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Abstract

The manifold surface reconstruction in multi-view stereo

often fails in retaining thin structures due to incomplete and

noisy reconstructed point clouds. In this paper, we address

this problem by leveraging spatial curves. The curve repre-

sentation in nature is advantageous in modeling thin and e-

longated structures, implying topology and connectivity in-

formation of the underlying geometry, which exactly com-

pensates the weakness of scattered point clouds. We present

a novel surface reconstruction method using both curves

and point clouds. First, we propose a 3D curve recon-

struction algorithm based on the initialize-optimize-extend

strategy. Then, tetrahedra are constructed from points and

curves, where the volumes of thin structures are robustly

preserved by the Curve-conformed Delaunay Refinement.

Finally, the mesh surface is extracted from tetrahedra by a

graph optimization. The method has been intensively eval-

uated on both synthetic and real-world datasets, showing

significant improvements over state-of-the-art methods.

1. Introduction

One of the general weaknesses of existing dense multi-

view stereo (MVS) methods is the thin structure reconstruc-

tion. Fig. 1(a) shows a typical example generated by the

state-of-the-art method in [48]: although the ground and the

windmill body are well reconstructed by point clouds and

meshes, thin windmill blades remain severely incomplete.

The main reason is that most stereo algorithms perfor-

m dense matching on local image patches. The local ap-

pearance of thin structures becomes highly varied due to

background changes, making the multi-view matching in-

consistent (illustrated in Fig. 1(c)). Also, point clouds are

scattered and imply no connectivity information of the un-

derlying geometry. Even if some dense points are recovered

for thin structures, they are usually sparse and incomplete,

and thus prone to be filtered out as outliers when extracting

the manifold surface (see the effect from dense points to

meshes in Fig. 1(a)). Moreover, thin structures are sensitive

(a) The state-of-the-art dense and surface reconstruction

(b) Our reconstructed curves (blue) and mesh surface

(c) Samples of input images and zoomed-in patches

Figure 1: (a) The point cloud and mesh reconstruction by [48].

(b) Our method reconstructs 3D curves in blue on the left and a

complete mesh on the right. (c) Samples of input images. The

zoomed-in patches of the windmill blade vary significantly due to

background changes, resulting in the incomplete surface in (a).

to the accuracy of camera geometry. If the reprojection error

of matching points is larger than the thickness of thin struc-

tures themselves, they can hardly be reconstructed [12].

To compensate the essential weaknesses of point-based

methods, we resort to another representation – 3D curves.

The curves can be computed from 2D edges of images. It’s

known that edges are more robust to image noises (in detec-

tion [44]), more tolerant to SfM errors (in matching [32])

as they are sparse and distinctive in nature, better in char-

acterizing the topology of thin and elongated structures,

and providing connectivity information which is useful as

a constraint in surface reconstruction. Unlike dense point
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Representation 3D points 3D curves

Reconstructed

from

Local image

patches (5-7 px)

Image edges

(1 px)

Sample of surface Local pointwise 1D continuous

Properties
Dense,

scattered

Sparse,

connected

Suitable for
Smoothly-varying or

planar surfaces

Thin structures,

object silhouettes

Table 1: Comparisons between two representations.

matching that relies on the appearance of local image patch,

the edge detection is much less affected by background

changes, yielding stable reconstructions of spatial curves.

Also, the edge can depict thin geometries down to single

pixel width, while the local image patch usually resides in

5 to 7 pixels. All these advantages are exactly complemen-

tary to weaknesses of scattered point clouds. Table 1 sum-

marizes the comparison between them. With a proper com-

bination, two representations will benefit from each other.

In this paper, we demonstrate that leveraging spatial

curves can dramatically improve the thin structure recon-

struction. We propose a complete solution using spatial

curves for surface reconstruction. First, 3D curves are gen-

erated from image edges based on the initialize-optimize-

extend strategy. Then, the confidence region of curves is

estimated. Next, these curves are combined with point

clouds (generated by MVS) to form the tetrahedra, which

is improved by the Curve-confirmed Delaunay Refinemen-

t. Finally, the mesh surface is extracted from the tetrahe-

dra via a graph optimization considering energy terms de-

rived from both points and curves. Our experiments show

that the additional spatial curve is crucial to successful

thin structure reconstructions, significantly outperforming

point-based state-of-the-art methods.

