
Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking

Feng Li1, Cheng Tian1, Wangmeng Zuo ∗1, Lei Zhang2, and Ming-Hsuan Yang3

1School of Computer Science and Technology, Harbin Institute of Technology, China
2Department of Computing, The Hong Kong Polytechnic University, China

3School of Engineering, University of California, Merced, USA

fengli_hit@hotmail.com, tcoperator@163.com, wmzuo@hit.edu.cn, csdzhang@comp.polyu.edu.hk,

mhyang@ucmerced.edu

Abstract

Discriminative Correlation Filters (DCF) are efficient in

visual tracking but suffer from unwanted boundary effect-

s. Spatially Regularized DCF (SRDCF) has been suggested

to resolve this issue by enforcing spatial penalty on DCF

coefficients, which, inevitably, improves the tracking per-

formance at the price of increasing complexity. To tackle

online updating, SRDCF formulates its model on multiple

training images, further adding difficulties in improving ef-

ficiency. In this work, by introducing temporal regulariza-

tion to SRDCF with single sample, we present our spatial-

temporal regularized correlation filters (STRCF). The STR-

CF formulation can not only serve as a reasonable approx-

imation to SRDCF with multiple training samples, but also

provide a more robust appearance model than SRDCF in

the case of large appearance variations. Besides, it can

be efficiently solved via the alternating direction method of

multipliers (ADMM). By incorporating both temporal and

spatial regularization, our STRCF can handle boundary ef-

fects without much loss in efficiency and achieve superior

performance over SRDCF in terms of accuracy and speed.

Compared with SRDCF, STRCF with hand-crafted features

provides a 5× speedup and achieves a gain of 5.4% and

3.6% AUC score on OTB-2015 and Temple-Color, respec-

tively. Moreover, STRCF with deep features also performs

favorably against state-of-the-art trackers and achieves an

AUC score of 68.3% on OTB-2015.

1. Introduction

Recent years have witnessed the rapid advances of dis-

criminative correlation filters (DCFs) in visual tracking.
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(a)

SRDCF SRDCF(-M) SRDCF(-MS) KCF STRCF (HOG)

OTB-2015 72.7 69.3 61.5 55.5 79.2

Temple-Color 62.8 59.1 51.6 47.1 67.8

Avg.OP 67.8 64.2 56.6 51.3 73.5

Avg.FPS 5.3 7.6 32.3 167.4 28.9

(b)

Figure 1: (a) The results of STRCF and SRDCF [13] on two

videos with occlusion and deformation. (b) A comparison of S-

RDCF variants and STRCF using HOG in terms of mean OP (%)

and speed (FPS) on OTB-2015 and Temple-Color. The best three

results are shown in red, blue and green fonts, respectively.

Benefited from the periodic assumption of training sam-

ples, the DCF can be learned very efficiently in the frequen-

cy domain via fast Fourier transform (FFT). For example,

the tracking speed of the earliest DCF-based tracker, i.e.,

MOSSE [4], can reach 700 frames per second (FPS). Along

with the introduction of feature representation [14, 28], non-

linear kernel [19], scale estimation [11, 23, 24], max-margin

classifiers [43], spatial regularization [13, 18], and continu-

ous convolution [15], DCF-based trackers have been great-

ly improved and significantly advanced the state-of-the-art

tracking accuracy. However, such performance improve-
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ment is not obtained without any extra cost. Most top-

ranked trackers, e.g., SRDCF [13] and C-COT [15], have

gradually lost the characteristic speed and realtime capabil-

ity of early DCF-based trackers. For example, the speed

of SRDCF [13] using the hand-crafted HOG feature is ∼6

FPS, while that of the baseline KCF [19] is ∼170 FPS.

For better understanding on this issue, we dissect the

tradeoff between accuracy and speed in SRDCF. In general,

the inefficiency of SRDCF can be attributed to three fac-

tors: (i) scale estimation, (ii) spatial regularization, and (iii)

formulation on large training set. Fig. 1b lists the tracking

speed and accuracy of SRDCF and its variants on two popu-

lar benchmarks, including SRDCF(−M) (i.e., removing (ii-

i)), SRDCF(−MS) (i.e., removing (ii)&(iii)), and KCF (i.e.,

removing (i)&(ii)&(iii)). We note that when removing (i-

ii), linear interpolation [4, 11] is adopted as an alternative

strategy for online model updating. From Fig. 1b, it can

be seen that the tracker still maintains its real-time ability

(∼ 33���) when adding scale estimation. But the tracking

speed decreases significantly with the further introduction

of spatial regularization and formulation on large training

set. Therefore, it is valuable to develop a solution for taking

use of (ii) and (iii) without much loss in efficiency.

