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Abstract

Existing person re-identification (re-id) methods either

assume the availability of well-aligned person bounding

box images as model input or rely on constrained atten-

tion selection mechanisms to calibrate misaligned images.

They are therefore sub-optimal for re-id matching in arbi-

trarily aligned person images potentially with large human

pose variations and unconstrained auto-detection errors. In

this work, we show the advantages of jointly learning atten-

tion selection and feature representation in a Convolutional

Neural Network (CNN) by maximising the complementary

information of different levels of visual attention subject to

re-id discriminative learning constraints. Specifically, we

formulate a novel Harmonious Attention CNN (HA-CNN)

model for joint learning of soft pixel attention and hard

regional attention along with simultaneous optimisation of

feature representations, dedicated to optimise person re-id

in uncontrolled (misaligned) images. Extensive compara-

tive evaluations validate the superiority of this new HA-

CNN model for person re-id over a wide variety of state-of-

the-art methods on three large-scale benchmarks including

CUHK03, Market-1501, and DukeMTMC-ReID.

1. Introduction

Person re-identification (re-id) aims to search people

across non-overlapping surveillance camera views deployed

at different locations by matching person images. In prac-

tical re-id scenarios, person images are typically automati-

cally detected for scaling up to large visual data [49, 20, 27].

Auto-detected person bounding boxes are typically not opti-

mised for re-id due to misalignment with background clut-

ter, occlusion, missing body parts (Fig. 1). Additionally,

people (uncooperative) are often captured in various poses

across open space and time. These give rise to the notori-

ous image matching misalignment challenge in cross-view

re-id [9]. There is consequently an inevitable need for at-

tention selection within arbitrarily-aligned bounding boxes

as an integral part of model learning for re-id.

There are a few attempts in the literature for solving the

Figure 1. Examples of attention selection in auto-detected person

bounding boxes used for person re-id matching.

problem of re-id attention selection within person bound-

ing boxes. One common strategy is local patch calibra-

tion and saliency weighting in pairwise image matching

[48, 28, 51, 39]. However, these methods rely on hand-

crafted features without deep learning jointly more expres-

sive feature representations and matching metric holistically

(end-to-end). A small number of attention deep learning

models for re-id have been recently developed for reduc-

ing the negative effect from poor detection and human pose

change [19, 47, 30, 2]. Nevertheless, these deep methods

implicitly assume the availability of large labelled training

data by simply adopting existing deep architectures with

high complexity in model design. Additionally, they of-

ten consider only coarse region-level attention whilst ig-

noring the fine-grained pixel-level saliency. Hence, these

techniques are ineffective when only a small set of labelled

data is available for training whilst also facing noisy person

images of arbitrary misalignment and background clutter.

In this work, we consider the problem of jointly deep

learning attention selection and feature representation for

optimising person re-id in a more lightweight (with less pa-

rameters) network architecture. The contributions of this

work are: (I) We formulate a novel idea of jointly learning

multi-granularity attention selection and feature representa-

tion for optimising person re-id in deep learning. To our

knowledge, this is the first attempt of jointly deep learning

multiple complementary attention for solving the person re-

id problem. (II) We propose a Harmonious Attention Con-

volutional Neural Network (HA-CNN) to simultaneously
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learn hard region-level and soft pixel-level attention within

arbitrary person bounding boxes along with re-id feature

representations for maximising the correlated complemen-

tary information between attention selection and feature

discrimination. This is achieved by devising a lightweight

Harmonious Attention module capable of efficiently and

effectively learning different types of attention from the

shared re-id feature representation in a multi-task and end-

to-end learning fashion. (III) We introduce a cross-attention

interaction learning scheme for further enhancing the com-

patibility between attention selection and feature repre-

sentation given re-id discriminative constraints. Extensive

comparative evaluations demonstrate the superiority of the

proposed HA-CNN model over a wide range of state-of-the-

art re-id models on three large benchmarks CUHK03 [20],

Market-1501 [49], and DukeMTMC-ReID [52].

2. Related Work

Most existing person re-id methods focus on supervised

learning of identity-discriminative information, including

ranking by pairwise constraints [25, 42, 43], discrimina-

tive distance metric learning [15, 50, 45, 22, 46], and deep

learning [26, 20, 4, 44, 38, 41, 21, 5]. These methods as-

sume that person images are well aligned, which is largely

invalid given imperfect detection bounding boxes of chang-

ing human poses. To overcome this limitation, attention se-

lection techniques have been developed for improving re-id

by localised patch matching [28, 51] and saliency weight-

ing [39, 48]. These are inherently unsuitable by design to

cope with poorly aligned person images, due to their strin-

gent requirement of tight bounding boxes around the whole

person and high sensitivity of the hand-crafted features.

