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age. During training, the input images interact through our

novel loss function (Sec. 5), which evaluates the predicted

decompositions jointly for the entire sequence.

For our network, we use a variant of the U-Net archi-

tecture [30, 16] (Figure 2). Our network has one encoder

and two decoders, one for log-reflectance and one for log-

shading, with skip connections for both decoders. Each layer

of the encoder consists mainly of a 4× 4 stride-2 convolu-

tional layer followed by batch normalization [15] as well as

leaky ReLu [14]. For the two decoders, each layer is com-

posed of a 4 × 4 deconvolutional layer followed by ReLu.

In addition to the decoders for reflectance and shading, the

network predicts one side output from the innermost feature

maps, a single RGB vector for each image corresponding to

the predicted illumination color.

4. Dataset

To create the BIGTIME dataset, we collected videos and

image sequences depicting both indoor and outdoor scenes

with varying illumination. While many time-lapse datasets

primarily capture outdoor scenes, we explicitly wanted repre-

sentation from indoor scenes as well. Our indoor sequences

were gathered from Youtube, Vimeo, Flickr, Shutterstock,

and Boyadzhiev et al. [6], and our outdoor sequences were

collected from the AMOS [17] and Time Hallucination [35]

datasets. For each video, we masked out the sky as well

as dynamic objects such as pets, people, and cars via auto-

matic semantic segmentation [38] or manual annotation. We

collected 145 sequences from indoor scenes and 50 from

outdoor scenes, yielding a total of ∼6,500 training images.

Challenges with Internet videos. Most outdoor scenes in

our dataset are from time-lapse sequences where the sun

moves evenly over time. Many existing algorithms for multi-

image intrinsic image decomposition work well on such

data. However, we found that indoor image sequences are

much more challenging because illumination changes in

indoor scenes tend to be less even or continuous compared

to outdoor scenes. In particular, we observed that:

1. most relevant video clips cover a short period of time

and do not show large changes in light direction,

2. several video clips are comprised of a light turning

on/off in a room, producing a limited number (<8) of

valid images with different lighting conditions, and

3. the dynamic range of indoor scenes can be high,

with strong sunlight or shadows leading to satura-

tion/clipping that can break intrinsic image algorithms.

These properties make our dataset even more complex than

the IIW and SAW datasets. Several difficult examples are

shown in Fig. 3. We found that prior intrinsic image meth-

ods designed for image sequences often fail on our indoor

videos, as their assumptions tend to hold only for outdoor

Figure 3: Examples of challenging images in our dataset.

The first two images depict colorful illumination. The last

two images show strong sunlight/shadows.

Image Estimated R Estimated S

Figure 4: Failure cases for intrinsic image estimation al-

gorithms. We applied a state-of-the-art multi-image intrin-

sic image decomposition estimation algorithm [13] to our

dataset. This method fails to produce decomposition results

suitable for training due to strong assumptions that hold

primarily for outdoor/laboratory scenes.

or lab-captured sequences. Example failure cases are shown

in Fig. 4. However, as we show in our evaluation, our ap-

proach is robust to such strong illumination conditions, and

networks trained on BT generalize well to IIW and SAW.

5. Approach

In this section, we describe our novel framework for learn-

ing reflectance and shading from Internet time-lapse video

clips. During training, we formulate the problem as a con-

tinuous densely connected conditional random field (dense

CRF) and learn a deep neural network to directly predict a

decomposition from single views in a feed-forward fashion.

Image formation model. Let I denote an input image, and

R and S denote the predicted reflectance (albedo) and shad-

ing. Assuming an image of a Lambertian scene, we can write

the image decomposition in the log domain as:

log I = logR+ logS +N (1)

where N models image noise as well as deviations from a

Lambertian assumption. In our model, S is a single-channel

(grayscale) image, while R is an RGB image. However, mod-

eling S with a single channel assumes white light. In prac-

tice, the illumination color can vary across each input video

(for instance, red illumination at sunset/sunrise). Hence, we

also allow for a colored light in our model:

log I = logR+ logS + c+N (2)

where c is a single RGB vector that is added to each element

of the left-hand side. For simplicity, we use Eq. 1 in the
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following sections; without loss of generality, we treat c as

being folded into the predicted shading.