In this paper, we study the solution for taking the bene-

fit of spatial regularization and formulation on large train-

ing set without much loss in efficiency. On the one hand,

the high complexity of SRDCF mainly comes at the formu-

lation on multiple training images. By removing the con-

straint, SRDCF with single image can be efficiently solved

via ADMM. Due to the convexity of SRDCF, the ADM-

M can also guarantee to converge to global optimum. On

the other hand, in SRDCF spatial regularization is inte-

grated into the formulation on multiple training images for

the coupling of DCF learning and model updating, which

does benefit the tracking accuracy. Motivated by online

Passive-Aggressive (PA) learning [6], we introduce a tem-

poral regularization to SRDCF with single image, resulting

in our spatial-temporal regularized correlation filters (STR-

CF). STRCF is a rational approximation of the full SRD-

CF formulation on multiple training images, and can be ex-

ploited for simultaneous DCF learning and model updating.

Besides, the ADMM algorithm can also be directly used to

solve STRCF. Thus, STRCF incorporates both spatial and

temporal regularization into DCF, and can be adopted to

speed up SRDCF.

Furthermore, as an extension of online PA algorithm [6],

STRCF can also provide a more robust appearance mod-

el than SRDCF in the case of significant appearance vari-

ations. Fig. 1a illustrates the tracking results on two se-

quences with occlusion and deformation. Compared with

SRDCF, we can see that, with the introduction of the tem-

poral regularization, STRCF performs more robustly to oc-

clusion while adapting well to large appearance variation.

From Fig. 1b, STRCF not only runs at real-time tracking

speed (∼ 30���), but also leads to +5.7% performance

gain over SRDCF by average mean OP on two datasets. To

sum up, STRCF can achieve remarkable improvements over

the baseline SRDCF on all the datasets, and runs at more

than 5× faster tracking speed.

We perform comparative experiments on several bench-

marks, including OTB-2015 [40], Temple-Color [25], and

VOT-2016 [22]. STRCF performs favorably in terms of ac-

curacy, robustness and speed in comparison with the state-

of-the-art CF-based and CNN trackers.

The contributions of this paper are as follows:

∙ A STRCF model is presented by incorporating both s-

patial and temporal regularization into the DCF frame-

work. Based on online PA, STRCF can not only serve

as a rational approximation of the SRDCF formulation

on multiple training images, but also provide a more

robust appearance model than SRDCF in the case of

large appearance variations.

∙ An ADMM algorithm is developed for solving STR-

CF efficiently, where each sub-problem has the closed-

form solution. And our algorithm can empirically con-

verge within very few iterations.

∙ Our STRCF with hand-crafted feature can run in real-

time, achieves notable improvements over SRDCF by

tracking accuracy. Furthermore, our STRCF with deep

features performs favorably in comparison with the

state-of-the-art trackers [9, 15].

2. Related Work

This section first provides a brief survey on DCF trackers

and then focuses on spatial regularization and formulation

on large training set that are most relevant to our STRCF.

2.1. Discriminative Correlation Filters

Using DCFs for adaptive tracking starts with MOSSE

[4], which learns the CFs with few samples in the frequen-

cy domain. Notable improvements have been made to this

popular tracker to address several limiting issues. For exam-

ple, Henriques et al. [19] learn the kernelized CFs (KCF)

via kernel trick. The multi-channel version of MOSSE is

also studied in [21]. And more discriminative features are

widely used, such as HOG [8], color names (CN) [14] and

deep CNN features [28, 34]. To cope with the size change

and occlusion, several scale-adaptive [11, 23, 24] and part-

based trackers [26, 27] are further investigated. Besides,

long-term tracking [29], continuous convolution [15] and

particle filter based methods [42] are also developed to im-

prove the tracking accuracy and robustness. Due to the s-

pace limitation, here we only review the methods from spa-

tial regularization and formulation on large training set that

are close to our algorithm.
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2.2. Spatial Regularization

The circulant shifted samples in DCF-based trackers al-

ways suffer from periodic repetitions on boundary position-

s, thereby significantly degrading the tracking performance.

Several spatial regularization methods have been suggested

to alleviate the unwanted boundary effects. Galoogahi et

al. [18] pre-multiply the image patches with a fixed mask-

ing matrix containing the target regions, and then solve the

constrained optimization problem via ADMM. However,

their method can only be applied to single channel DCFs.

Danelljan et al. [13] propose a spatial regularization term

to penalize the DCF coefficients depending on their spatial

locations and suggest the Gauss-Seidel algorithm to solve

the resulting normal equations. The work [7] also employs

a similar spatial regularization term, but the spatial regu-

larization matrix is predicted with a multi-directional RNN

for identifying the reliable components. These two meth-

ods, however, are unable to exploit the circulant structure

in learning, resulting in higher computational cost. More

recently, Galoogahi et al. [17] extend [18] to multiple chan-

nels and further speed up the tracker towards real-time.