Recently, a few attention deep learning methods have

been proposed to handle the matching misalignment chal-

lenge in re-id [19, 47, 30, 18]. The common strategy of

these methods is to incorporate a regional attention selec-

tion sub-network into a deep re-id model. For example,

Su et al. [30] integrate a separately trained pose detection

model (from additional labelled pose ground-truth) into a

part-based re-id model. Li et al. [19] design an end-to-end

trainable part-aligning CNN network for locating latent dis-

criminative regions (i.e. hard attention) and subsequently

extract and exploit these regional features for performing

re-id. Zhao et al. [47] exploit the Spatial Transformer Net-

work [13] as the hard attention model for searching re-id

discriminative parts given a pre-defined spatial constraint.

However, these models fail to consider the noisy informa-

tion within selected regions at the pixel level, i.e. no soft

attention modelling. While soft re-id attention modelling is

considered in [24], this model assumes tight person boxes

thus less suitable for poor detections.

The proposed HA-CNN model is designed particularly

to address the weaknesses of existing deep methods as

above by formulating a joint learning scheme for modelling

both soft and hard attention in a single re-id deep model.

This is the first attempt of modelling multi-level correlated

attention in deep learning for person re-id to our knowl-

edge. In addition, we introduce cross-attention interaction

learning for enhancing the complementary effect between

different levels of attention subject to re-id discriminative

constraints. This is impossible to do for existing methods

due to their inherent single level attention modelling. We

show the benefits of joint modelling multi-level attention in

person re-id in our experiments. Moreover, we also design

an efficient attention CNN architecture for improving the

model deployment scalability, an under-studied but practi-

cally important issue for re-id.

3. Harmonious Attention Network

Given n training bounding box images I = {Ii}
n
i=1

from nid distinct people captured by non-overlapping cam-

era views together with the corresponding identity labels as

Y = {yi}
n
i=1 (where yi ∈ [1, · · · , nid]), we aim to learn

a deep feature representation model optimal for person re-

id matching under significant viewing condition variations.

To this end, we formulate a Harmonious Attention Convolu-

tional Neural Network (HA-CNN) that aims to concurrently

learn a set of harmonious attention, global and local feature

representations for maximising their complementary benefit

and compatibility in terms of both discrimination power and

architecture simplicity. Typically, person parts location in-

formation is not provided in person re-id image annotation

(i.e. only weakly labelled without fine-grained). Therefore,

the attention model learning is weakly supervised in the con-

text of optimising re-id performance.

Unlike most existing works that simply adopting a stan-

dard CNN network typically with a large number of model

parameters (likely overfit given small size labelled data)

and high computational cost in model deployment [17, 29,

33, 10], we design a lightweight (less parameters) yet deep

(maintaining strong discriminative power) CNN architec-

ture by devising a holistic attention mechanism for locat-

ing the most discriminative pixels and regions in order to

identify optimal visual patterns for re-id. We avoid simply

stacking many CNN layers to gain model depth. This is par-

ticularly critical for re-id where the label data is often sparse

(large models are more likely to overfit in training) and the

deployment efficiency is very important (slow feature ex-

traction is not scalable to large surveillance video data).

HA-CNN Overview We consider a multi-branch network

architecture for our purpose. The overall objective of this

multi-branch scheme and the architecture composition is to

minimise the model complexity therefore reduce the net-

work parameter size whilst maintaining the optimal net-

work depth. The overall design of our HA-CNN architec-
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Figure 2. The Harmonious Attention Convoluntional Neural Network. The symbol dl (l ∈ {1, 2, 3}) denotes the number of convolutional

filter in the corresponding Inception unit at the l-th block.

ture is shown in Fig. 2. This HA-CNN model contains two

branches: (1) One local branch (consisting of T streams

of an identical structure): Each stream aims to learn the

most discriminative visual features for one of T local im-

age regions of a person bounding box image. (2) One global

branch: This aims to learn the optimal global level features

from entire person images. For both branches, we select the

Inception-A/B units [44, 32] as the basic building blocks.