The main contributions of this paper include:

• the novel approach to compute 3D curves based on the

initialize-optimize-extend strategy (Section 2);

• the Curve-conformed Delaunay Refinement for tetra-

hedra, which is crucial to preserve the reconstruction

of thin structures (Section 3.2);

• the unified Delaunay tetrahedra and graph optimiza-

tion framework to combine point clouds and 3D curves

for manifold surface extraction (Section 3.3).

At last, we note that our work only aims at improving

the reconstruction of 1D thin structures (e.g., pylon, wires),

instead of tackling with 2D thin structures (e.g., paper, road

signs) as in previous works [45, 1]. Also, the definition of

“thin structures” is relative to image resolution: if the reso-

lution is sufficiently high, or equivalently, images are cap-

tured from close distance, the thin structure becomes not

that “thin” anymore and can be recovered by point-based

methods. Nevertheless, our proposed method has shown

strong ability to reconstruct very thin structures that are un-

able to be recovered by previous point-based methods.

1.1. Related Works

Fine structure reconstruction. Most dense reconstruc-

tion methods approximate surfaces with local planes (i.e.,

point plus normal), or referred to as 3D patches [15], which

work well for planar and smooth-varying areas, but they

struggle with thin, elongated or wiry structures. Some pre-

vious works [45, 1] have improved 2D thin surface recon-

struction, either using point-based non-manifold represen-

tation [45] or multi-scale kernels [1], showing promising

results. But neither of them excels at recovering 1D thin

structures, which is a more challenging problem since the

point cloud is often incomplete in MVS. Li et al. [27] and

Huang et al. [20] proposed to fit the point cloud of 1D thin

structures into cylindrical skeletons, also requiring laser-

level density of point cloud. Yucer et al. [50] exploited seg-

mentation method on dense video frames the recover the

thin structures, which is not applicable to sparse image in-

put. Some volumetric methods have also shown impressive

results in thin structure reconstruction, using direct ray rea-

soning [29, 35] or silhouette information [23, 8, 33, 37].

However, the volumetric model is initialized by the fusion

of multiple depth maps computed from stereo matching,

which still suffers from background changes problem as

mentioned before. Besides, volumetric methods are in na-

ture not suitable in recovering thin structures as the thinness

is eventually limited by the resolution of volumes (the depth

of Octree [30]). Our method effectively averts these two

problems by directly using 2D edges to generate 3D curves,

and a flexible Delaunay tetrahedra framework [25] for mesh

surface reconstruction.

Curve-based reconstruction. The usages of image

edges, curves and lines are ubiquitous in stereo vision, in-

cluding camera motion problems [42, 9, 32], multi-view re-

construction [7, 24, 37] or sparse abstractions [10, 43, 19].

To mention most-related techniques in curve-based re-

construction, Teney et al. [43] proposed a spatial probability

distribution for 3D curve generation. Fabbri et al. [10, 11]

developed a curve sketch framework based on coarse-to-

fine optimization, which was later extended [46] with a

graph model for improved curve qualities. Other than that,

Hofer et al. [19] focused on 3D line reconstruction, and pro-

posed an efficient algorithm using hypothesis-then-verify

scheme. Recently, Nurutdinova et al. [32] combined the 3D

curves with feature points for improved accuracy of SfM.

More recently, Liu et al. [28] presented the candidate selec-

tion strategy for 3D curve reconstruction, showing impres-

sive results from sparse image input. These works share a

similar goal to Section 2: computing the 3D curves. But

the only work had considered surface reconstruction from

curves is [47]. They aim at sparse surface abstraction by

considering the curves as scaffolds of objects, while ours fo-

cuses on dense surface reconstruction by combining points

and curves for improved thin structure reconstruction.
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One input image 3D line segments Optimized 3D curves 3D curves after extension

Figure 2: The 3D line segments are first computed from multi-view images, and then optimized to accurate 3D curves, followed by an

extension step to increase the completeness (orange highlights the extended parts of curves).