Compared with these methods, our STRCF has several mer-

its: (1) while STRCF serves as an approximation to [13] on

multiple training samples, it can be solved more efficiently

with the proposed ADMM algorithm. (2) with the intro-

duction of the temporal regularization, STRCF can learn a

more robust appearance model than [13, 17], thereby lead-

ing to superior tracking performance.

2.3. Formulation on large training set

One of the most critical challenges in visual tracking is to

learn and maintain a robust and fast appearance model in the

case of large appearance variations. To this end, MOSSE [4]

implements simultaneous DCF learning and model updat-

ing by learning the CFs with multiple training samples from

historical tracking results. Similar strategy of incorporating

large training set into the formulation can also be found in

[10, 12, 15, 21]. In practice, robust CFs can be learned by

taking the samples at different time instances into consid-

eration. However, this leads to superior performance at the

price of higher computational burden. In comparison with

these methods, KCF [19] and its variants [3, 11] decouple

the DCF learning and model updating, and further exploit

the circulant structure for high efficiency. As a result, KCF

with HOG feature can run at more than 150 FPS on a single

CPU. Following this work, there also exist several heuristic

methods [27, 38] to address the naive model updating is-

sues. These methods, however, obtain inferior performance

than DCF-based trackers with large training set. Compared

with these trackers, STRCF can not only be solved efficient-

ly by avoiding the deployment of large training set, but also

benefit from simultaneous DCF learning and model updat-

ing by introducing the temporal regularization.

3. Spatially Regularized DCF

In this section, we first revisit the SRDCF tracker, and

then present our STRCF model motivated by online PA. Fi-

nally, an ADMM is developed to solve the STRCF model.

3.1. Revisit SRDCF

Denote by � = {(x� y�)}��=1 a training set of multiple

images. Each sample x� = [x1
�, ...,x

�
� ] consists of � fea-

ture maps with size of � × � . And y� is the predefined

Gaussian shaped labels. The SRDCF [13] is formulated by

minimizing the following objective,

argmin
f

�
∑

�=1

��

∥

∥

∥

∥

∥

�
∑

�=1

x
�
� ∗ f� − y�

∥

∥

∥

∥

∥

2

+

�
∑

�=1

∥

∥

∥
w ⋅ f�

∥

∥

∥

2

, (1)

where ⋅ denotes the Hadamard product, ∗ stands for the

convolution operator, w and f are the spatial regulariza-

tion matrix and correlation filter, respectively. �� indicates

the weight to each sample x� and is set to emphasize more

to the recent samples. In [13], Danelljan et al. employ

the Gauss-Seidel method to iteratively update the filters f .

Please refer to [13] for more implementation details.

However, although SRDCF is effective in suppressing

the adverse boundary effects, it also increases the computa-

tional burden due to the following two reasons:

(i) The failure of exploiting circulant matrix struc-

ture. For the sake of learning a robust correlation fil-

ter f , DCF trackers incorporate several historical samples

{(x�,y�)}��=1 for training [11]. However, unlike other

CF-based trackers learned with only the sample from the

current frame, the formulation on multiple images breaks

the circulant matrix structure, resulting in high computa-

tion burden. As for SRDCF, the optimization becomes even

more difficult due to the spatial regularization term.

(ii) The large linear equations and Gauss-Seidel solver.

Eqn. (1) results in a ��� × ��� large sparse linear

equation system. While the Gauss-Seidel method is sug-

gested to solve Eqn. (1) using the property of sparse matrix,

it still remains high computational complexity. In addition,

the SRDCF tracker also needs a long start-up time to learn

the discriminative correlation filters in the first frame due to

the low convergence speed of Gauss-Seidel method.

Both the spatial regularization and formulation on multi-

ple images will break the circulant matrix structure. Fortu-

nately, these two issues can be circumvented to improve the

tracking speed. The formulation on multiple images can be

relaxed to a STRCF model on single image by introducing

the temporal regularization. Furthermore, the introduction

of spatial regularization can be addressed by exploiting an

equivalent reformulation solved by ADMM efficiently.
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Figure 2: A comparison of SRDCF and STRCF on model learning. SRDCF learns the CFs with multiple samples from historical tracking

results and emphasizes more to the recent samples. Thus it may suffer from over-fitting to the recent inaccurate samples and results in

tracking failure in the case of occlusion. In contrast, our STRCF trains the CF f� with the sample from current frame and the learned CF

f�−1. Benefited from online PA, STRCF can successfully follow the targets by passively updating the CFs in the case of occlusion.