In particular, we used 3 Inception-A and 3 Inception-B

blocks for building the global branch, and 3 Inception-B

blocks for each local stream. The width (channel number)

of each Inception is denoted by d1, d2 and d3. The global

network ends with a global average pooling layer and a

fully-connected (FC) feature layer with 512 outputs. For the

local branch, we also use a 512-D FC feature layer which

fuses the global average pooling outputs of all streams. To

reduce the model parameter size, we share the first conv

layer between global and local branches and the same-

layer Inceptions among all local streams. For our HA-CNN

model training, we utilise the cross-entropy classification

loss function for both global and local branches, which op-

timise person identity classification.

For attention selection within each bounding box of

some unknown misalignment, we consider a harmonious

attention learning scheme that aims to jointly learn a set of

complementary attention maps including hard (regional) at-

tention for the local branch and soft (spatial/pixel-level and

channel/scale-level) attention for the global branch.

We further introduce a cross-attention interaction learn-

ing scheme between the local and global branches for fur-

ther enhancing the harmony and compatibility degree whilst

simultaneously optimising per-branch discriminative fea-

ture representations. We shall now describe more details

of each component of the network design as follows.

3.1. Harmonious Attention Learning

Conceptually, our Harmonious Attention (HA) is a prin-

cipled union of hard regional attention [13], soft spatial [37]

and channel attention [11]. This simulates functionally the
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Figure 3. The structure of each Harmonious Attention module

consists of (a) Soft Attention which includes (b) Spatial Attention

(pixel-wise) and (c) Channel Attention (scale-wise), and (d) Hard

Regional Attention (part-wise). Layer type is indicated by back-

ground colour: grey for convolutional (conv), brown for global

average pooling, and blue for fully-connected layers. The three

items in the bracket of a conv layer are: filter number, filter shape,

and stride. The ReLU [17] and Batch Normalisation (BN) [12]

(applied to each conv layer) are not shown for brevity.

dorsal and ventral attention mechanism of human brain [36]

in the sense of modelling soft and hard attention simultane-

ously. Soft attention learning aims at selecting fine-grained

important pixels, while hard attention learning searching

coarse latent (weakly supervised) discriminative regions.

They are thus largely complementary with high compati-

bility to each other in functionality. Intuitively, their combi-

nation can relieve the modelling burden of soft attention and

resulting in more discriminative and robust model learning

from the same (particularly small) training data.

In particular, we propose a novel Harmonious Attention

joint learning strategy to unite the three distinct types of

attention with only a small number of additional parame-

ters. We take a block-wise (module-wise) attention design,

2287



that is, each HA module is specifically optimised to attend

the input feature representations at its own level alone. In

the CNN hierarchical framework, this naturally allows for

hierarchical multi-level attention learning to progressively

refine the attention maps, in the spirit of the divide and con-

quer design [7]. As a result, we can significantly reduce

the attention search space (i.e. the model optimisation com-

plexity) whilst allow multi-scale selectiveness of hierarchi-

cal features to enrich the final feature representations.

Such progressive and holistic attention modelling is in-

tuitive and essential for re-id due to that (1) the surveillance

person images often have cluttered background and uncon-

trolled appearance variations therefore the optimal attention

patterns of different images can be highly variable, and (2)

a re-id model typically needs robust (generalisable) model

learning given very limited training data (significantly less

than common image classification tasks). Next, we describe

the design of our Harmonious Attention module in details.

(I) Soft Spatial-Channel Attention The input to a Har-

monious Attention module is a 3-D tensor X l ∈ Rh×w×c

where h, w, and c denote the number of pixel in the height,

width, and channel dimensions respectively; and l indicates

the level of this module in the entire network (multiple such

modules). Soft spatial-channel attention learning aims to

produce a saliency weight map Al ∈ Rh×w×c of the same

size as X . Given the largely independent nature between

spatial (inter-pixel) and channel (inter-scale) attention, we

propose to learn them in a joint but factorised way as:

A
l = S

l ×C
l (1)

where Sl∈Rh×w×1 and Cl∈R1×1×c represent the spatial

and channel attention maps, respectively.

We perform the attention tensor factorisation by design-

ing a two-branches unit (Fig. 3(a)): One branch to model

the spatial attention Sl (shared across the channel dimen-

sion), and another branch to model the channel attention Cl

(shared across both height and width dimensions). By this

design, we can compute efficiently the full soft attention Al

from Cl and Sl with a tensor multiplication. Our design is

more efficient than common tensor factorisation algorithms

[16] since heavy matrix operations are eliminated.

