1/N
N
∑

i=1

∑

j={l,r,u,b}

|Bg
i (j)−Bc

i (j)|/4 (4)

HCD contains 500 test images, each is annotated by ten

people. Because it has more annotations for each image

than the first two datasets, the evaluation metric is a little

different. Previous works [11, 14] on this dataset use top-

K maximum IoU as the evaluation metric, which is similar

to the previous average IoU. Top-K maximum IoU metric

computes the IoU between the proposed cropping windows

and ten ground truth windows, then it chooses the maximum

IoU as the final result. Top-k means to use k best cropping

windows to compute the result.

4.2. Evaluation of Cropping Accuracy

In this section, we compare the cropping accuracy of our

A2-RL model with previous sliding window based weak-

ly supervised methods to validate its effectiveness. As the

aesthetic assessment of our model is based on VFN [5], we

mainly compare our model with this method. Our model

uses RL based method to search the best cropping windows

sequentially with only several candidates. The VFN-based

method uses sliding window to densely extract candidates.

We also compare with several other baselines.

Cropping Accuracy on CUHK-ICD and FCD As the

previous VFN method [5] is only evaluated on CUHK-

ICD [34] and FCD [4], we also mainly compare our frame-

work with VFN on these two datasets. Notably, the original

VFN not only uses the sliding window candidates, but also

uses the ground truth window of test images as candidates,

which leads to a remarkably high performance on these two

datasets. As A2-RL model aims to search the best cropping

window, and in practice, there won’t be any ground truth

window for cropping algorithms, so, in this experiment, we

don’t use any ground truth windows in both frameworks for

fair comparison. It’s also worthy to mention that, the A2-

RL model has never seen images from both datasets during

training.

Besides the two frameworks discussed above, we al-

so compare some other cropping methods. We choose

the best attention-based method eDN reported in [4] on

behalf of the attention-based cropping algorithms. This

method computes the saliency maps with algorithms from

[30], and search the best cropping window by maximiz-

ing the difference of average saliency between the cropping

window and other region. We also choose the best result

(RankSVM+DeCAF7) reported in [4] as another baseline.

In this method, aesthetic feature DeCAF7 is extracted from

AlexNet and a RankSVM is trained to find the best cropping

window among all the candidates. For all these sliding win-

dow based methods, including eDN, RankSVM+DeCAF7

and VFN+SW (sliding window), the results are all report-

ed with the same sliding window setting as [4].

Experiments on FCD are shown in Table 1, where

VFN+SW and A2-RL are the two mainly comparable frame-

works. We also show the results on CUHK-ICD in Table 2.

As there are 3 annotations for each image, following previ-

ous works [34, 4, 5], we list the results for each annotation

separately. All symbols in Table 2 are the same as Table 1.

What’s more, we also report the best result in [34], in which

this dataset is proposed. Notably, the method is trained with

supervised cropping data on this dataset, which is not very

fair for us to compare. As this method is change-based, we

denote it as LearnChange in Table 2.

From Tables 1 and 2, we can see that our A2-RL mod-

el outperforms other methods consistently on these two

datasets, which demonstrates the effectiveness of our mod-

el.

Cropping Accuracy on HCD We also evaluate our A2-

RL model on HCD [11]. Following previous works [11,

14] on this dataset, top-K maximum IoU is employed as the

metric of cropping accuracy. We choose two state-of-the-

art methods [11, 14] on this dataset as our baselines. The

results are shown in Table 3. As our A2-RL model finds one
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Method Top-1 Max IoU

Fang et al. [11] 0.6998

Kao et al. [14] 0.7500

A2-RL w/o nr 0.7089

A2-RL w/o LSTM 0.7960

A2-RL(Ours) 0.8204
Table 3. Cropping Accuracy on HCD [11].

Method
Avg Avg Avg Avg

IoU Disp Steps Time(s)

VFN+SW 0.6328 0.0982 137 1.29

VFN+SW+ 0.6395 0.0956 500 4.37

VFN+SW++ 0.6442 0.0938 1125 9.74

A2-RL(Ours) 0.6633 0.0892 13.56 0.245
Table 4. Time Efficiency comparison on FCD [4]. VFN+SW,

VFN+SW+ and VFN+SW++ correspond different number of can-

didate windows, where VFN+SW follows original setting [5].

cropping window at a time, we compare the results using the

top-1 Max IoU as metric. From Table 3, we can see that our

A2-RL model still outperforms the state-of-the-art methods.