3.2. STRCF

In online classification, when a new instance comes on

each round, the algorithm first predicts its label, and then

updates the classifier based on the newly instance-label pair.

On the one hand, the learning algorithm should be passive

to make the updated classifier similar to the previous one.

On the other hand, the learning algorithm should be ag-

gressive to guarantee the new instance be corrected clas-

sified. Thus, Crammer et al. [6] suggest an online passive-

aggressive (PA) algorithm by introducing a temporal regu-

larization, and derive the bound on the cumulative loss of

PA w.r.t. the best fixed predictor.

Motivated by PA, we introduce a temporal regularization

term ∥f − f�−1∥2, resulting in our spatial-temporal regular-

ized CF (STRCF) model,

argmin
f

1

2

∥

∥

∥

∥

∥

�
∑

�=1

x
�
� ∗ f�−y

∥

∥

∥

∥

∥

2

+
1

2

�
∑

�=1

∥

∥

∥
w ⋅ f�

∥

∥

∥

2

+
�

2
∥f−f�−1∥

2
,

(2)

where f�−1 denotes the CFs utilized in the (�− 1)-th
frame, and � denotes the regularization parameter. Here,∑�

�=1 ∥w ⋅ f�∥2 denotes the spatial regularizer, and ∥f −
f�−1∥2 denotes the temporal regularizer.

STRCF can also be treated as an extension of online PA

from two aspects: (i) Instead of classification, STRCF is an

online learning of linear regression; (ii) Instead of instance-

wise updating, the samples in STRCF come at the batch

level (i.e. all the shift versions of an image) on each round.

Therefore, STRCF naturally inherits the merits of online PA

on adaptively balancing the tradeoff between aggressive and

passive model learning, thus leading to more robust mod-

els in the case of large appearance variations. In Fig. 2,

we compare STRCF with SRDCF on sequence Lemming to

highlight their relationships on CF model learning. From

it we can make the following observations: (i) Similar to

SRDCF, STRCF also implements simultaneous DCF learn-

ing and model updating with the introduction of temporal

regularizer, thus can serve as a rational approximation of

SRDCF with multiple training samples; (ii) In the case of

occlusion, while SRDCF suffers from over-fitting to recent

corrupted samples, STRCF can alleviate this by passively

updating the CFs to keep it close to the previous ones.

3.3. Optimization algorithm

The model in Eqn. (2) is convex, and can be minimized
to obtain the globally optimal solution via ADMM. To this
end, we first introduce an auxiliary variable g by requiring
f = g and the stepsize parameter �, then the Augmented
Lagrangian form of Eqn. (2) can be formulated as

ℒ(w,g, s) =
1

2

∥

∥

∥

∥

∥

�
∑

�=1

x
�
� ∗f

�−y

∥

∥

∥

∥

∥

2

+
1

2

�
∑

�=1

∥

∥

∥
w⋅g�

∥

∥

∥

2

(3)

+

�
∑

�=1

(f�−g
�)�s�+

�

2

�
∑

�=1

∥

∥

∥
f
�−g

�
∥

∥

∥

2

+
�

2
∥f−f�−1∥

2
,

where s, � are the Lagrange multiplier and penalty factor,
respectively. By introducing h = 1

�
s, Eqn. (3) can be refor-

mulated as

ℒ(w,g,h) =
1

2

∥

∥

∥

∥

∥

�
∑

�=1

x
�
� ∗f

�−y

∥

∥

∥

∥

∥

2

+
1

2

�
∑

�=1

∥

∥

∥
w⋅g�

∥

∥

∥

2

(4)

+
�

2

�
∑

�=1

∥

∥

∥
f
�−g

�+h
�
∥

∥

∥

2

+
�

2
∥f − f�−1∥

2
.

The ADMM algorithm is then adopted by alternatingly

solving the following subproblems,

⎧









⎨









⎩

f (�+1)=argmin
f

∥

∥

∥

∥

�
∑

�=1

x�
� ∗f

�−y

∥

∥

∥

∥

2

+�∥f−g+h∥2+�∥f−f�−1∥
2

g(�+1) = argmin
g

�
∑

�=1

∥

∥w ⋅ g�
∥

∥

2
+ �∥f − g + h∥2

h(�+1) = h(�) + f (�+1) − g(�+1).