(1) Spatial Attention We model the spatial attention by a

tiny (10 parameters) 4-layers sub-network (Fig. 3(b)). It

consists of a global cross-channel averaging pooling layer

(0 parameter), a conv layer of 3 × 3 filter with stride 2 (9

parameters), a resizing bilinear layer (0 parameter), and a

scaling conv layer (1 parameter). In particular, the global

averaging pooling, defined as,

S
l
input =

1

c

c
∑

i=1

X
l
1:h,1:w,i (2)

is designed especially to compress the input size of the

subsequent conv layer with merely 1
c

times of parameters

needed. This cross-channel pooling is reasonable because

in our design all channels share the identical spatial atten-

tion map. We finally add the scaling layer for automatically

learning an adaptive fusion scale in order to optimally com-

bining the channel attention described next.

(2) Channel Attention We model the channel attention by

a small (2 c2

r
parameters, see more details below) 4-layers

squeeze-and-excitation component (Fig. 3(c)). We first per-

form a squeeze operation via an averaging pooling layer (0

parameters) for aggregating feature information distributed

across the spatial space into a channel signature as

C
l
input =

1

h× w

h
∑

i=1

w
∑

j=1

X
l
i,j,1:c (3)

This signature conveys the per-channel filter response from

the whole image, therefore providing the complete infor-

mation for the inter-channel dependency modelling in the

subsequent excitation operation, formulated as

C
l
excitation = ReLU( W ca

2 × ReLU(W ca
1 C

l
input)) (4)

where W ca
1 ∈ R

c

r
×c ( c

2

r
parameters) and W ca

2 ∈Rc× c

r ( c
2

r

parameters) denote the parameter matrix of 2 conv layers in

order respectively, and r (16 in our implementation) repre-

sents the bottleneck reduction rate. This bottleneck design

reduces the model parameter number from c2 (using 1 conv

layer) to ( c
2

r
+c2

r
), e.g. only need 1

8 parameters when r=16.

For facilitating the combination of the spatial attention

and channel attention, we further deploy a 1×1× c convo-

lution (c2 parameters) layer to compute blended full soft

attention after tensor multiplication. This is because the

spatial and channel attention are not mutually exclusive but

with a co-occurring complementary relationship. Finally,

we use the sigmoid operation (0 parameter) to normalise

the full soft attention into the range between 0.5 and 1.

Remarks Our model is similar to Residual Attention (RA)

[37] and Squeeze-and-Excitation (SE) [11] concepts but

with a number of essential differences: (1) The RA requires

to learn a much more complex soft attention sub-network

which is not only computationally expensive but also less

discriminative when the training data size is small typical

in person re-id. (2) The SE considers only the channel at-

tention and implicitly assumes non-cluttered background,

therefore significantly restricting its suitability to re-id tasks

under cluttered surveillance viewing conditions. (3) Both

RA and SE consider no hard regional attention modelling,

hence lacking the ability to discover the correlated comple-

mentary benefit between soft and hard attention learning.

(II) Hard Regional Attention The hard attention learning

aims to locate latent (weakly supervised) discriminative T

regions/parts (e.g. human body parts) in each input image at

the l-th level. We model this regional attention by learning

2288



Input �

Parts

��

��

�

(a) STN [13]

�/��

�

��

Input

Parts

(b) HA-CNN Hard Attention

Figure 4. Schematic comparison between (a) STN [13] and (b)

HA-CNN Hard Attention. Global feature and hard attention are

jointly learned in a multi-task design. “H”: Hard attention mod-

ule; “Fg”: Global feature module; “Fl”: Local feature module.

a transformation matrix as:

A
l =

[

sh 0 tx
0 sw ty

]

(5)

which allows for image cropping, translation, and isotropic

scaling operations by varying two scale factors (sh, sw) and

the 2-D spatial position (tx, ty). We use pre-defined region

size by fixing sh and sw for limiting the model complex.

Therefore, the effective modelling part of Al is only tx and

ty , with the output dimension as 2×T (T the region num-

ber). To perform this learning, we introduce a simple 2-

layers (2×T ×c parameters) sub-network (Fig. 3(d)). We

exploit the first layer output (a c-D vector) of the channel

attention (Eq. (3)) as the first FC layer (2×T × c param-

eters) input for further reducing the parameter size while

sharing the available knowledge in spirit of the multi-task

learning principle [8]. The second layer (0 parameter) per-

forms a tanh scaling (the range of [−1, 1]) to convert the

region position parameters into the percentage so as to al-

low for positioning individual regions outside of the input

image boundary. This specially takes into account the cases

that only partial person is detected sometimes. Note that,

unlike the soft attention maps that are applied to the input

feature representation X l, the hard regional attention is en-

forced on that of the corresponding network block to gen-

erate T different parts which are subsequently fed into the

corresponding streams of the local branch (see the dashed

arrow on the top of Fig 2).

