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Abstract

Zero-shot learning (ZSL) aims to recognize unseen im-

age categories by learning an embedding space between

image and semantic representations. For years, among ex-

isting works, it has been the center task to learn the proper

mapping matrices aligning the visual and semantic space,

whilst the importance to learn discriminative representa-

tions for ZSL is ignored. In this work, we retrospect existing

methods and demonstrate the necessity to learn discrimina-

tive representations for both visual and semantic instances

of ZSL. We propose an end-to-end network that is capable

of 1) automatically discovering discriminative regions by

a zoom network; and 2) learning discriminative semantic

representations in an augmented space introduced for both

user-defined and latent attributes. Our proposed method is

tested extensively on two challenging ZSL datasets, and the

experiment results show that the proposed method signifi-

cantly outperforms state-of-the-art methods.

1. Introduction

In recent years, zero-shot learning (ZSL) has gained its

popularity in object recognition task [1, 8, 9, 10, 12, 13, 15,

28]. Unlike traditional object recognition methods that seek

to predict the presence of an object instance by assigning

its image label as one of the categories seen in the training

set, zero-shot learning aims to recognize an object instance

from a new category never seen before. Therefore, in the

ZSL task, the seen categories in the training set and the un-

seen categories in the test set are disjoint. Typically, the

descriptors of categories (e.g. user-defined attribute annota-

tions [1, 13], the text descriptions of the categories [20], the

word vectors of the class names [6, 17], etc.) are provided

for both seen and unseen classes; some of those descriptors

are shared between categories. Those descriptors are often

called side information or semantic representations. In this

work, we focus on learning for ZSL with attributes.

As shown in Figure 1, a general assumption under the
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Figure 1. The typical ZSL approaches aim to find an embedding

space where the image features φ(x) and semantic representations

ψ(y) are embedded.

typical ZSL methods is that there exists a shared embed-

ding space, in which a mapping function, F (x, y;W) =
φ(x)TWψ(y), is defined to measure the compatibility be-

tween the image features φ(x) and the semantic represen-

tations ψ(y) for both seen and unseen classes. W is the

visual-semantic mapping matrix to be learned. Existing

approaches of ZSL mainly focus on introducing linear or

non-linear modelling methods, utilizing various optimiza-

tion objectives and designing different specific regulariza-

tion terms to learn the visual-semantic mapping, more spe-

cially, to learn W for ZSL.

To date, the learning of the mapping matrix W, though

important to ZSL, is mainly driven by minimizing the align-

ment loss between the visual and semantic space. However,

the final goal of ZSL is to classify unseen categories. There-

fore, the visual features φ(x) and semantic representations

ψ(y), should arguably be discriminative to recognize differ-

ent objects. Unfortunately, this issue has been thus far ne-

glected in ZSL and almost all the methods follow the same

paradigm: 1) extracting image features by hand-crafting or

using pre-trained CNN models; and 2) utilizing the human-

designed attributes as the semantic representations. There

are some pitfalls existed in this paradigm.

Firstly, the image features φ(x) either crafted manually

or from a pre-trained CNN model may be not representative

enough for zero-short recognition task. Though the features

from a pre-trained CNN model are learned, yet restricted

to a fixed set of images (e.g., ImageNet [22]), which is not

optimal for a particular ZSL task.
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Secondly, the user-defined attributes ψ(y) are semanti-

cally descriptive, but they are not exhaustive, thus limiting

its discriminativeness in classification. There may exist dis-

criminative visual clues not reflected by the pre-defined at-

tributes in ZSL datasets, e.g., the huge mouths of hippos.

On the other hand, as shown in Figure 1, the annotated at-

tributes, such as big, strong and ground, are shared in many

object categories. This is desired for knowledge transfer be-

tween categories, especially from seen to unseen categories.

However, if two categories (e.g. cheetah and tiger) share

too many (user-defined) attributes, they will be hardly dis-

tinguishable in the space of attribute vectors.

Thirdly, low-level feature extraction and embedding s-

pace construction in existing ZSL approaches are treated

separately, and usually carried out in isolation. Therefore,

few existing work ever considers those two components in

a unified framework.

To address those pitfalls, we propose an end-to-end mod-

el capable of learning latent discriminative features (LDF)

for ZSL in both visual and semantic space. Specifically, our

contributions are:

1) A cascaded zooming mechanism to learn features

from object-centric regions. Our model can automatical-

ly identify the most discriminative region in an image and

then zoom it into a larger scale for learning in a cascaded

network structure. In this way, our model can concentrate

on learning features from a region with object as a focus.