4.3. Evaluation of Time Efficiency

In this section, we study the time efficiency of our A2-

RL model. We compare our model with the sliding window

based VFN model on FCD. Experimental results are shown

in Table 4. The Avg Steps and Avg Time mean the average

value of steps and time methods cost to finish the cropping

process on a single image. We also augment the number

of sliding windows in this experiment. Notably, all results

in Table 4 are evaluated on the same machine, which has

a single NVIDIA GeForce Titan X pascal GPU with 12GB

memory and Intel Core i7-6800k CPU with 6 cores.

From Table 4, we can easily find that the cropping accu-

racy is improved as we augment the number of sliding win-

dows, but the consumed time also grows. Unsurprisingly,

our A2-RL model needs much fewer steps and costs much

less time than other methods. The average number of step-

s our A2-RL model takes is more than 10 times less than

the sliding window based methods, but our A2-RL model

still gets better cropping accuracy. These results show the

capacities of our RL-based model, with the novel aesthet-

ics aware reward and history-preserved state representation,

our model learns to use as few actions as possible to obtain

a more pleasant image.

4.4. Experiment Analysis

In this section, we analyse the experiment results and

study our model.

RL Search vs. Sliding Window From Tables 1, 2 and

4, we can find out that the A2-RL method is better than the

VFN+SW method in cropping accuracy and time efficiency

consistently. The main difference between these two meth-

ods is the way to get the cropping candidates. From this ob-

servation, we conclude that our proposed RL-based search

method is better than the sliding window method, which

is very obvious. Although the sliding window method can

densely extract candidates, it still fails to find very accurate

candidates due to the fixed aspect ratios. On the contrary,

our A2-RL model can find cropping windows with almost

arbitrary size.

Observation+History Experience vs. only Observation

We use LSTM unit to memorize historical observations

{o0, o1, · · · , ot−1} and combine them with the current ob-

servation ot to form the state st. In this section, we study

the effect of the history experience in our model. We aban-

don the LSTM unit in the A2-RL model, so the agent only

uses the current observation ot as the state st to make deci-

sions. We train a new agent under such setting and evaluate

it on above three datasets. Results are shown in Tables 1, 2

and 3, where the new agent is denoted as A2-RL w/o LSTM.

From these results, we can find that the cropping accuracy

of the new model is much lower than the original A2-RL

model, which demonstrates the importance of historical ex-

periences.

The effect of the limited aspect ratio. As shown in E-

quation 2, if the aspect ratio of the cropped image exceeds

the limited range, the agent will get an additional negative

reward nr. In this section, we study the effect of the penal-

ty term nr in the reward function. We remove the penalty

term nr in the reward function and train a new agent. The

new agent is evaluated on the above three datasets and the

results are shown in Tables 1, 2 and 3, where the new agent

is denoted as A2-RL w/o nr. From these results, we can find

that the cropping accuracy of the new agent also decreases a

lot, which demonstrates the importance of the penalty term

nr in the reward function.

4.5. Qualitative Analysis

We visualize how the agent works in our A2-RL model.

We show the intermediate results of the cropping sequences,

as well as the actions selected by the agent in each step. As

shown in Figure 3, the agent takes the selected actions step

by step to adjust the windows and chooses when to stop the

process to get the best results.

We also show several cropping results of different meth-

ods on FCD [4]. From Figure 4, we can find that the A2-RL

model can find better cropping windows than other meth-

ods, which demonstrates the capabilities of our model in an

intuitive way. Some results also show the importance of the

limited aspect ratio and history experience.

8199



Figure 3. Examples of the sequential actions selected by the agent and corresponding intermediate results. Images are from FCD [4].

(a) Input Image (b) VFN+SW [5] (c) A2-RL w/o nr (d) A2-RL w/o LSTM (e) A2-RL (Ours) (f) Ground Truth

Figure 4. Image cropping examples on FCD [4]. The number in the upper left corner is the difference between the aesthetic scores of the

cropped and original image, which is saes(Icrop) − saes(Ioriginal). The aesthetic score saes(I) is used in the definition of the reward

function (see Section 3.2). Best viewed in color.

5. Conclusion

In this paper, we formulated the aesthetic image crop-

ping as a sequential decision-making process and firstly

proposed a novel weakly supervised Aesthetics Aware Re-

inforcement Learning (A2-RL) model to address this prob-

lem. With the aesthetics aware reward and comprehensive

state representation which includes both the current obser-

vation and historical experience, our A2-RL model learns

good policies for automatic image cropping. The agent fin-

ished the cropping process within several or a dozens steps

and got the cropping windows with almost arbitrary size.

Experiments on several unseen cropping datasets showed

that our model can achieve the state-of-the-art cropping ac-

curacy with much fewer candidate windows and much less

time.
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