2. Reconstruction of Spatial Curves

In this section, we present our 3D curve reconstruction

based on the initialize-optimize-extent strategy. To avoid

confusion, we refer the term “curve” to 3D curves, and

“edge” to 2D image edges in the whole context of the paper.

The effects of each step are illustrated in Fig. 2.

Initialization from lines. As edges can be too abundant

in natural images, direct reconstruction from all edges lead-

s to extremely large search space and massive mismatches

due to ambiguities [43, 10]. In contrast, we initialize from

straight edges (line segments) first. Because line segments

are special cases of edges, more confident and prominen-

t, this particular choice dramatically reduces ambiguities in

matching. Let the input images be {I} = {I0, I1, ...} (the

set expansion is omitted below) and camera parameters {θ}.

We apply Edge Drawing [44] on images to compute 2D

edge maps {E} and line segments. These 2D line segments

are then fed into the Line3D [19] algorithm to compute 3D

line segments {L}, regarded as the initialization of curves.

Note that {L} are strictly straight and thus fail to represent

the accurate geometry. The following optimization and ex-

tension would improve the accuracy and completeness.

Optimization to curves. To compute 3D curves {C} that

best describe 2D edge maps {E}, we formulate this prob-

lem as a model-to-data alignment. Let an arbitrary 3D point

lie along the curve represented by a parametric equation

C(t) ⊂ R
3, t ∈ [0, 1], the alignment cost for one curve

C is the integral error of all points on the curve:

E(C) =

N
∑

i=1

Ei(C)

=
N
∑

i=1

∫ 1

0

min
x′∈Ei

‖Π(θi,C(t))− x′‖dt,

(1)

where i iteratesN visible views of the curve, Π(∗, ∗) means

camera projection and x′ is the closest edge point to the pro-

jected point. The closest distance can be efficiently queried

from a pre-computed map Idist, which is generated by

flood-filling the edge map with L2-distance from every pix-

el to its closest edge pixel, i.e., Idist(x) = min‖x−x′‖,x ∈

I,x′ ∈ E. The Eq. 1 converts to:

E(C) =

N
∑

i=1

∫ 1

0

Idisti ◦Πθi ◦C(t)dt. (2)

To minimize the energy in terms of a general curve repre-

sentation C, we compute the variation with respect to an

infinitesimal displacement δC of the curve:

lim
ǫ→0

∂E(C+ ǫδC)

∂ǫ
=

N
∑

i=1

∫ 1

0

DIdisti
JΠθi

∂(C+ ǫδC)(t)

∂ǫ
dt,

(3)

where DIdisti
is the gradient map of Idisti , and JΠθi

the

Jacobian of projection matrix. The optimization gradient

can be found by converting the equation to ∇E ·δC format,

depending on the concrete parameterization of curve.

In practice, we parameterize the curve as a chain of an-

chor points C = {A0, ...,AM−1},Ai ∈ R
3, discretized

evenly from the initial 3D line segment L. The number of

anchor points M is determined by a constant ratio λ multi-

plying the line segment’s longest projection length in pixel

unit. We have λ = 0.1 in our experiments. Then, we op-

timize the positions of all anchor points by minimizing the

sum of data-term and smoothness-term. Based on Eq. 3, the

gradient of data-term of each anchor point A is:

vdata(A) =
∂E(A)

∂A
=

N
∑

i=1

wi·DIdisti
(xA)·JΠ(θi,A), (4)

where xA = Π(θi,A) is the projected 2D point of A,wi =
depthi(A)/fi the contribution weight of view i, which is

the ratio between the depth and focal length fi in pixels.

For the gradient of smoothness, we mimic the elastic ef-

fect using a 1D Laplacian operator over adjacent anchor

points:

vsmooth(Ai) =
1

2
(Ai+1 +Ai−1)−Ai. (5)

The gradient is therefore ∇E(A) = vdata + βvsmooth,

where β = 0.5 is the weighting of smoothness. The step
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size of optimization is set to be one pixel on average to

keep the convergence stable. In most cases the optimiza-

tion converges in 20 iterations (at most 20 pixels from ini-

tialization to the local optima). After optimization, we filter

anchor points of curve A if there exists a projected point

with distance to image edges larger than 20 pixels , i.e.,

∃1 ≤ i ≤ N : Idist(Π(θi ,A)) > 20.