2) A framework to jointly learn the latent attributes and

the user-defined attributes. We formulate the learning of

latent attributes as a category-ranking problem to ensure

the learned attributes are discriminative. Meanwhile, the

discriminative region mining and the latent attributes mod-

elling are jointly learned in our model and assist each other

to gain further improvement.

3) An end-to-end network structure for ZSL. The ob-

tained image features can be regulated to be more compat-

ible with the semantic space, which contains both the user-

defined attributes and latent discriminative attributes.

2. Related Work

Early works of zero-shot learning (ZSL) follow an intu-

itive way to object recognition that first trains different at-

tribute classifiers and then recognizes an image by compar-

ing its predicted attributes with descriptions of unseen class-

es [5, 13]. Among these works, Direct Attribute Prediction

(DAP) model [14] predicts the posterior of each attribute,

and then the class posteriors for an image are calculated by

maximizing a posterior. Whilst in Indirect Attribute Predic-

tion (IAP) [14] model, the attribute posteriors are computed

from the class posterior of seen classes. In these methods,

each attribute classifier is trained individually and the rela-

tionship between attributes for a class is not considered.

To address this issue, most of recent ZSL works are

embedding-based methods, which seek to build a common

embedding space for images and their semantic features.

The DeViSE model [6] and the ALE model [1] are based

on a bilinear embedding model, where a linear transforma-

tion matrix W is learned with a hinge ranking loss. The

ESZSL model [21] adds a Frobenius norm regularizer in-

to the embedding space construction. The SJE model [2]

combines several compatibility functions linearly to form a

joint embedding space. The LatEM model [27] improves S-

JE with more nonlinearity by incorporating latent variables.

Recently, the SCoRe model [16] adds a semantically consis-

tent regularization to make the learned transformation ma-

trix perform better on test images. The MFMR model [29]

learns the projection matrix by decomposing the visual fea-

ture matrix. The majority of ZSL methods thus far extract

image features from whole image with fixed pre-trained C-

NN models. In contrast, image features in our model are

learned to be more representative with the mining of latent

discriminative regions and the end-to-end training style.

In typical embedding space construction approach, on-

ly the space of user-defined attributes is used to embed the

seen and unseen classes. Different from this, the JSLA

model [18, 19] and the LAD model [11] propose to model

latent attributes for ZSL, which are similar to our work. JS-

LA learns latent discriminative attributes by minimizing the

intra class distance between the attributes; while in LAD the

discriminativeness of latent attributes is indirectly achieved

by training seen class classifiers over the latent attributes.

Different from them, our model proposes to directly regu-

late both inter-class and intra-class distances between latent

attributes to achieve the discriminativeness. What’s more,

JSLA and LAD still utilize the fixed pre-extracted image

features, which are less representative than ours.

Another branch of ZSL approaches are based on hybrid

models, which aim to use the combination of seen classes

to classify unseen images. The ConSE model [17] convex-

ly combines the classification probabilities of seen classes

to classify unseen objects. The SynC model [3] introduces

synthetic classifiers of unseen classes by linearly combin-

ing the classifiers of seen classes. In our method, when

the learned latent attributes are utilized for ZSL prediction,

the latent attribute prototype for an unseen class is obtained

by combining the prototypes of seen classes. To this end,

our prediction model is among the family of hybrid models;

and beyond that our model also learns embeddings for both

user-defined attributes and latent attributes in one network.

3. Task Definition

In the zero-shot learning task, the training set, i.e., the

seen classes, is defined as S ≡ {(xsi , y
s
i )}

ns

i=1
, where xsi ∈

XS is the i-th image of the seen class and ysi ∈ YS is its cor-

responding class label. The test set, i.e., the unseen classes,

is defined as U ≡ {(xuj , y
u
j )}

nu

j=1
, where xuj ∈ XU denotes
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Figure 2. The framework of the proposed Latent Discriminative Features Learning (LDF) model. The coarse-to-fine image representa-

tions are projected into both user-defined attributes and latent attributes. The user-defined attributes are usually shared between different

categories while the latent attributes are learned to be discriminative by regulating inter/intra class distances.

the j-th unseen image and ysi ∈ YU is the label of it. The

seen and unseen classes are disjoint, i.e., YS ∩ YU = ∅.