(5)
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We detail the solution to each subproblem as follows:
Subproblem f : Using the Parseval’s theorem, the first row
of Eqn. (5) can be rewritten in the Fourier domain as

argmin
f̂

∥

∥

∥

∥

∥

�
∑

�=1

x̂
�
� ⋅ f̂

�−ŷ

∥

∥

∥

∥

∥

2

+�

∥

∥

∥
f̂−ĝ+ĥ

∥

∥

∥

2

+�
∥

∥

∥
f̂−̂f�−1

∥

∥

∥

2

, (6)

where f̂ denotes the discrete Fourier transform (DFT) of
the filter f . From Eqn. (6), we can see that the �-th element
of the label ŷ only depends on the �-th element of the filter

f̂ and sample x̂� across all � channels. Denote by ��(f) ∈
ℝ

� the vector consisting of the �-th elements of f along all
� channels. Eqn. (6) can be further decomposed into ��
subproblems, where each of them is defined as

argmin
��(f̂)

∥

∥

∥
��(x̂�)

⊤��(f̂)−�̂�

∥

∥

∥

2

+�
∥

∥

∥
��(f̂)−��(f̂�−1)

∥

∥

∥

2

(7)

+�

∥

∥

∥
��(f̂)−��(ĝ)+��(ĥ)

∥

∥

∥

2

.

Taking the derivative of Eqn. (7) be zero, we can get the

closed-form solution for ��(f̂),

��(f̂) = (��(x̂�)��(x̂�)
⊤ + (�+ �)�)−1

q, (8)

where the vector q takes the form as q = ��(x̂�)�̂� +

���(ĝ) − ���(ĥ) + ���(f̂�−1). Since ��(x̂�)��(x̂�)
⊤ is

rank-1 matrix, Eqn. (8) can be solved with the Sherman-
Morrsion formula [33], and we have

��(f̂) =
1

�+ �
(� −

��(x̂�)��(x̂�)
⊤

�+ � + ��(x̂�)⊤��(x̂�)
)q. (9)

Note that Eqn. (9) only contains vector multiply-add oper-
ation and thus can be computed efficiently. f can be further

obtained by the inverse DFT of f̂ .
Subproblem g: From the second sub-equation of Eqn. (5),
each element of g can be computed independently, and thus
the closed-form solution of g can be computed by,

g = (W⊤
W + ��)−1(�f + �h). (10)

where W represents the ��� ×��� diagonal matrix

concatenated with � diagonal matrices Diag(w).
Updating stepsize parameter �: The stepsize parameter �

is updated as in Eqn. (11),

�(�+1) = ���(�max, ��(�)), (11)

where �max denotes the maximum value of � and the scale

factor �.

Complexity Analysis. Since Eqn. (6) is separable in each

pixel location, we should solve �� subproblems and each

is a system of linear equations with � variables. With

Sherman-Morrison formula, each system can be solved in

�(�). 1Thus, the complexity of solving f̂ is �(���).

1please refer to [43] for more details.

Taking the DFT and inverse DFT into account, the complex-

ity of solving f is �(��� log(��)). And the computa-

tional cost for g is �(���). Hence, the overall cost of

our algorithm is �(��� log(��)��), where �� repre-

sents the maximum number of iterations. In addition, com-

pared with SRDCF, our ADMM algorithm does not need a

start-up time to initialize the CFs in the first frame.

Convergence. Note that the STRCF model is convex, and

each sub-problem in ADMM algorithm has closed-form so-

lution. Therefore, it satisfies the Eckstein-Bertsekas condi-

tion [16], and is guaranteed to converge to global optimum.

In addition, We empirically find that the proposed ADMM

can converge within 2 iterations on most of the sequences,

and thus �� is set to 2 for efficiency.

4. Experimental Results

In this section, we first compare our STRCF with the

state-of-the-art trackers in terms of both hand-crafted and

CNN features on the OTB-2015 dataset. Then, we ana-

lyze the impacts of the temporal regularization and hyper-

parameter � on tracking performance using OTB-2015. Fi-

nally, we conduct comparative experiments on Temple-

Color and VOT-2016 benchmarks.

Following the settings in SRDCF [13], we crop the

square region centered at the target, in which the side length

of the region is
√
5�� (� and � represent the width

and height of the target, respectively). Then we extrac-

t HOG, CN [14] and CNN features for the image region.

The features are further weighted by a cosine window to

reduce the boundary discontinuities. As for the ADM-

M algorithm, we set the hyper-parameter in Eqn. (2) to

� = 16 throughout all the experiments. The initial step-

size parameter �(0), the maximum value �max and scale

factor � are set to 10, 100 and 1.2, respectively. Our

STRCF is implemented with Matlab 2017a and all the ex-

periments are run on a PC equipped with Intel i7 7700

CPU, 32GB RAM and a single NVIDIA GTX 1070 G-

PU. The source code of our tracker is publicly available at

https://github.com/lifeng9472/STRCF.