Completion by extension. Since curve optimization is

based on initialized straight edges, which are less complete

than actually existing edges, an extension step is necessary

to increase the completeness. We repeatedly create new

points Aext.0/1 by extending the optimized curve C = {A}
from its outward directions of two endpoints:

Aext.0 = A0 +
−−−→
A1A0

Aext.1 = Alast +
−−−−−−−−−→
Alast−1Alast.

(6)

Then the position of extended points Aext.0/1 are refined

using Eq. 4 and 5. The extension terminates when reaching

to a dead end of any edge map E or the residual of opti-

mization E(A) is larger than a certain threshold topt = 2.5.

3. Manifold Surface Reconstruction

In this section we propose a manifold surface reconstruc-

tion using 3D curves and point clouds. This task is non-

trivial as points and curves are two different representation-

s. While a 3D point is a local sample of surface, a 3D curve

is a 1D continuous sample of surface. The reconstructed

curves can be categorized into three types (Fig. 3):

a) the occluding contours of thin structures;

b) the occluding contours of significant volumes with sharp

geometries;

c) the sharp texture (or shadows) on a planar or smooth

surface, containing no geometric information.

Note that the occluding contour in general is dynamic in dif-

ferent views. However, for high-curvature geometries such

as (a) and (b), their occluding contours are stationary and

can be reconstructed by the algorithm in Section 2.

The main intention of integrating curves is to strengthen

the reconstruction of type (a). While type (b) and (c) can

be well reconstructed by traditional point-based methods,

these curves are expected to fuse with MVS points and do

not affect the original surface quality. A preliminary result

is shown in Fig. 3.

One straightforward idea is to crudely sample the points

from curves and regard them as regular dense points. How-

ever, the valuable connectivity information would be depre-

cated and the normal directions remain unknown, which are

useful in many surface reconstruction methods [2].

Instead, we propose a curve-conformed Delaunay-based

surface extraction approach. First, we estimate the confi-

dence region of curves (Section 3.1). Then, we construct the

(a) (b) (c)

Figure 3: Three types of geometries a 3D curve can represent.

Upper: curves and dense points. Lower: our surface meshes. The

curves (a) contribute to the solid reconstruction of thin handrails,

while curves (b) (c) are fused into surface. Data: Herzjesu-25 [40]

tetrahedra using points and curves, and optimize it based on

three criteria in order to recover the thin structures inside

tetrahedra (Section 3.2). Finally, the mesh surface is ex-

tracted from tetrahedra using s-t cut by minimizing energy

derived from both points and curves (Section 3.3).

The advantages of the proposed method are threefold. 1)

For curve type (a), the thin structure can be flexibly mod-

eled by the adaptive tetrahedron. 2) For type (b) and (c),

the fusion with MVS points is straightforward in the Delau-

nay tetrahedra framework [25]. 3) Compared with implicit

function methods (e.g., Poisson [22]), it does not require the

input normal orientation, which is hard to define for curves

as they might represent three different types of geometries.

3.1. Confidence region of curves

Due to pixelation errors, a 3D point triangulated from 2D

points does not represent only one point, but a certain region

in space, referred to as covariance [18] or uncertainty [12]

in previous literatures. Here, we call it confidence region

(cr). Likewise, the curve has such region surrounding it

that can be estimated from images. As pixelation effect of

one curve differs on each anchor point, we approximate the

cr of a small curve segment AiAi+1 to be circular trun-

cated cone. For each anchor point A, its radius r(A) of cr

conforms to average half image pixel size, computed as:

r(A) =
1

2N

N
∑

i=1

(
depthi(A)

fi
), (7)

where i iterates N visible views, f is the focal length in

pixels. Then, the curve segment AiAi+1 has a cr of cir-

cular truncated cone with two bottoms of radius r(Ai) and

r(Ai+1). We test if a point P is inside this segment’s cr by:

‖P−P′‖ ≤ r(Ai) · αAi
+ r(Ai+1) · (1− αAi

), (8)

where P′ is a point on AiAi+1 closest to P, and αAi
=

‖P′−Ai+1‖
‖P′−Ai‖+‖P′−Ai+1‖ . Thus the cr for the entire curve is a
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combination of circular truncated cones. In our surface re-

construction, we enforce the constraints within the space of

cr in order to preserve the fragile topology of thin structures

(Section 3.2 and 3.3).