Additionally, the user-defined attributes for both seen and

unseen classes can be denoted as AS ≡ {asi}
cs
i=1

and

AU ≡ {auj }
cu
j=1

, where a
s
i and a

u
j indicate the attribute

vectors for the i-th seen class and the j-th unseen class, re-

spectively. At the test stage, given a test image xu and the

attribute annotations of test classes AU , the goal of ZSL is

to predict the corresponding category yu for xu.

4. Our Method

The framework of the proposed method is illustrated in

Figure 2. Note that the architecture in principle contain-

s multiple scales and for clarity, we illustrate the network

with two scales as an example. In each scale, the network

consists of three different components, 1) the image fea-

ture network (FNet) to extract image representations, 2) the

zoom network (ZNet) to locate the most discriminative re-

gion and then zoom it to larger scale and 3) the embedding

network (ENet) to build the embedding space where the vi-

sual and semantic information are associated. For the first

scale, the input of the FNet is the image of its original size

and the ZNet is responsible for producing the zoomed re-

gion. Then for the second scale, the zoomed region is fed

into the FNet to obtain more discriminative image features.

4.1. The Image Feature Network (FNet)

Different from existing works [4, 16, 29], we would like

to learn image features together with embedding for zero-

shot learning. Therefore, our framework starts with a com-

partment of convolutional nets responsible for learning im-

age features, which is termed as FNet. The choice of the

architecture of FNet is flexible; and two possible variants

are considered in our approach, i.e., the VGG19 and the

GoogLeNet. For VGG19, the FNet starts from conv1 to

fc7; for GoogLeNet, it starts from conv1 to pool5. Given

an image or a zoomed region x, the image representation is

denoted as:

φ(x) = WIF ∗ x (1)

where WIF indicates the overall parameters of the FNet, and

∗ denotes a set of operations of the FNet. Different from tra-

ditional ZSL approaches, the parameters of FNet are jointly

trained with other parts in our framework; thus the obtained

features are regulated well with the embedding component.

We show that this leads to an performance improvement.

4.2. The Zoom Network (ZNet)

The final goal of zero-shot learning is to classify dif-

ferent object categories. There exist studies showing that

learning from object regions could benefit object catego-

rization at image level [7, 30]. Inspired by these studies,

we hypothesize that there may exist some discriminative

regions in an image which benefit the zero-shot learning.

Such a region could contain only object instance or object

parts [7]. On the other hand, for ZSL, a candidate region

will also need to reflect the user-defined attributes, some

of which describe the background, such as swim, tree and

mountains. Therefore, a target region is expected to con-

tain some background to enhance the attributes embedding.

We name this type of regions as object-centric region. To i-

dentify them, we introduce the zoom network (ZNet) that

adopts an incrementally zoom-in approach to let the net-

work automatically search a proper discriminative region

from coarse to fine. The proper in ZSL task means that the

target region is discriminative for classification and mean-

while matched with the annotated attributes.

Specifically, our ZNet takes the output of the last convo-

lutional layer in the FNet (e.g., conv5 4 in VGG19) as the

input. For computational efficiency, the candidate region is

7465



assumed as a square and its location can be represented with

three parameters:

[zx, zy, zs] = WZ ∗ φ(x)conv (2)

where zx, zy indicate the x-axis and y-axis coordinates for

the center of the searched square, respectively, and zs rep-

resents the length of the square. The φ(x)conv denotes the

output of the last convolutional layer of the FNet. The ZNet

is a two-stacked fully-connected layers (1024-3) followed

by the sigmoid activation function and WZ denotes the pa-

rameters of the ZNet.

After obtaining the location of the square, the searched

region can be obtained by directly cropping from the o-

riginal image. However, it is not convenient to opti-

mize the non-continuous cropping operation in backward-

propagation. Inspired by [7], the sigmoid function is uti-

lized to first produce a two-dim continuous mask M(x, y).
Formally,

Mx = f(x − zx + 0.5zs)− f(x − zx − 0.5zs)

My = f(y − zy + 0.5zs)− f(y − zy − 0.5zs)
(3)

where f(x) = 1/(1 + exp(−kx)) and k is set to 10 in all

experiments.