Each training instance is a stack of m input images with

n pixels taken from a fixed viewpoint and varying illu-

mination. We denote such an image sequence by I =
{

Ii|i = 1 . . .m
}

, and denote the corresponding predicted

reflectances and shadings by R =
{

Ri|i = 1 . . .m
}

, and

S =
{

Si|i = 1 . . .m
}

, respectively. Additionally, for each

image Ii we have a binary mask M i indicating which pix-

els are valid (which we use to exclude saturated pixels, sky,

dynamic objects, etc).

We wish to devise a method for learning single-view in-

trinsic image decomposition that leverages having multiple

views during training. Hence, we propose to combine learn-

ing and estimation by encoding our priors into the training

loss function. Essentially, we learn a feed-forward predic-

tor for single-image intrinsic images, trained on image se-

quences with a loss that incorporates these priors, and in

particular priors that operate at the sequence level. This

loss should also be differentiable and efficient to evaluate,

considerations which guide our design below.

Energy/loss function. During training, we formulate the

problem as a dense CRF over an image sequence I, where

our goal is to maximize a posterior probability p(R,S|I) =
1

Z(I) exp (−E(R,S, I)), where Z(I) is the partition func-

tion. Maximizing p(R,S|I) is equivalent to minimize an

energy function E(R,S, I). Because we use a feed-forward

network to predict the decomposition, we also use this en-

ergy function as our training loss. We define E as:

E(R,S, I) =Lreconstruct + w1Lconsistency + w2Lrsmooth

+ w3Lssmooth (3)

We now describe each term in Eq. 3 in detail.

5.1. Image reconstruction loss

Given an input sequence I, for each image Ii ∈ I we
expect the predicted reflectance and shading for Ii to ap-
proximately reconstruct Ii via our image formation model.
Moreover, since reflectance is constant over time, we should
be able to use the reflectance Rj predicted for any image
Ij ∈ I to reconstruct Ii, when paired with Si (and masked
by the valid image regions indicated by binary masks M i

and M j). This yields a term involving all pairs of images:

Lreconstruct =
m
∑

i=1

m
∑

j=1

∥

∥

∥
L

i
⊗M

i
⊗M

j
⊗ (log Ii − logRj

− logSi)
∥

∥

∥

2

F
(4)

where ⊗ is the Hadamard product. Similar to [10], we

weight our reconstruction loss by input pixel luminance

Li = lum(Ii)
1

8 , since dark pixels tend to be noisy, and

image differences in dark regions are magnified in log-space.

We found that including such an all-pairs connected im-

age reconstruction loss improves prediction results, perhaps

because it creates more communication between predictions.

A direct implementation of this loss takes time O(m2n). In

Sec. 5.5 we introduce a computational trick that reduces this

to O(mn) time, which is key to making training tractable.

5.2. Reflectance consistency

We also include a reflectance consistency loss that directly

encodes the assumption that the predicted reflectances should

be identical across the image sequence:

Lconsistency =

m
∑

i=1

m
∑

j=1

∥

∥M i ⊗M j ⊗ (logRi − logRj)
∥

∥

2

F

(5)

As above, this can be directly computed in time O(m2n),
but Sec. 5.5 shows how to reduce this to O(mn).

5.3. Dense spatiotemporal reflectance smoothness

Our reflectance smoothness term Lrsmooth is based on

the similarity of chromaticity and intensity between pixels.

Because we see a sequence of images at training time, we

can define a reflectance smoothness term that acts jointly

on all of the images in each sequence at once, allowing

us to express smoothness in a richer way. Accordingly,

we introduce a novel spatio-temporal densely connected

reflectance smoothness term that considers the similarity of

the predicted reflectance at each pixel in the sequence to

all other pixels in the sequence. Our method is inspired by

the bilateral-space stereo method of Barron et al. [2], but

we show how to apply their single-image dense solver to an

entire image sequence and how to implement it inside a deep

network. We define our smoothness term as:

Lrsmooth =
1

2

∑

Ii,Ij

∑

p∈Ii

q∈Ij

Ŵpq(logR
i
p − logRj

q)
2 (6)

where p and q indicate pixels in the image sequence, and

Ŵ is a (bistochastic) weight matrix capturing the affinity

between any two pixels p and q. Computing this equation di-

rectly is very expensive because it involves all pairs of pixels

in the sequence, hence we need a more efficient approach.