Remarks The proposed hard attention modelling is concep-

tually similar to the Spatial Transformer Network (STN)

[13] because both are designed to learn a transformation

matrix for discriminative region identification. However,

they differ significantly in design: (1) The STN attention

is network-wise (one level of attention learning) whilst our

HA is module-wise (multiple levels of attention learning).

The latter not only eases the attention modelling complex-

ity (divide-and-conquer design) and but also provides ad-

ditional attention refinement in a sequential manner. (2)

The STN utilises a separate large sub-network for atten-

tion modelling whilst the HA-CNN exploits a much smaller

sub-network by sharing the majority model learning with

the target-task network using a multi-task learning design

(Fig. 4), therefore superior in both higher efficiency and

lower overfitting risk. (3) The STN considers only hard at-

tention whilst HA-CNN models both soft and hard attention

in an end-to-end fashion so that additional complementary

benefits are exploited.

(III) Cross-Attention Interaction Learning Given the

joint learning of soft and hard attention above, we further

consider a cross-attention interaction mechanism for enrich-

ing their joint learning harmony by interacting the attended

local and global features across branches. Specifically, at

the l-th level, we utilise the global-branch feature X
(l,k)
G

of the k-th region to enrich the corresponding local-branch

feature X
(l,k)
L by tensor addition as

X̃
(l,k)
L = X

(l,k)
L +X

(l,k)
G (6)

where X
(l,k)
G is computed by applying the hard regional at-

tention of the (l+1)-th level’s HA attention module (see

the dashed arrow in Fig. 2). By doing so, we can simulta-

neously reduce the complexity of the local branch (fewer

layers) since the learning capability of the global branch

can be partially shared. During model training by back-

propagation, the global branch takes gradients from both

the global and local branches as

∆W
(l)
G =

∂LG

∂X
(l)
G

∂X
(l)
G

∂W
(l)
G

+

T∑

k=1

∂LL

∂X̃
(l,k)
L

∂X̃
(l,k)
L

∂W
(l)
G

(7)

So, the global LG and local LL loss quantities concurrently

function in optimising the parameters W
(l)
G of the global

branch. As such, the learning of the global branch is inter-

acted with that of the local branch at multiple levels, whilst

both are subject to the same re-id optimisation constraint.

Remarks By design, cross-attention interaction learning is

subsequent to and complementary with the harmonious at-

tention joint reasoning above. Specifically, the latter learns

soft and hard attention from the same input feature represen-

tations to maximise their compatibility (joint attention gen-

eration), whilst the former optimises the correlated comple-

mentary information between attention refined global and

local features under the person re-id matching constraint

(joint attention application). Hence, the composition of

both forms a complete process of joint optimisation of at-

tention selection for person re-id.

3.2. Person ReID by HACNN

Given a trained HA-CNN model, we obtain a 1,024-D

joint feature vector (deep feature representation) by con-

catenating the local (512-D) and the global (512-D) fea-

ture vectors. For person re-id, we deploy this 1,024-D deep

feature representation using only a generic distance metric

without any camera-pair specific distance metric learning,

e.g. the L2 distance. Specifically, given a test probe im-

age Ip from one camera view and a set of test gallery im-

ages {Ig
i } from other non-overlapping camera views: (1)
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We first compute their corresponding 1,024-D feature vec-

tors by forward-feeding the images to a trained HA-CNN

model, denoted as xp = [xp
g;x

p
l ] and {xg

i = [xg
g;x

g
l ]}. (2)

We then compute L2 normalisation on the global and lo-

cal features, respectively. (3) Lastly, we compute the cross-

camera matching distances between xp and x
g
i by the L2

distance. We then rank all gallery images in ascendant or-

der by their L2 distances to the probe image. The probabil-

ities of true matches of probe person images in Rank-1 and

among the higher ranks indicate the goodness of the learned

HA-CNN deep features for person re-id tasks.

4. Experiments

(a) CUHK03 (b) Market-1501 (c) DukeMTMC

Figure 5. Example cross-view matched pairs from three datasets.

Datasets and Evaluation Protocol For evaluation, we se-

lected three large-scale person re-id benchmarks, Market-

1501 [40], DukeMTMC-ReID [52] and CUHK03 [20]. Fig-

ure 5 shows several example person bounding box images.