Then the cropped region can be obtained by implement-

ing element-wise multiplication ⊙ between the original im-

age x and the continuous mask M:

xcrop = x⊙M (4)

Finally, to obtain better representation for finer localized

cropped region, we further use the bilinear interpolation to

adaptively zoom the cropped region to the same size with

the original image. The zoomed region is then fed into a

copy of the FNet in the next scale to extract more discrimi-

native representation.

4.3. The Embedding Network (ENet)

4.3.1 The Baseline Embedding Model

The embedding network (ENet) aims to learn an embed-

ding space where the visual and semantic information are

associated. In this section, we first introduce a baseline em-

bedding model, where the semantic representations, ψ(y),
is defined with the user-defined attributes A. In this model,

the mapping function to be learned is therefore defined as:

F (x, y;W) = φ(x)TWa
y .

The attribute space A is adopted as the embedding space

and the compatibility score is defined by the inner product:

s = 〈WTφ(x),ay〉 (5)

where φ(x) is the d-dim image representation obtained by

the FNet and a
y is the k-dim annotated attribute vector of

category y. W ∈ R
d×k is the weight to learn in a fully

connected layer, which can be considered as a linear project

matrix that maps φ(x) to the attribute space A.

The compatibility score measures the similarity between

an image and the attribute annotations of classes. It is sim-

ilar to the classification score in traditional object recogni-

tion task. Thus, to learn the matrix W, a standard softmax

loss can be used:

L = −
1

N

n∑

i

log
exp(s)∑
c exp(s

c)
, c ∈ YS (6)

4.3.2 The Augmented Embedding Model

The baseline embedding model, adopted by most of existing

ZSL methods, has achieved promising performance. How-

ever, it is based on user-defined attributes, which is of lim-

ited size, and usually not discriminative. To address this

issue, we introduce an augmented attribute space, where

an image is projected into both user-defined attributes (UA)

and latent discriminative attributes (LA).

Specifically, our embedding network (ENet) learns a ma-

trix Waug ∈ R
d×2k mapping the image features to a 2k-dim

augmented space, and the embedded image features φe(x)
are computed as follows:

φe(x) = W
T
augφ(x), φe(x) ∈ R

2k (7)

The goal is to associate the embedded image features

φe(x) with both the UA and the LA. For simplicity, we e-

qually divide φe(x) into two k-dim parts:

φe(x) = [φatt(x);φlat(x)], φatt(x), φlat(x) ∈ R
k (8)

Then we let the first k-dim embedded feature φatt(x) cor-

respond to the UA and the second k-dim component φlat(x)
being associated with the LA. Based on this assumption,

for φatt(x), similar to the baseline model, the softmax loss

is utilized to train the ZSL model. Formally,

Latt = −
1

N

n∑

i

log
exp(〈φatt(x),a〉)∑
c exp(〈φatt(x),ac〉)

, c ∈ YS (9)

For the second embedded feature φlat(x), the goal is

to make the learned features be discriminative for objec-

t recognition. We propose to utilize the triplet loss [26] to

learn the latent discriminative attributes with regulating the

inter/intra class distances between latent attributes features:

Llat = max(0,m+d(φlat(xi), φlat(xk))−d(φlat(xi), φlat(xj)))
(10)

where xi, xk are images from the same class and xj is from

a different class. d(x, y) is the squared Euclidean distance

between x and y. m is the margin of the triplet loss and is

set to 1.0 for all experiments.
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From (7) and (8), it can be observed that the UA and LA

features are mapped from the same image representation,

but with two different matrices:

φatt(x) = W
T
attφ(x),

φlat(x) = W
T
latφ(x), [Watt;Wlat] = Waug

(11)

It is noted that Watt and Wlat are associated with differ-

ent loss functions. φlat can be learned to be discriminative

by specifically exploiting the category information in (10).

For each scale, the network is trained with both the soft-

max loss and the triplet loss. For a two-scale network (i.e.,

s1 and s2), the whole LDF model is trained by the following

loss function:

L = Ls1
att + Ls1

lat + Ls2
att + Ls2

lat (12)

The final objective function for a multi-scale network could

be constructed similarly by aggregating all the loss func-

tions of all of scales.

4.4. ZSL Prediction

In the proposed LDF model, the test images can be pro-

jected into both user-defined attributes (UA) and latent at-

tributes (LA) as in (7). Thus, ZSL prediction can be per-

formed in both the UA space and the LA space.