First, note that if Ŵ is a bistochastic matrix, we can

rewrite Eq. 6 in the following simplified matrix form:

Lrsmooth = r
⊤(I − Ŵ )r (7)

where r is a stacked vector representation (of length mn) of

all of the predicted log-reflectance images in the sequence:

r = [r1 r
2 · · · r

m]⊤, where r
i is a vector containing the

values in logRi. However, now we have a potentially dense

affinity matrix Ŵ ∈ R
mn×mn. But we can approximately
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evaluate this term much more efficiently if the pixel-wise

affinities are Gaussian, i.e.,

Wpq = exp
(

−(fp − fq)
⊤Σ−1(fp − fq))

)

(8)

where fp and fq are feature vectors for pixels p and q

respectively, and Σ is a covariance matrix. We can ap-

proximately minimize Eq. 7 in bilateral space by factor-

izing the Gaussian affinity matrix W ≈ S⊤B̄S, where

B̄ = B0B1 · · ·Bd +BdBd−1 · · ·B0 is a symmetric matrix

constructed as a product of sparse matrices representing blur

operations in bilateral space, d is the dimension of feature

vector fp, and S is a sparse splat/slicing matrix that trans-

forms between image space and bilateral space. Finally, let

Ŵ = NWN be a bistochastic representation of W , where

N is a diagonal matrix that bistochasticizes W [22]. This

bilateral embedding allows us to write the loss in Eq. 7 as:

Lrsmooth ≈ r
⊤(I −NS⊤B̄SN)r (9)

Note that Lrsmooth is differentiable and N and S are both

sparse matrices that can be computed efficiently. Our final

form of Lrsmooth (Eq. 9) can be computed in time O((d +
1)mn), rather than O(m2n2).

We define the feature vector used to compute the affinities

in Eq. 8 as fp = [ xp, yp, Ip, c1, c2 ]
⊤, where (xp, yp) is the

spatial position of pixel p in the image, Ip is the intensity

of p, and c1 = R
R+G+B

and c2 = G
R+G+B

are the first two

elements of the L1 chromaticity of p.

5.4. Multiscale shading smoothness

In addition to a reflectance smoothness term, our loss

also incorporates a shading smoothness term, Lssmooth.

This term is summed over each predicted shading image:

Lssmooth =
∑m

i=1 Lssmooth(S
i), where Lssmooth(S

i) is de-

fined as a weighted L2 term over neighboring pixels:

Lssmooth(S
i) =

∑

p∈Ii

∑

q∈N(p)

vpq
(

logSi
p − logSi

q

)2
(10)

where N(p) denotes the 8-connected neighborhood around

pixel p, and vpq is a weight on each edge.

Our insight is to leverage all of the input images to com-

pute the weights for each individual image. We are inspired

by Weiss [37], who derives a multi-image intrinsic images

algorithm based on median image derivatives over the se-

quence. Essentially, we expect the median image deriva-

tive over the input sequence (in the log domain) to approx-

imate the derivative of the reflectance image. If we denote

Jpq = log Ip − log Iq (dropping the image index i for con-

venience), then this suggests a weight of the form:

vmed
pq = exp

(

−λmed (Jpq −median{Jpq})
2
)

(11)

where median{Jpq} is the median value of Jpq over the im-

age sequence, and λmed is a parameter defining the strength

Image vmed
pq max{vmed

pq , vmed
pq } vpq

Figure 5: Effect of vmed in shading smoothness term.

(white = large weight, black = small weight.) Adding the

extra vmed can help capture smoothness in textured regions

such as the pillows in the first row and floor in the second

row. The last column shows the final smoothness weight vpq .

of vmed
pq . This weight discourages shading smoothness where

the gradient of a particular image is very different from the

median (as would happen, e.g., for a shadow boundary).

We found that vmed
pq works well as a weight for texture-

less regions (for instance, it captures the effect of a cast

shadow on a flat wall well), but, due to noise present in

dark image regions, it does not always capture the desired

shading smoothness for textured surfaces. Figure 5 (bottom)

illustrates such a case with a checkerboard pattern on the

floor. To address this issue, we define an additional weight

vmed
pq that is normalized by the median derivative:

vmed
pq = exp

(

−λmed

(

Jpq −median{Jpq}

median{Jpq}

)2
)

(12)

We combine these weights as follows:

vpq = max{vmed
pq , vmed

pq } · (1−median{Wpq}) (13)

This final shading smoothness weight is more robust to tex-

tured regions while still distinguishing shadow discontinu-

ities. The last factor (1−median{Wpq}) reflects the belief

that we should enforce stronger shading smoothness on re-

flectance edges such as textures and weaker smoothness on

regions of constant reflectance.