3.2. Curveconformed Delaunay refinement

To give brief backgrounds, Delaunay Tetrahedralization

(DT) constructs the tetrahedra T from 3D points. The task

of surface reconstruction is to determine the binary label of

each tetrahedron τ ∈ T indicating if it is inside or outside

the surface, where the in-between triangles are the mesh

surface M. As mentioned, the MVS points (denoted as

{Pmvs}) at thin structures are often sparse and incomplete,

which tend to produce large or badly-shaped tetrahedron

cells and make it difficult to recover the thin structure with

correct topology. Therefore, our goal here is to refine the

tetrahedra T by adding extra vertices (called Steiner points).

The rules of adding Steiner points follow three criteria.

Curve conformity. It is important that the mesh topology

inside the tetrahedra conforms the curves, i.e., every curve

segment AiAi+1 exists in tetrahera T. Inspired by Rup-

pert’s encroachment removal [34], we recursively split the

curve segment in half if it does not appear in T until all

segments are composed by one or multiple edges in T.

Tetrahedron shape. To measure the shape quality of the

tetrahedron τ , we use the radius-edge ratio ρ(τ) = r/lmin,

where r is the radius of circumsphere and lmin is the short-

est side of τ . The range of ρ(τ) is between
√
6
4 (when

τ is regular tetrahedron) and +∞. As suggested in [38],

ρ(τ) ≤ ρ0 = 2 is assumed to be good shape.

Tetrahedron volume. As the confidence region of curve

segments is very local, the tetrahedra near them are prefer-

ably small enough so that thin structures can be extracted

from these tetrahedra. We control the volume by constrain-

ing the side length of tetrahedron: we recursively split the

input curve segment AiAi+1 in half if it is longer than a

parameter k multiplying their average radius of confidence

regions (r(Ai) + r(Ai+1))/2. The value of k controls the

volume size of tetrahedron near curve segments. Smaller

value of k gives denser tetrahedralization meanwhile intro-

duces more Steiner points. k = 0.5 is a good balance.

We combine above criteria into the algorithm illustrated

in Algorithm 1. First, we split the curve segment by half if

it is relatively long. Then, the tetrahedra T is constructed

from anchor points of curve {A}, followed by a while loop.

Inside the while loop, the Steiner point v is added accord-

ing to the curve conformity and tetrahedron shape criteria,

where the former criterion has higher priority. This is to en-

sure that the output tetrahedra conform the curve so that we

can query the tetrahedron and assign graph energies (in Sec-

tion 3.3). The while loop terminates when no more Steiner

Figure 4: The Delaunay refinement process. Upper: the input

curves (we add random points in red for better visualization of

the initial tetrahedra), the initial tetrahedra after splitting long seg-

ments. Lower: the intermediate and final refined tetrahedra. Here,

the confidence region of the “CVPR” curve is manually given.

Algorithm 1 Curve-conformed Delaunay refinement

// input: MVS points {Pmvs}
// Curve segments {AiAi+1}
// params: k = 0.5, ρ0 = 2

while (∃||AiAi+1|| > k · r(A)i+r(Ai+1)
2 ):

split AiAi+1 in half // tetrahedron volume

endwhile

initialize the tetrahedra T from anchor points {A}
while (∃AiAi+1 not in T) or (∃ρ(τ) ≤ ρ0):

if (AiAi+1 not in T): // curve conformity

v = midpoint of AiAi+1

elif (ρ(τ) ≤ ρ0): // tetrahedron shape

v = circumsphere center of τ
endif

add v into T using Lawson’s flip [26].

endwhile

insert {Pmvs} into T

// output: final tetrahedra T

point can be added. Finally we insert MVS points {Pmvs}
back to T. The process is visualized in Fig. 4.