Prediction with UA. Given a test image x, it can be pro-

jected to the UA representation φatt(x). To predict its class

label, the compatibility scores can be used to select the most

matched unseen categories:

y∗ = argmax
c∈YU

(sc) = argmax
c∈YU

〈φatt(x), a
c〉 (13)

Prediction with LA. The test image x can also be projected

to the LA representation, φlat(x). To perform ZSL in the LA

space, the LA prototypes for unseen classes are required.

Firstly, the LA prototypes for seen classes are computed.

Concretely, all samples xi from the seen class s are project-

ed to their LA features and the mean of features are utilized

as the LA prototype of class s, i.e., φslat =
1

N

∑
i φlat(xi).

Then, for an unseen class u, we compute the relationship

between class u and all the seen classes S in the UA space.

This relationship can be obtained by solving the following

ridge regression problem:

βu
c = argmin ‖au −

∑
βu
c a

c‖
2

2

+ λ‖βu
c ‖

2

2
, c ∈ YS

(14)

By applying the same relationship to the LA space, the

prototype for unseen class u can be obtained:

φulat =
∑

βu
c φ

c
lat, c ∈ YS (15)

Finally, the classification result of a test image xwith LA

representation φlat(x) can be achieved as following:

y∗ = argmax
c∈YU

〈φlat(x), φclat〉 (16)

Combining multiple spaces. We can consider both the

UA and LA spaces and utilize the concated UA-LA feature

[φatt(x);φlat(x)] to perform ZSL prediction. Formally,

y∗ = argmax
c∈YU

(〈[φatt(x);φlat(x)], [a
c;φclat]〉)

= argmax
c∈YU

(〈φatt(x),a
c〉+ 〈φlat(x), φclat〉)

(17)

Combining multiple scales. For a two-scale LDF model

(i.e., s1 and s2). The UA and LA features are obtained

in each scale, and the obtained multi-scale features can be

combined to gain further improvement.

For multi-scale UA features, i.e., φs1att , φ
s2
att , we first con-

catenate the two features [φs1att ;φ
s2
att ] ∈ R

2k, and then train

a new project matrix Wcom ∈ R
2k×k to obtain the com-

bined UA feature, i.e., φcom
att = W

T
com[φ

s1
att ;φ

s2
att ]. For multi-

scale LA features, i.e., φs1lat , φ
s2
lat , the combined feature can

be obtained by directly concatenating the normalized two

features, i.e., φcom
lat = [φ̂s1lat ; φ̂

s2
lat ]. Finally, the ZSL prediction

can be performed using (17) with the combined UA feature

φcom
att and the combined LA feature φcom

lat .

5. Experiments

5.1. Datasets

The proposed LDF model is evaluated on two representa-

tive ZSL benchmarks: Animals with Attributes (AwA) [14]

and Caltech-UCSD Birds 200-2011 (CUB) [25]. AwA in-

cludes 30,475 images from 50 common animals categories.

The 85 class-level attributes (continuous) and the standard

40/10 zero-shot split are adopted in our experiments. The

dataset of CUB is a fine-grained bird dataset with 200 dif-

ferent birds and 11,788 images. Following SynC [3], we use

a split of 150/50 for zero-shot learning and utilize 312-dim

attribute vectors at class level.

5.2. Implementation Details

The FNets are initialized using two different CNN mod-

els pre-trained on ImageNet, i.e., GoogLeNet [24] and VG-

G19 [23] respectively, to learn, φ(x). For AwA, only one

zoom operation is performed and the LDF model contains

two scales, as the objects in AwA images are usually large

and centered 1; for CUB, the LDF model includes three s-

cales with two zoom-in operations (i.e., having two ZNets).

In each scale, the size of each input image or zoomed region

is 224×224, following the same setting as the existing ZS-

L methods. During training, the LDF model is trained for

5 epoches for AwA and 20 epoches for CUB. The learning

rates of GoogLeNet and VGG19 are fixed and set to 0.0005

and 0.0001, respectively throughout all of the experiments.

At the test stage, λ in (14) is set to 1.0 for all datasets.

1In supplementary materials, we will show that if we use three scales

on AwA, the third scale is actually useless for object recognition.
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Training strategy: We first adopt the strategy used in

[7] to initial the ZNet. Then the other components in the

LDF model are learned. The detailed process is as follows:

Step 1: The FNet in each scale is initialized with the

same GoogLeNet (or VGG19) pre-trained on ImageNet.