Ideally, our shading smoothness term would be densely

connected. However, the median operator is nonlinear and

cannot be integrated in a pixel-wise densely connected term.

Instead, to introduce longer-range shading constraints, we

compute the shading smoothness term at multiple image

scales, by repeatedly downsizing each predicted shading

image by a factor of two. We set the number of scales to be

4, and each scale l is weighted by a factor 1
l
.

5.5. Allpairs weighted least squares (APWLS)

Direct implementations of the all-pairs image reconstruc-

tion and reflectance consistency terms from Sections 5.1 and

5.2 would take O(m2n) time. This quadratic complexity

would make training intractable for large enough m. Here,
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we propose a closed-form version of this all-pairs weighted

least squares loss (APWLS) that is linear in m. While we ap-

ply this tool to our scenario, it can be used in other situations

involving all-pairs computation on image sequences.

In general, suppose each image Ii is associated with two

matrices P i and Qi and two prediction images Xi and Y i.

We then can write APWLS as (see supplemental material for

a detailed derivation):

APWLS =

m
∑

i=1

m
∑

j=1

||P i ⊗Qj ⊗ (Xi − Y j)||2F (14)

=1
⊤(ΣQ2 ⊗ ΣP 2X2 +ΣP 2 ⊗ ΣQ2Y 2−

2ΣP 2Y ⊗ ΣQ2X)1 (15)

where ΣZ denotes the sum over all images of the Hadamard

product indicated in the subscript Z. Evaluating Eq. 14

requires time O(m2n), but rewritten as Eq. 15, just O(mn).
We use this derivation to implement our image recon-

struction loss Lreconstruct (Eq. 15), by making the substitu-

tions P i = Li ⊗ M i, Qj = M j , Xi = log Ii − logSi

and Y j = logRj , and our reflectance consistency loss

Lconsistency (Eq. 5) by substituting P i = M i, Qj = M j ,

Xi = logRi and Y j = logRj .

6. Evaluation

In this section we evaluate our approach by training

solely on our BIGTIME dataset, and testing on two stan-

dard datasets, IIW and SAW. The performance of machine

learning approaches can suffer from cross-dataset domain

shift due to dataset bias. For example, we show that the per-

formance of networks trained on Sintel, MIT, or ShapeNet do

not generalize well to IIW and SAW. However, our method,

though not trained on IIW or SAW data, can still produce

competitive results on both datasets. We also evaluate on

the MIT intrinsic images dataset [12], which has full ground

truth. Rather than using the ground truth during training, we

train the network on image sequences provided by the MIT

dataset.

Training details. We implement our method in PyTorch [1].

In total, we have 195 image sequences for training. We

perform data augmentation via random rotations, flips, and

crops. When feeding images into the network, we resize

them to 256× 384, 384× 256, or 256× 256 depending on

the original aspect ratio. For all evaluations, we train the

network from scratch using Adam [21].

6.1. Evaluation on IIW

To evaluate on the IIW dataset, we train our network on

BT (without using IIW training data) and directly apply our

trained model on the IIW test split provided by [29]. Numeri-

cal comparisons between our method and other optimization-

based and learning-based approaches are shown in Table 1.

Method Training set WHDR%

Retinex-Color [12] - 26.9

Garces et al. [11] - 24.8

Zhao et al. [39] - 23.8

Bell et al. [5] - 20.6

Narihira et al. [29]∗ IIW 18.1∗

Zhou et al. [40]∗ IIW 15.7∗

Zhou et al. [40] IIW 19.9

DI [28] Sintel+MIT 37.3

Shi et al. [34] ShapeNet 59.4

Ours (w/ per-image Lreconstruct) BT 25.9

Ours (w/ local Lrsmooth) BT 27.4

Ours (w/ grayscale S) BT 22.3

Ours (full method) BT 20.3

Table 1: Results on the IIW test set. Lower is better for

the Weighted Human Disagreement Rate (WHDR). The sec-

ond column indicates the training data each learning-based

method uses; “-” indicates the method is optimization-based.
∗ indicates WHDR is evaluated based on CNN classifer

outputs for pairs of pixels rather than full decompositions.