We adopted the standard person re-id setting including the

training/test ID split and test protocol (Table 1). For per-

formance measure, we use the cumulative matching charac-

teristic (CMC) and mean Average Precision (mAP) metrics.

Table 1. Re-id evaluation protocol. TS: Test Setting; SS: Single-

Shot; MS: Multi-Shot. SQ: Single-Query; MQ: Multi-Query.

Dataset # ID # Train # Test# Image Test Setting

CUHK03 1,467 767 700 14,097 SS

Market-1501 1,501 751 750 32,668 SQ/MQ

DukeMCMT-ReID 1,402 702 702 36,411 SQ

Implementation Details We implemented our HA-CNN

model in the Tensorflow [1] framework. All person images

are resized to 160×64. For HA-CNN architecture, we set the

width of Inception units at the 1st/2nd/3rd levels as: d1=128,

d2 = 256 and d3 = 384. Following [21], we use T = 4 re-

gions for hard attention, e.g. a total of 4 local streams. In

each stream, we fix the size of three levels of hard attention

as 24×28, 12×14 and 6×7. For model optimisation, we use

the ADAM [14] algorithm at the initial learning rate 5×10−4

with the two moment terms β1 = 0.9 and β2 = 0.999.

We set the batch size to 32, epoch to 150, momentum to

0.9. Note, we do not adopt any data argumentation meth-

ods (e.g. scaling, rotation, flipping, and colour distortion),

neither model pre-training. Existing deep re-id methods

typically benefit significantly from these operations at the

Table 2. Market-1501 evaluation. 1st/2nd best in red/blue.

Query Type Single-Query Multi-Query

Measure (%) R1 mAP R1 mAP

XQDA[22] 43.8 22.2 54.1 28.4

SCS[3] 51.9 26.3 - -

DNS[46] 61.0 35.6 71.5 46.0

CRAFT[6] 68.7 42.3 77.0 50.3

CAN[23] 60.3 35.9 72.1 47.9

S-LSTM[35] - - 61.6 35.3

G-SCNN[34] 65.8 39.5 76.0 48.4

HPN [24] 76.9 - - -

SVDNet [31] 82.3 62.1 - -

MSCAN [19] 80.3 57.5 86.8 66.7

DLPA [47] 81.0 63.4 - -

PDC [30] 84.1 63.4 - -

JLML [21] 85.1 65.5 89.7 74.5

HA-CNN 91.2 75.7 93.8 82.8

price of not only much higher computational cost but also

notoriously difficult and time-consuming model tuning.

4.1. Comparisons to the StateoftheArt

Evaluation on Market-1501 We evaluated HA-CNN

against 13 existing methods on Market-1501. Table 2 shows

the clear performance superiority of HA-CNN over all state-

of-the-arts with significant Rank-1 and mAP advantages.

Specifically, HA-CNN outperforms the 2nd best model

JLML (pre-defined hard attention based) by 6.1% (91.2-

85.1) (SQ) and 4.1% (93.8-89.7) (MQ) in Rank-1; 10.2%
(75.7-65.5) (SQ) and 8.3% (82.8-74.5) (MQ) in mAP. Com-

pared to the only soft attention alternative HPN, our model

improves the Rank-1 by 14.3% (91.2-76.9) (SQ). This in-

dicates the superiority of our factorised spatial and channel

soft attention modelling over HPN’s multi-directional atten-

tion mechanism. HA-CNN also surpasses recent hard atten-

tion re-id methods (MSCAN, DLPA and PDC), boosting the

Rank-1 by 10.9%, 10.2% and 7.1%, mAP by 18.2%, 12.3%
and 12.3% (SQ), respectively. These validate the signifi-

cant advantage of our harmonious soft/hand attention joint

and interaction learning over existing methods replying on

either hard or soft attention at a single level.
Evaluation on DukeMTMC-ReID We evaluated HA-

CNN on the recently released DukeMTMC-ReID dataset.

Compared to Market-1501, person images from this bench-

mark have more variations in resolution and background

due to wider camera views and more complex scene layout,

therefore presenting a more challenging re-id task. Table 3

shows that HA-CNN again outperforms all compared state-

of-the-arts with clear accuracy advantages, surpassing the

2nd best SVDNet-ResNet50 (without attention modelling)

by 3.8% (80.5-76.7) in Rank-1 and 7.0% (63.8-56.8) in

mAP. This suggests the importance of attention modelling

in re-id and the efficacy of our attention joint learning ap-

2290



Table 3. DukeMTMC-ReID evaluation. 1st/2nd best in red/blue.