Notice that in the subsequent steps of training, the parame-

ters in each scale are not shared.

Step 2: In each scale, the initialized FNet is utilized to

search a discriminative square, which is then used to pre-

train the ZNet. The size of the searched square is assumed to

be the half size of the original image (i.e., zs = 0.5). Then

we slide over the last convolutional layer in the FNet and

select the region with the highest activations. Finally, the

coordinates of the searched region ([zx, zy, zs]) are utilized

to train the zoom net with L2 loss.

Step 3: We keep the parameters of the ZNet fixed and

train both the FNet and the ENet.

Step 4: Finally, the parameters of the whole LDF model

are fine-tuned in an end-to-end approach.

5.3. Baselines

To verify the effectiveness of the different components

in our LDF model, four baselines are designed to compare

with the proposed LDF model.

• SS-BE-Fixed (Single Scale & Baseline Embedding

Model & Fixed Image Representations). In this base-

line, the ZNet is removed, and only the full-size im-

ages are utilized to extract image features. Moreover,

the FNet is fixed during the training. For semantic rep-

resentations, only the user-defined attributes are con-

sidered (Section 4.3.1).

• SS-BE-Learned (Single Scale & Baseline Embedding

Model & Learned Image Representations). Compared

with the SS-BE-Fixed baseline, the only difference is

that the FNet can be learned in this baseline.

• SS-AE-Learned (Single Scale & Augmented Embed-

ding Model & Learned Image Representations). Com-

pared with the SS-BE-Learned baseline, this baseline

aims to build the augmented embedding space (Section

4.3.2) with considering both UA and LA.

• MS-BE-Learned (Multi Scale & Baseline Embedding

Model & Learned Image Representations). Compared

with the SS-BE-Learned baseline, the only difference

is the ZNet is added into this model (Section 4.2).

5.4. Experimental Results

The multi-way classification accuracy (MCA) is used for

evaluating the ZSL models. The comparison results using

two different CNN models are shown in Table 1.

Effect of feature learning. From Table 1, we first notice

that, without any specially designed regularization terms,

Table 1. ZSL results (MCA, %) on all the datasets using the deep

features of VGG19 and GoogLeNet (numbers in parentheses).

Method AwA CUB

DAP [13] 57.2 (60.5) 44.5 (39.1)

ESZSL [21] 75.3 (59.6) - (44.0)

SJE [2] - (66.7) - (50.1)

LatEM [27] - (71.9) - (45.5)

SynC [3] - (72.9) - (54.5)

JLSE [31] 80.46 (-) 42.11 (-)

MFMR [29] 79.8 (76.6) 47.7 (46.2)

Low-Rank [4] 82.8 (76.6) 45.2 (56.2)

SCoRe [16] 82.8 (78.3) 59.5 (58.4)

LAD [11] 82.48 (-) 56.63 (-)

JSLA [19] 82.9 (-) 57.1 (-)

SS-BE-Fixed (Ours) 75.20 (73.70) 50.51 (50.31)

SS-BE-Learned (Ours) 79.35 (75.19) 59.32 (58.26)

SS-AE-Learned (Ours) 81.36 (77.77) 65.99 (66.96)

MS-BE-Learned (Ours) 81.80 (78.31) 64.85 (64.39)

LDF (Ours) 83.40 (79.13) 67.12 (70.37)

the SS-BE-Learned baseline has already achieved compa-

rable performance with state-of-the-arts and marginally sur-

pass the SS-BE-Fixed baseline. Most of existing ZSL meth-

ods use the fixed image feature and only focus on learning

visual-semantic mapping with various human-designed reg-

ularization terms. We show that feature learning neglect-

ed in image feature extraction process is also important to

ZSL, which should be paid more attentions. By simply

fine-tuning the FNet in an end-to-end framework, SS-BE-

Learned can make the image features associate with the se-

mantic information of attributes for different ZSL tasks and

obtain better performance.

Effect of ZNet. The MS-BE-Learned baseline aims to use

the ZNet to automatically discover discriminative regions

from full-size images and leverage the coarse-to-fine repre-

sentations to obtain better performance. We can see that the

performance of MS-BE-Learned baseline outperforms both

the SE-BE-Learned baseline and most of the state-of-the-art

methods (Table 1, 81.80% on AwA, 64.85% on CUB).