Method Training set AP%

Retinex-Color [12] - 91.93

Garces et al. [11] - 96.89

Zhao et al. [39] - 97.11

Bell et al. [5] - 97.37

Zhou et al. [40] IIW 96.24

DI [28] Sintel+MIT 95.04

Shi et al. [34] ShapeNet 86.30

Ours (w/ local Lssmooth) BT 97.03

Ours (w/o Eq. 12) BT 97.15

Ours (full method) BT 97.90

Table 2: Results on the SAW test set. Higher is better for

AP%. The second column is described in Table 1. Note that

none of the methods use annotations from SAW.

Our method is competitive with both optimization-based

methods [5] and learning-based methods [40]. Note that

the best WHDR (marked ∗) in the table is achieved using

CNN classier outputs on pairs of pixels, rather than full im-

age decompositions. In contrast, our results are based on

full decompositions. Additionally, as we show in the next

subsection, the best performing method (Zhou et al. [40])

on IIW (which primarily evaluates reflectance) falls behind

on SAW (which evaluates shading), suggesting that their

method tends to overfit on reflectance. shading accuracy. We

also see that networks trained on Sintel, MIT or ShapeNet

perform poorly on IIW, likely due to dataset bias.
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(a) Image (b) Bell et al. (R) (c) Bell et al. (S) (d) Zhou et al. (R) (e) Zhou et al. (S) (f) Ours (R) (g) Ours (S)

Figure 6: Qualitative comparisons for intrinsic image decomposition on the IIW/SAW test sets. Our network predictions

achieve comparable results to state-of-art intrinsic image decomposition algorithms (Bell et al. [5] and Zhou et al. [40]).

We also perform an ablation study on different configura-

tions of our framework. First, we modify the image recon-

struction loss to an alternate loss that considers each image

independently, rather than considering all pairs of images

in a sequence. Second, we evaluate a modified reflectance

smoothness loss that uses local pairwise smoothness (be-

tween neighboring pixels) rather than our proposed dense

spatio-temporal smoothness. Finally, we try using grayscale

shading, rather than our colored shading. The results, shown

in the last four rows of Table 1, demonstrate that our full

method can significantly improve reflectance predictions on

the IIW test set compared to simpler configurations.

6.2. Evaluation on SAW

Next, we test our network on SAW [23], again training

without using data from SAW. We also propose two improve-

ments to the metric used to evaluate results on SAW:

First, the original SAW error metric is based on classi-

fying a pixel p as having smooth/nonsmooth shading based

on the gradient magnitude of the predicted shading image,

||∇S||2, normalized to the range [0, 1]. Instead, we mea-

sure the gradient magnitude in the log domain. We do this

because of the scale ambiguity inherent to shading and re-

flectance, and because it is possible to have very bright

values in the shading channel (e.g., due to strong sunlight),

and in such cases if we normalize shading to [0, 1] then most

of the resulting values will be close to 0. In contrast, com-

puting the gradient magnitude of log shading ||∇ logS||2
achieves scale invariance, resulting in fairer comparisons for

all methods. As in [23], we sweep a threshold τ to create

a precision-recall (PR) curve that captures how well each

method captures smooth and non-smooth shading.

Second, Kovacs et al. [23] apply a 10×10 maximum filter

to the shading gradient magnitude image before computing

PR curves, because many shadow boundary annotations are

not precisely localized. However, this maximum filter can

result in degraded performance for smooth shading regions.

Instead, we use the max-filtered log-gradient-magnitude im-

age when classifying non-smooth annotations, but use the

unfiltered log gradient image when classifying smooth anno-

tations (see supplementary for details).

All methods, including our own, are trained without use

of SAW data. Average precision (AP) scores are shown

in Table 2 (please see the supplementary for full precision-

recall curves). Our method has the best performance among

all prior methods we tested, and our full loss outperforms

variants with terms removed. In particular, our method out-

performs the best optimization-based algorithm [5] on both

IIW and SAW. On the other hand, Zhou et al. [40] tends to

overfit to IIW, as their performance on SAW ranks lower than

several other methods. Again, networks trained on Sintel,

MIT, and ShapeNet data perform poorly on SAW.