3.3. Graphbased extraction of manifold surface

The goal of extracting mesh surface M from tetrahedra

T is equivalent to deciding the binary labels of each tetra-

hedron belonging to inner or outer space of surface, where

the in-between triangular facets are the mesh surface.

Previous methods [31, 21, 25, 49] using graph-cuts [5]

to deal with tetrahedra binary labeling problem have shown

excellent results. Here, we use the s-t cut framework similar

to [25] to set up the graph of tetrahedra. Denote the directed

graph as g = (t, f), where each node τi ∈ t is a tetrahedron,

and graph edge fj ∈ f is a triangular facet shared by two

tetrahedra. The graph status is determined by the weight

from each tetrahedron node τi to interior and exterior of

surface (In(τi) and Out(τi) respectively), as well as the

directed smoothness f(τ1, τ2). The final in-out labeling is

carried out by s-t cut on three energy terms:

E(T) = Epoint + Equal + Ecurve. (9)
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Epoint+Equal are derived from [25] to penalize visibility

conflicts of MVS dense points as well as improve the sur-

face quality. For conciseness, we rewrite the graph energy

term as weighting accumulations:


















fj(τ1, τ2) += wfj · αvis, if τ1, τ2 are incident to fj and

a line of sight emits through τ1, fj , τ2.

In(τi) += αvis, if τi is behind a line of sight.

Out(τi) += αvis, if τi contains a camera.

where the line of sight refers to the vector from cam-

era position to the reconstructed point, αvis is a con-

stant parameter. The facet weighting wfj = λqual(1 −
min(cos(ψ), cos(φ))), where ψ and φ are angles of fj with

the circumspheres of τ1 and τ2, λqual controls the global

surface quality. In another word, it gives stronger smooth-

ness connection between tetrahedra of better shape. By de-

fault αvis = λqual = 1.0.

Ecurve This is a novel term to enforce connectivity con-

straints and space occupancies for curves. First, we con-

struct a sparse adjacency matrix whose rows and columns

are curves and tetrahedron cells respectively. We denote the

value of each element adj(C, τ) = 1 if the center of tetra-

hedron τ is inside the confidence region using the Eq. 8, and

0 otherwise.

To enforce connectivity constraints, we add smoothness

weights by β to the facet fj (on both directions) if two

tetrahedra are inside the same curve and share fj , i.e.,

adj(C, τ1) = adj(C, τ2) = 1, and fj = τ1∩τ2. We encour-

age tetrahedra belonging to the same curve to have the same

label, i.e., a curve is either inlier or outlier. The value of β
should be proportional to αvis. We found β = 3·αvis = 3.0
is an effective value for removing apparent outliers.

To enforce space occupancies, we add weights to tetra-

hedron node In(τ) by αvis if adj(C, τ) = 1. This simple

operation naturally favors longer curves to be inlier because

it cost more energy to label a long curve as outlier. Whereas

the short curves are more likely to be outliers, it would be

filtered if it has high conflicts to point visibilities. Lastly, we

penalize visibility conflicts on the anchor points of curves.

In sum, the weighting accumulation is:


























fj(τ1(2),τ2(1)) += β, if τ1, τ2 are adjacent and

adj(C, τ1) = adj(C, τ2) = 1.

In(τi) += αvis, if adj(C, τi) = 1.

fj(τ1, τ2) += wfj · αvis, if τ1, τ2 are incident to fj and

a line of sight emits through τ1, fj , τ2.

Finally, we apply s-t cut on the graph to determine the bina-

ry labels and extract the mesh surface M.

3.4. Discussions

Delaunay quality. We stress that the extracted mesh qual-

ity is closely related to the quality of Delaunay tetrahedra.

We can imagine tetrahedralization is the procedure to divide

the space into tetrahedron cells. Better quality of tetrahe-

dra means dividing the space in a more structured manner,

which is equivalent to decreasing the discretion errors.