Measure (%) R1 mAP

BoW+KISSME [40] 25.1 12.2

LOMO+XQDA [22] 30.8 17.0

ResNet50 [10] 65.2 45.0

ResNet50+LSRO [52] 67.7 47.1

JLML [21] 73.3 56.4

SVDNet-CaffeNet [31] 67.6 45.8

SVDNet-ResNet50 [31] 76.7 56.8

HA-CNN 80.5 63.8

proach in a more challenging re-id scenario. Importantly,

the performance advantage by our method is achieved at a

lower model training and test cost through an much easier

training process. For example, the performance by SVD-

Net relies on the heavy ResNet50 CNN model (23.5 million

parameters) with the need for model pre-training on the Im-

ageNet data (1.2 million images), whilst HA-CNN has only

2.7 million parameters with no data augmentation.

Evaluation on CUHK03 We evaluated HA-CNN on both

manually labelled and auto-detected (more misalignment)

person bounding boxes of the CUHK03 benchmark. We

utilise the 767/700 identity split rather than 1367/100 since

the former defines a more realistic and challenging re-

id task. In this setting, the training set is small with

only about 7,300 images (versus 12,936/16,522 in Market-

1501/DukeMCMT-ReID). This generally imposes a harder

challenge to deep models, particularly when our HA-CNN

does not benefit from any auxiliary data pre-training (e.g.

ImageNet) nor data augmentation. Table 4 shows that HA-

CNN still achieves the best re-id accuracy, outperforming

hand-crafted feature based methods significantly and deep

competitors less so. Our model achieves a small margin

(+0.2% in Rank-1 and +1.3%) over the best alternative

SVDNet-ResNet50 on the detected set. However, it is worth

pointing out that SVDNet-ResNet50 benefits additionally

from not only large ImageNet pre-training but also a much

larger network and more complex training process. In con-

trast, HA-CNN is much more lightweight on parameter size

with the advantage of easy training and fast deployment.

This shows that our attention joint learning can be a bet-

ter replacement of existing complex networks with time-

consuming model training.

4.2. Further Analysis and Discussions

Effect of Different Types of Attention We further evalu-

ated the effect of each individual attention component in our

HA model: Soft Spatial Attention (SSA), Soft Channel At-

tention (SCA), and Hard Regional Attention (HRA). Table 5

shows that: (1) Any of the three attention in isolation brings

person re-id performance gain; (2) The combination of SSA

and SCA gives further accuracy boost, which suggests the

complementary information between the two soft attention

Table 4. CUHK03 evaluation. The setting is 767/700 training/test

split. 1st/2nd best in red/blue.

Measure (%)
Labelled Detected

R1 mAP R1 mAP

BoW+XQDA [40] 7.9 7.3 6.4 6.4

LOMO+XQDA [22] 14.8 13.6 12.8 11.5

IDE-C [53] 15.6 14.9 15.1 14.2

IDE-C+XQDA [53] 21.9 20.0 21.1 19.0

IDE-R [53] 22.2 21.0 21.3 19.7

IDE-R+XQDA [53] 32.0 29.6 31.1 28.2

SVDNet-CaffeNet [31] - - 27.7 24.9

SVDNet-ResNet50 [31] - - 41.5 37.3

HA-CNN 44.4 41.0 41.7 38.6

Table 5. Evaluating individual types of attention in our HA model.

Setting: SQ. SSA: Soft Spatial Attention; SCA: Soft Channel At-

tention; HRA: Hard Regional Attention.

Dataset Market-1501 DukeMTMC-ReID

Metric (%) R1 mAP R1 mAP

No Attention 84.7 65.3 72.4 53.4

SSA 85.5 65.8 73.9 54.8

SCA 86.8 67.9 73.7 53.5

SSA+SCA 88.5 70.2 76.1 57.2

HRA 88.2 71.0 75.3 58.4

All 91.2 75.7 80.5 63.8

Table 6. Evaluating cross-attention interaction learning (CAIL).

Dataset Market-1501 DukeMTMC-ReID

Metric (%) R1 mAP R1 mAP

w/o CAIL 86.6 66.2 74.0 55.4

w/ CAIL 91.2 75.7 80.5 63.8

discovered by our model; (3) When combining the hard and

soft attention, another significant performance gain is ob-

tained. This shows that our method is effective in identify-

ing and exploiting the complementary information between

coarse hard attention and fine-grained soft attention.