6.3. Qualitative results on IIW and SAW

Figure 6 shows qualitative results from our method and

two other state-of-art intrinsic image decomposition algo-

rithms, Zhou et al. [40] and Bell et al. [5], on test images

from IIW and SAW. Our results are visually comparable to

these methods. One observation is that our shading predic-

tions for dark pixels can be quite dark, leading to reduced

contrast in the reflectance images. However, this loss of

contrast does not hurt numerical performance. Additionally,

like other CNN approaches [28, 34], the direct predictions

from our network may not strictly satisfy I = R ·S since the
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MSE LMSE DSSIM

Method Training set GT refl. shading avg. refl. shading avg. refl. shading avg.

SIRFS [4] MIT Yes 0.0147 0.0083 0.0115 0.0416 0.0168 0.0292 0.1238 0.0985 0.1111

DI [28] MIT+ST Yes 0.0277 0.0154 0.0215 0.0585 0.0295 0.0440 0.1526 0.1328 0.1427

Shi [34] MIT+SN Yes 0.0278 0.0126 0.0202 0.0503 0.0240 0.0372 0.1465 0.1200 0.1332

Ours MIT No 0.0147 0.0135 0.0141 0.0341 0.0253 0.0297 0.1398 0.1266 0.1332

Table 3: Results on MIT intrinsics. For all error metrics, lower is better. ST=Sintel dataset and SN=ShapeNet dataset. The

second column shows the dataset used for training. GT indicates whether the method uses ground truth for training.

two decoders predict R and S simultaneously at test time.

As future work, it would be interesting to use our predictions

as priors for optimization to address these issues.

6.4. Evaluation on MIT intrinsic images

The MIT intrinsic images dataset [12] contains 20 ob-

jects with ground truth reflectance and shading, as well as

an associated image sequence taken from 11 different di-

rectional light sources. We use the same training-test split

as in Barron et al. [4], but instead of training our network

on the ground truth provided by the MIT dataset, we train

only on the provided image sequences using our learning

approach. In this case, we configure our network to pro-

duce grayscale shading outputs, since the MIT dataset only

contains grayscale shading ground truth images.

We compare our approach to several supervised learning

methods including SIRFS [4], Direct Intrinsics (DI) [28]

and Shi et al. [34]. These prior methods all train using

ground truth reflectance and shading images, and addition-

ally DI [28] and Shi et al. [34] pretrain on Sintel [7] and

ShapeNet [9], respectively. In contrast, we train our network

from scratch and only use the provided image sequences dur-

ing training. We adopt the same metrics as [34], including

mean square error (MSE), local mean square error (LMSE),

and structural dissimilarity index (DSSIM).

Numerical results are shown in Table 3 and qualitative

comparisons are shown in Figure 7. Averaged over re-

flectance and shading, our results numerically outperform

both prior CNN-based supervised learning methods [28, 34].

In particular, our albedo estimates are significantly better,

while our shading estimates are comparable (slightly better

than [28], and slightly worse than [34]). SIRFS has the best

numerical results on the MIT, but SIRFS’s priors only apply

to single objects, and their algorithm performs much more

poorly on full images of real-world scenes [28, 34].

7. Conclusion

We presented a new method for learning intrinsic images,

supervised not by ground truth decompositions, but instead

by simply observing image sequences with varying illumi-

nation over time, and learning to produce decompositions

that are consistent with these sequences. Our model can then

(a) Image (b) GT (c) SIRFS (d) DI (e)Shi et al. (f)Ours

Figure 7: Qualitative comparisons on the MIT intrinsic

test set. Odd-number rows show predicted reflectance; even-

numbered rows show predicted shading. (a) Input image,

(b) Ground truth (GT), (c) SIRFS [4], (d) Direct Intrinsics

(DI) [28], (e) Shi et al. [34], (f) Our method.

be run on single images, producing competitive results on

several benchmarks. Our results illustrate the power of learn-

ing decompositions simply from watching large amounts of

video. In the future, we plan to combine our approach with

other kinds of annotations (IIW, SAW, etc), to measure how

well they perform when used together, and to use our outputs

as inputs to optimization-based methods.
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