4.1. The OTB-2015 benchmark

The OTB-2015 benchmark [40] is a popular tracking

dataset which consists of 100 fully annotated video se-

quences with 11 different attributes, such as abrupt motion,

illumination variation, scale variation and motion blurring.

We evaluate the trackers based on the One Pass Evaluation

(OPE) protocol provided in [40], where overlap precision

(OP) metric is employed by calculating the bounding box

overlaps exceeding 0.5 in a sequence. Besides, we also pro-

vide the overlap success plots containing the OP metric over

a range of thresholds.

We compare STRCF with 20 state-of-the-art trackers, in-

cluding trackers using hand-crafted features (i.e. SRDCF
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SRDCF [13] BACF [20] ECO-HC [9] SRDCFDecon [10] Staple [1] Staple+CA[30] SAMF+AT [3] SAMF [24] MEEM [41] DSST [11] KCF [19] STRCF (HOG) STRCF (HOGCN)

Mean OP 72.7 77.5 79.6 77 71 73.8 68 64.4 62.3 62.2 55.5 79.2 79.6

FPS 5.8 26.7 42 2.0 76.6 35.3 2.2 23.2 22.4 20.4 171.8 31.5 24.3

Table 1: The mean OP (in %) and FPS results of trackers with hand-crafted features on OTB-2015. The best three results are shown in

red, blue and green fonts, respectively.

ECO [9] DeepSRDCF [13] SiameseFC [2] FCNT [37] HDT [34] MSDAT [39] HCF [28] C-COT [15] CF-Net [36] DeepSTRCF

Mean OP 85.5 76.8 71 67.1 65.8 65.6 65.6 82.7 73 84.2

FPS 9.8 0.2 83.7 1.2 2.7 25 10.2 0.8 78.4 5.3

Table 2: The OP metric (in %) and FPS results of trackers with deep features on OTB-2015. The best three results are shown in red, blue

and green fonts, respectively.

[13], BACF [20], ECO-HC [9], SRDCFDecon [10], Sta-

ple [1], Staple+CA[30], SAMF+AT [3], DSST [11], SAM-

F [24], MEEM [41] and KCF [19]) and using CNN fea-

tures (i.e. ECO [9], DeepSRDCF [12], HCF [28], HDT [34],

C-COT [15], FCNT [37], SiameseFC [2], CF-Net [2] and

MSDAT [39]). Note that we employ the publicly available

codes or results provided by the authors for fair comparison.

4.1.1 Comparison with hand-crafted based trackers

We compare the proposed STRCF with other state-of-the-

art trackers using hand-crafted features. Table 1 gives the

results of the mean OP and FPS on OTB-2015. As shown

in Table 1, STRCF performs significantly better than most

of the competing trackers except ECO-HC and surpasses its

counterpart SRDCF by 6.9%. We owe these significant im-

provements to the introduction of the temporal regulariza-

tion. STRCF is also superior to the SRDCFDecon tracker

which follows the SRDCF work and addresses the corrupted

sample problem by re-weighting the samples in the training

set. It indicates that the introduction of temporal regular-

ization is more helpful than multiple samples training with

explicit sample re-weighting. Besides, our method also out-

performs the recent CF-based trackers: BACF [17], SAM-

F+AT [3] and Staple+CA [30]. Overall, the only tracker

performing comparably with STRCF on OTB-2015 is the

ECO-HC [9]. It is worth noting that ECO-HC adopts the

Gaussian Mixture Model (GMM)-based generative sample

space method to reduce the number of samples for training,

and employs continuous convolution and factorized convo-

lution for boosting the performance. In contrast, even our

STRCF does not consider continuous convolution and fac-

torized convolution techniques, it still yields favorable per-

formance against the competing trackers.

In addition, we also report the tracking speed (FPS) com-

parison on OTB-2015 dataset in Table 1. One can see that

STRCF (HOGCN) runs at 24.3 FPS and is nearly 4.2× than

its counterpart SRDCF (5.8 FPS), validating the high effi-

ciency of the proposed ADMM over the SRDCF solver (i.e.

the Gauss-Seidel algorithm). STRCF (HOG) using HOG

feature performs even faster and obtains a real-time speed

of 31.5 FPS, which is 1.2× faster than recent BACF tracker.

(a) (b)

Figure 3: A comparison of the overlap success plots with

the state-of-the-art trackers on OTB-2015 dataset. (a)

Trackers with hand-crafted features. (b) Trackers with deep

features.

Finally, we provide the overlap success curve of the com-

peting trackers with the hand-crafted features on OTB-2015

dataset, which is ranked using the Area-Under-the-Curve

(AUC) score. As shown in Fig. 3a, our STRCF achieves

an AUC score of 65.1% and ranks the second best perfor-

mance among all the trackers. Similar to the mean OP re-

sults, STRCF also outperforms its counterparts SRDCF and

SRDCFDecon by a gain of 5.4% and 2.3%, respectively.