Effect of Cross-Attention Interaction Learning We also

evaluated the benefit of cross-attention interaction learning

(CAIL) between global and local branches. Table 6 shows

that CAIL has significant benefit to re-id matching, improv-

ing the Rank-1 by 4.6%(91.2-86.6) / 6.5%(80.5-74.0), mAP

by 9.5%(75.7-66.2) / 8.4%(63.8-55.4) on Market-1501 /

DukeMTMC-ReID, respectively. This validates our design

is rational that it is necessary to jointly learn the attended

feature representations across soft and hard attention sub-

ject to the same re-id label constraint.

Effect of Joint Local and Global Features We evaluated

the effect of joint local and global features by compar-

ing their individual re-id performances against that of the

joint feature. Table 7 shows: (1) Either feature represen-

tation alone is already very discriminative for person re-id.

For instance, the global HA-CNN feature outperforms the
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best alternative JLML [21] (Table 2) by 4.8%(89.9-85.1) in

Rank-1 and by 7.0%(72.5-65.5) in mAP (SQ) on Market-

1501. (2) A further performance gain is obtained by joining

the two representations, yielding 6.1%(91.2-85.1) in Rank-

1 boost and 10.2%(75.7-65.5) in mAP increase. Similar

trends are observed on the DukeMCMT-ReID (Table 3).

These validate the complementary effect of jointly learning

local and global features in harmonious attention context by

our HA-CNN model.

Table 7. Evaluating global & local-level features. Setting: SQ.

Dataset Market-1501 DukeMTMC-ReID

Metric (%) R1 mAP R1 mAP

Global 89.9 72.5 78.9 60.0

Local 88.9 71.7 77.3 59.5

Global+Local 91.2 75.7 80.5 63.8

Visualisation of Harmonious Attention We visualise both

learned soft attention and hard attention at three different

levels of HA-CNN. Figure 6 shows: (1) Hard attention

localises four body parts well at all three levels, approxi-

mately corresponding to head+shoulder (red), upper-body

(blue), upper-leg (green) and lower-leg (violet). (2) Soft at-

tention focuses on the discriminative pixel-wise selections

progressively in spatial localisation, e.g. attending hierar-

chically from the global whole body by the 1st-level spatial

SA (c) to local salient parts (e.g. object associations) by

the 3rd-level spatial SA (g). This shows compellingly the

effectiveness of joint soft and hard attention learning.

Model Complexity We compare the proposed HA-CNN

model with four popular CNN architectures (Alexnet [17],

VGG16 [29], GoogLeNet [33], and ResNet50 [10]) in

model size and complexity. Table 8 shows that HA-CNN

has the smallest model size (2.7 million parameters) and the

2nd smallest FLOPs (1.09×109) and yet, still retains the 2nd

deepest structure (39).

Table 8. Comparisons of model size and complexity. FLOPs: the

number of FLoating-point OPerations; PN: Parameter Number.

Model FLOPs PN (million) Depth

AlexNet [17] 7.25×108 58.3 7

VGG16 [29] 1.55×1010 134.2 16

ResNet50 [10] 3.80×109 23.5 50

GoogLeNet [33] 1.57×109 6.0 22

JLML 1.54×109 7.2 39

HA-CNN 1.09×109 2.7 39

5. Conclusion

In this work, we presented a novel Harmonious Attention

Convolutional Neural Network (HA-CNN) for joint learn-

ing of person re-identification attention selection and fea-

ture representations in an end-to-end fashion. In contrast to

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Visualisation of our harmonious attention in person re-id.

From left to right, (a) the original image, (b) the 1
st-level of HA,

(c) the 1
st-level of SA, (d) the 2

nd-level of HA, (e) the 2
nd-level of

SA, (f) the 3
rd-level of HA, (g) the 3

rd-level of SA.

most existing re-id methods that either ignore the matching

misalignment problem or exploit stringent attention learn-

ing algorithms, the proposed model is capable of extract-

ing/exploiting multiple complementary attention and max-

imising their latent complementary effect for person re-id in

a unified lightweight CNN architecture. This is made pos-

sible by the Harmonious Attention module design in com-

bination with a two-branches CNN architecture. Moreover,

we introduce a cross-attention interaction learning mech-

anism to further optimise joint attention selection and re-

id feature learning. Extensive evaluations were conducted

on three re-id benchmarks to validate the advantages of the

proposed HA-CNN model over a wide range of state-of-the-

art methods on both manually labelled and more challeng-

ing auto-detected person images. We also provided detailed

model component analysis and discussed HA-CNN’s model

complexity as compared to popular alternatives.
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