One may wonder if an alternative to our curve-

conformed Delaunay refinement (Section 3.2) would be

simply sampling the points in confidence regions of curves,

and mix them with MVS points to construct the tetrahedra

and surface mesh. We have compared with this approach in

Section 4.1 and turned out it is quantitatively less superior

than the proposed approach. Fig. 7 shows that good quality

tetrahedra are more resistant to topological artifacts.

Adaptive fusion. The Delaunay tetrahedra framework

makes fusion adaptive, including the fusion with MVS

points and the self-intersections of curves (when two curves

cross each other or one curve is reconstructed multiple

times). In our algorithm, we treat all three types of curves

uniformly. Fig. 3 shows the surface reconstruction from

three types of curves. For type (a), the curve contributes to

the solid reconstruction of handrails. For type (b) and (c),

the curves are adaptively fused into the surface with MVS

points. See experiments for more qualitative results.

Thickness of thin structures. One should not consider

the curve as the body of thin structure. Instead, it is a 1D

sample of the surface. We view it as the topology proxy

to guide and enforce the correct reconstruction. Its confi-

dence region, inferred from image edges, specifies the rea-

sonable region in space that the connectivity constraints and

space occupancies should take effect inside. This region

alone does not determine to the actual thickness. In prac-

tice, most thin structures are reconstructed by the fusion of

dense points and multiple curves, and all of them may affect

to the final thickness. The intention of adding the curve rep-

resentation is mainly to enforce the solid and correct topol-

ogy of initial mesh M, instead of recovering the accurate

thickness. As the initial mesh extracted from tetrahedra is

usually noisy, a following mesh smoothing and refinemen-

t (e.g., Vu’s method [48]) are applied to increase the accu-

racy. Note that the mesh of thin structure is highly prone to

shrinkage in Laplacian smoothing, and thus a non-shrinking

smoothing operator (e.g., Taubin’s filter [41]) is suggested.

4. Experiment

We implement the algorithm in C++. We have used Edge

Drawing [44] and Line3D [19] to initialize 3D curves. The

tetrahedra is manipulated by CGAL [6] and TetGen [39].

4.1. Quantitative evaluations on synthetic dataset

Our method is first evaluated on six rendered datasets

(Fig. 5) collected from Blendswap [4], which are represen-

tative objects of thin structures. We add random textures to
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Method chair chair2 fence holder lamp pylon

PMVS [15, 22] 76.60 / 82.47 / 79.47 50.70 / 80.5 / 62.22 40.28 / 59.28 / 47.97 29.95 / 51.56 / 37.89 29.22 / 69.74 / 41.18 15.71 / 81.89 / 26.36

MVE [14, 13] 64.65 / 80.72 / 71.80 45.48 / 49.82 / 47.55 37.04 / 44.25 / 40.33 20.74 / 39.86 / 27.28 26.89 / 55.41 / 36.21 20.12 / 70.2 / 31.28

Vu [16, 48] 98.78 / 91.89 / 95.21 70.48 / 79.78 / 74.84 82.56 / 71.76 / 76.78 92.98 / 94.51 / 93.74 84.96 / 71.60 / 77.71 77.70 / 77.52 / 77.61

Ours-Line 91.28 / 92.12 / 91.70 65.28 / 82.52 / 72.89 74.68 / 83.90 / 79.02 82.28 / 94.76 / 89.21 73.86 / 74.68 / 74.27 78.80 / 83.47 / 81.07

Ours-Sample 93.60 / 90.20 / 91.87 67.82 / 84.50 / 75.25 76.82 / 87.20 / 81.68 87.85 / 93.58 / 90.63 77.69 / 77.15 / 77.42 78.74 / 82.37 / 80.51

Ours-Curve 97.75 / 93.64 / 95.65 69.54 / 84.89 / 76.45 80.85 / 87.61 / 84.09 92.91 / 95.10 / 93.99 80.72 / 78.15 / 79.41 89.13 / 85.10 / 82.01

Table 2: Results of accuracy / completeness / F1 score (in %) at a certain evaluation threshold (0.001 · camera center to scene center).