4.1.2 Video Attribute Based Comparison

In this section, we perform quantitative analysis of the total

11 video attributes on the OTB-2015 dataset. Our STRCF

outperforms most of the competing trackers except ECO-

HC on all the attributes. Due to the page limits, here we only

provide the overlap success plots of 4 attributes in Fig. 4

and the remaining results can be found in the supplementary

material.

In the case of out of view (OV) and occlusion (OCC),

the target always encounters with partial or fully disappear-

ance from the camera, which leads to an adverse impact on

model updating. Trackers using multiple samples training

with naive sample weighting strategy (i.e. SRDCF) or lin-

ear interpolation updating (i.e. Staple and SAMF+AT) suf-

fer from significant degradation because of over-fitting to

the recent samples. Benefited from the temporal regulariza-

tion, our STRCF can adaptively make the balance between
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Figure 4: The overlap success plots of the competing trackers with 4 video attributes on the OTB-2015 dataset.

updating the CFs with the latest samples and keeping close

to the previously learned CFs, and thus is robust to such

kinds of variations. In particular, STRCF achieves remark-

able improvements over its baseline SRDCF, i.e., 14.5%

and 5.7% gains on these two attributes, respectively. And

it also outperforms the SRDCFDecon tracker by an AUC

score of 9.3% and 2.1% on these two attributes. As for the

In-plane/Out-of-plane rotation attributes, STRCF also per-

forms better than most of the trackers and is superior to the

baseline SRDCF by 5.8% and 7.6%, respectively.

4.1.3 Comparison with deep feature-based trackers

To further assess STRCF, we follow the settings in C-COT

[15], and combine the outputs of conv3 layer from VGG-

M network [35] with HOGCN features for STRCF training

(we name it as DeepSTRCF for simplicity). Using mean OP

and speed as performance metrics, Table 2 compares Deep-

STRCF with the state-of-the-art trackers based on deep fea-

tures on OTB-2015. One can see that DeepSTRCF achieves

a mean OP of 84.2% and performs much better than the S-

RDCF with CNN features (i.e. DeepSRDCF) by a gain of

7.4%, demonstrating the effectiveness of the temporal reg-

ularization. It even outperforms than C-COT with both spa-

tial regularization and continuous convolution by a gain of

1.2% on OTB-2015. In terms of the tracking speed, the best

performance belongs to SiameseFC (83.7 FPS), followed

by CF-Net (78.4 FPS) and MSDAT (25 FPS), while Deep-

STRCF runs at 5.3 FPS. The higher speed of these trackers,

however, comes at the cost of much lower accuracy in com-

parison to STRCF. Furthermore, We also provide the over-

lap success curves of the competing trackers in Fig. 3b. One

can see that DeepSTRCF ranks the second and outperforms

DeepSRDCF with a margin of 5.2% on OTB-2015.

4.2. Internal Analysis of the proposed approach

4.2.1 Impacts of the Temporal regularization

In this section, we investigate the impacts of the temporal

regularization on the proposed STRCF approach using the

OTB-2015 dataset. Fig. 5a gives the overlap success plot of

different SRDCF variants (discussed in Section 1) and our

STRCF. Compared with the KCF method, we can see that

the introduction of scale estimation (i.e. SRDCF(-MS)) and
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Figure 5: Ablative study on the STRCF method. (a) The over-

lap success plot of the SRDCF variants and our STRCF on OTB-

2015. (b) The visualization results of temporal CF variation a-

gainst frames on sequence Shaking.

spatial regularization (i.e. SRDCF(-M)) can boost the per-

formance by 3.5% and 6.7%, respectively. Besides, SRDCF

also outperforms SRDCF(-M) by 1.6% with the coupling of

DCF learning and model updating. However, when incor-

porating the temporal regularization into SRDCF(-M) for-

mulation, our STRCF can bring notable improvements over

both SRDCF(-M) and SRDCF with a gain of 6% and 4.4%,

respectively. This can be explained by the merits of online

PA on adaptively balancing the tradeoff between aggressive

and passive model updating.