We further analyze the performance of each scale in MS-

BE-Learned model, and show the results in Table 2. It can

be seen that, the performance of the first scale, i.e., MS-BE-

Learned (Scale 1), is comparable with the single scale base-

line, SS-BE-Learned. With more discriminative image fea-

tures utilized, the performance of the second and the third

scale improves continuously.

Effect of the latent attribute modelling. The SS-AE-

Learned baseline aims to build an augmented embedding

space. It is more reasonable to associate image features

with both user-defined and latent attributes in our augment-

ed space. It can be observed from Table 1 that the SS-AE-

Learned model outperforms SE-BE-Learned baseline for
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Table 2. The detailed ZSL results (%) on each scale.

Method AwA CUB

SS-BE-Learned 79.35 (75.19) 59.32 (58.26)

MS-BE-Learned (Scale 1) 79.20 (75.68) 59.88 (58.87)

MS-BE-Learned (Scale 2) 79.87 (77.02) 61.04 (61.81)

MS-BE-Learned (Scale 3) - (-) 62.04 (62.72)

MS-BE-Learned (All Scale) 81.80 (78.31) 64.85 (64.39)

MS-BE-Learned (Scale X) denotes the ZSL results using the image

features of scale X only.

Table 3. ZSL results (%) with UA features or LA features only.

Method AwA CUB

SS-BE-Learned 79.35 (75.19) 59.32 (58.26)

SS-AE-Learned (UA) 80.97 (77.24) 62.17 (59.40)

SS-AE-Learned (LA) 78.76 (75.75) 63.08 (66.11)

SS-AE-Learned (UA & LA) 81.36 (77.77) 65.99 (66.96)

SS-AE-Learned (UA/LA) denotes the results predicted with the UA

features φatt(x) only or the LA features φlat(x) only.

both AwA (81.36%) and CUB (66.96%) datasets.

We believe that, in the augmented attribute space, the

learning of LA will help the learning of UA. Further experi-

ments are conducted to verify this. The results are shown in

Table 3. For SS-AE-Learned baseline, we only utilize the

obtained UA representation φatt(x) to perform ZSL predic-

tion as in (13), denoted as SS-AE-Learned (UA). We can see

that, when using UA features only, the performance of SS-

AE-Learned (UA) is higher than the SS-BE-Learned. (e.g.,

80.97% vs. 79.35%). It proves that better UA representa-

tions are obtained in the augmented attribute space.

Comparisons with state-of-the-art methods. Compared

with previous methods in Table 1, the LDF model improves

the state-of-the-art performance on both datasets. In gener-

al, the proposed model based on VGG19 performs better on

AwA, while the GoogLeNet-based model shows superiority

on CUB. On AwA, our LDF achieves 83.40%, which is s-

lightly higher than JLSA [19] (82.81%). For more challeng-

ing CUB dataset that 50 bird species need to be classified,

our model obtains more obvious improvement. On CUB,

the LDF model reaches 70.37%, with an impressive gain

over the state-of-the-art SCoRe (from 58.4% to 70.37%).

Furthermore, the components of the latent discriminative

regions mining (the ZNet) and the latent discriminative at-

tribute modelling (the ENet) are jointly learned in the pro-

posed LDF model. We believe the two components could

assist each other in the joint learning framework. To verity

this assumption, a further analysis of the LDF model is per-

formed, and the results are shown in Table 4. It can be seen

that, when using the combined UA features only to perform

ZSL prediction, i.e., LDF (UA), the performance of LDF is

higher than the MS-BE-Learned baseline. When using the

combined LA features only, the performance of the LDF

Table 4. The comparisons between the joint training and separated

training for ZNet and ENet.

Method AwA CUB

SS-AE-Learned (LA) 78.76 (75.75) 63.08 (66.11)

LDF (LA) 79.35 (76.84) 66.47 (69.94)

MS-BE-Learned (UA) 81.80 (78.31) 64.85 (64.39)

LDF (UA) 82.47 (78.77) 65.94 (65.78)

LDF (LA & UA) 83.40 (79.13) 67.12 (70.37)

LDF (LA/UA) denotes the ZSL results predicted with the combined

LA features φcom
lat

only or the combined UA features φcom
att only.

Cosine Similarities with UA Prototypes Cosine Similarities with LA Prototypes

chimpanzee

giant panda

leopard

persian cat

pig

hippopotamus

whale

raccoon

rat

seal

Figure 3. The cosine similarities computed with the UA (left panel)

and the LA (right panel) for 10 unseen AwA classes.

(LA) also exceeds the SS-AE-Learned (LA). It confirms the

advantages of the jointly learning approach.

Discriminativeness of LA. The LA features are learned to

be discriminative by exploiting the category information as

in (10), and we believe the learned LA space is more dis-

criminative than the UA space. To illustrate this, we show

some examples on AwA in Figure 4. The test images are

projected to their UA features and LA features with (11).

Then for a UA element or a LA element, the images which

have largest and smallest activations of the component are

shown. It can be observed that, for LA features, the im-

ages with large activations belong to one same category and

the images with small activations are of the other category.

In contrast, the user-defined attributes are usually shared in

multiple categories. It confirms the apparent discriminative

property of the learned latent attributes.

Additionally, to quantitatively compare the learned LA s-

pace with the UA space, we calculate cosine similarities be-

tween unseen classes with both the LA and UA prototypes,

and the results are shown in Figure 3. The LA prototype-

s are obtained by directly averaging the LA features, i.e.,

φlat = 1

N

∑
i φlat(xi), for each unseen class, and the UA

prototypes are the class-level attribute annotations, i.e., ac.

It can be seen that, compared with the UA prototypes, the

cosine similarities between different LA prototypes are ob-

viously smaller for most categories, except for the pig and

the hippopotamus. Compared with attributes annotated by

experts, our LA prototypes are learned from the images on-

ly. Thus, the categories with similar appearances, e.g., pig

vs. hippopotamus, get closer in the LA space.
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arctic

hippopotamus whale persian cat seal pig raccoonpigpigpigrat

LA79

LA0

Figure 4. The visual examples on AwA with VGG19 SS-AE-Learned. ‘UA/LAX’ denotes the X-th element of the attribute features. In each

row, the first five images are top-5 images with largest activations and the last five images are selected images with smallest activations.

It is noted that when we perform ZSL prediction with

LA features, a LA representation (prototype) of a test cate-

gory is needed, but absent in the dataset. Thus, the LA pro-

totypes for unseen classes have to be computed with (15)

leveraging the relationship βc. However, βc is computed in

the UA space and it cannot exactly reflect the true relation-

ship between LA prototypes. This bias finally degrades the

ZSL performance when LA prototypes are utilized for pre-

diction with (16). This bias explains why, in Table 3, the

performance of SS-AE-Learned (LA) is lower than SS-AE-

Learned (UA) on AwA, although the learned LA space is

actually more discriminative than the UA space.

Visualizations of discriminative regions. In Figure 5, we

show the discovered regions with the LDF model. The left

three columns show the examples selected from AwA. We

can see that, for images with a single instance, the LDF

model progressively searches for finer regions until it find-

s the main object; for images with multiple instances, the

model tends to find a large square including the multiple

objects. Another interesting discovery on AwA is that, for

some specific categories, e.g., whale, the identified regions

will include obvious more background elements than other-

s. The reason is that the searched regions of the humpback

whale are required to be matched with their user-defined at-

tributes, some of which, such as swims, water and ocean,

highly relate to the background waters in the images.

The examples in right three columns are sampled from

CUB. It is aware that the CUB dataset provides bounding

box annotations, however, our model could automatical-

ly discover object-centric regions without such annotation-

s, which shows another advantage of our framework. It is

noted that, the network in [7] performs fine-grained object

recognition, a different task from us; and it could discov-

er some object parts. In contrast, in our ZSL model, the

searched regions should be associated to the user-defined at-
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Figure 5. The examples of the learned regions at different scales.

tributes, which, for example, correspond to the whole body

of the birds from bills to tails. Thus, it is expected that

the model will focus on regions containing the whole object

rather than its parts; and our analysis confirms this.

6. Conclusion

In this paper, an end-to-end model is proposed to learn

the latent discriminative features for ZSL in both visual and

semantic space. For visual space, we introduce the zoom net

to automatically search for discriminative regions. For se-

mantic space, we propose an augmented attribute space with

both the user-defined attributes and the latent attributes. The

latent attributes are learned to be discriminative with cate-

gory information. Finally, the two components could assist

each other in the end-to-end joint learning framework.
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