To further illustrate the differences of STRCF and SRD-

CF on model learning, we visualize the temporal CF vari-

ation (i.e.
∥f�−f�−1∥

2

�
, where � is the normalization factor)

against frames on sequence Shaking in Fig. 5b. From it

we can draw the following conclusions: (1) Compared with

the SRDCF tracker, our STRCF passively updates the CFs

in most frames with small appearance variations, thus lead-

ing to more robust DCF variations. (2) While SRDCF suf-

fers from slow appearance variations (i.e. occlusion in the

3∼20-th frames), our STRCF is dominated by the passive

model learning and thus insensitive to these variations. (3)

In the case of sudden appearance variations (i.e. the illumi-

nation changes in the 58∼68-th frames), STRCF can benefit

from the aggressive model learning and better adapt to these

situations than SRDCF. It should be noted that these phe-

nomena are ubiquitous in various video attributes, and the

visualizations and analysis of the temporal CF variations on

more videos can be found on the supplementary material.
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DSST [11] ECO [9] Staple [1] MDNet N [32] TCNN [31] SRDCF [13] BACF [20] SRDCFDecon [10] DeepSRDCF [12] ECO-HC [9] STRCF DeepSTRCF

EAO 0.181 0.375 0.295 0.257 0.325 0.247 0.223 0.262 0.276 0.322 0.279 0.313

Accuracy 0.5 0.53 0.54 0.53 0.54 0.52 0.56 0.53 0.51 0.54 0.53 0.55

Robustness 2.72 0.73 1.35 1.2 0.96 1.5 1.88 1.42 1.17 1.08 1.32 0.92

Table 3: A comparison with the state-of-the-art trackers on VOT-2016 dataset.

µ

Figure 6: Impacts of the temporal regularization parameter � on

OTB-2015 dataset.

Figure 7: The overlap success plot of different trackers on

Temple-Color. Only the top 10 trackers are displayed for clarity.

4.2.2 Effect of regularization parameter �

We further analyze the effect of regularization parameter �

on the tracking performance of STRCF with hand-crafted

features. The regularization parameter � determines the

rate at which to replace the learned CF f�−1 from previous

frames with the new sample x in the current frame. The

lower the parameter �, the higher relevance of filter f given

to the sample x. In Fig. 6, it is shown that the accuracy

of STRCF tracker is significantly affected by the choice of

�. From Fig. 6, the best performance is achieved around

� = 16. Note that when � = 0, STRCF is trained only with

the current frame and ignores all historical information, thus

it even performs worse than KCF.

4.3. The Temple-Color Benchmark

We perform comparative experiments on Temple-Color

dataset [25] which consists of 128 color sequences. We

compare STRCF and DeepSTRCF with the state-of-the-art

trackers mentioned above except CF-Net [36] which trained

the network on Temple-Color . Fig. 7 shows the compari-

son of overlap success plots for different trackers. We note

that STRCF is on par with ECO-HC and surpasses its coun-

terparts SRDCF, DeepSRDCF and SRDCFDecon by 3.6%,

1.4% and 1.1%, respectively. Meanwhile, DeepSTRCF per-

forms the best among the competing trackers and achieves

an AUC score of 60.1%, further demonstrating the effec-

tiveness of STRCF on deep features.

4.4. The VOT-2016 Benchmark

We also report the results on Visual Object Tracking

2016 benchmark (VOT-2016) [22], which consists of 60

challenging videos. We evaluate the trackers in terms of ac-

curacy, robustness and expected average overlap (EAO) [5].

The accuracy measures the average overlap ratio between

the predicted bounding box and the ground-truth. The ro-

bustness computes the average number of tracking failures

over the sequence. And EAO averages the no-reset overlap

of a tracker on several short-term sequences.

We compare STRCF and DeepSTRCF with state-of-the-

art trackers, including MDNet [32] (VOT-2015 winner) and

TCNN [31] (VOT-2016 winner). Table 3 lists the results of

different trackers on VOT-2016 dataset. We can see from

Table 3 that STRCF performs significantly better than the

BACF and SRDCF methods in terms of the EAO metric. In

addition, DeepSTRCF also performs favorably against its

counterpart DeepSRDCF by a gain of 3.7% in EAO metric.

5. Conclusion

In this paper, we propose the spatial-temporal regular-

ized correlation filters (STRCF) to address the inefficiency

problem of SRDCF. By introducing the temporal regularizer

to SRDCF formulation with single sample, STRCF serves

as an approximation of SRDCF with multiple training sam-

ples. Moreover, as an extension of online PA, STRCF can

adaptively balance the tradeoff between aggressive and pas-

sive model learning, thus leading to more robust models in

the case of large appearance variations. An ADMM algo-

rithm is developed to solve the STRCF model. We perfor-

m experiments on three benchmarks, and the results show

that STRCF with hand-crafted features is superior than the

baseline SRDCF by accuracy and speed. Moreover, STR-

CF with deep features also performs favorably against state-

of-the-art trackers in terms of accuracy and robustness. In

future, we will further improve our STRCF by investigat-

ing whether the temporal regularizer can be compatible to

SAMF+AT [3], Staple+CA [30], and the GMM and contin-

uous convolution in ECO [9].
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