Higher is better. Overall, Vu method produces better accuracy, while Ours-Curve gives better completeness and F1 score among all six

datasets. Also, Ours-Curve is better than Ours-Line and Ours-Sample in all measurements. See Section 4.1 for detailed explanations.

chair chair2 fence

pylonlampholder Rendering setting

Figure 5: Six synthetic dataset and the rendering setting.

PMVS+Poisson MVE+FSSR Vu (baseline) Ours Ground truth

p
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la
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Figure 6: Qualitative comparisons of pylon, lamp datasets.

them and use the diffuse lighting in rendering. A total num-

ber of 36 images are rendered by the Blender software [3] at

4K resolution from spherical views. To quantitatively mea-

sure the difference between ground truth and reconstructed

models, we apply the evaluation method in [36] to calcu-

late the accuracy (p), completeness (r) and F1 score for all

reconstructed meshes. We first sample a sufficiently dense

point cloud from the mesh. The accuracy is defined as the

percentage of sampled points of reconstructed mesh which

are within a distance threshold to nearest sampled points of

ground truth, and completeness the other way around. The

distance threshold is set to 0.001 · rcam where rcam is the

distance of camera center to the spherical scene center. The

F1 score is the harmonic mean of accuracy and complete-

ness, i.e., F1 = 2(r · p)/(r + p), which reflects the overall

reconstruction quality. Three state-of-the-art combinations

of dense and surface reconstruction methods are compared

with our method (Ours-Curve), namely

• PMVS: dense reconstruction of PMVS [15] and Pois-

son surface reconstruction [22];

• MVE: dense reconstruction of [17] and surface recon-

struction of FSSR [13], implemented by MVE [14];

• Vu: dense reconstruction of plane sweeping [16] and

visibility-consistent surface reconstruction [48].

Because our method uses the same plane sweeping algo-

rithm as Vu to generate MVS points, method Vu can be seen

as our baseline. During the experiment, except for manual

adjustment of the proper octree depth and trim parameter

in Poisson surface reconstruction, all parameters are set to

default, provided in their literatures or source codes.

The quantitative results are compared in Table 2. Among

six datasets, PMVS and MVE are overall less competitive

than other methods. We believe this is because they use im-

plicit function methods to compute mesh surface (i.e., Pois-

son [22] and FSSR [13]). These methods are prone to over-

inflated meshes, and require an extra trimming algorithm to

clean up the unreliable part, which is fragile and sensitive

to its parameters. Other than that, Vu and Ours-Curve show

competitive results. While Vu shows higher accuracy, Ours-

Curve overall gives better completeness and F1 score. The

qualitative comparison in Fig. 6 shows that Vu fails to re-

construct complete thin structures, resulting in fragmentary

parts, whereas our method produces very complete recon-

struction of thin structures.

Figure 7: The comparison of tetrahera, extracted surface meshes

between (left: Ours-Sample) naive point sampling in curve confi-

dence regions and (right: Ours-Curve) using our curve-conformed

Delaunay refinement. Data: windmill.

Component analysis. To validate the effectiveness of our

3D curve optimization (Section 2) and the curve-conformed

Delaunay refinement (Section 3.2), two other different set-

tings of our method are compared. Ours-Line is reconstruc-

tion without enabling the curve optimization and extension
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Our points and curves

Figure 8: Qualitative comparisons of windmill, pylon2 and bridge. Our intermediate points and curves (in green) are shown in the rightmost

column. Please refer to supplementary materials for more results. Best viewed on screen.

steps (i.e., directly using 3D line segments as curves and

pass them to our surface reconstruction). Ours-Sample is to

replace the curve-conformed Delaunay refinement step with

uniformly sampled points inside the confidence region of

3D curves. These points are then mixed with MVS points to

construct the tetrahedra for surface reconstruction. Table 2

shows that for all six datasets, Ours-Curve consistently out-

performs Ours-Line and Ours-Sample in terms of accuracy

and completeness, which validates the importance of both

proposed components.

Fig. 7 shows the comparison of tetrahedra and mesh-

es between Ours-Curve and Ours-Sample. The tetrahedra

of Ours-Sample are badly-shaped. The elongated tetrahe-

dra would increase the possibility of wrong connections be-

tween two separate parts that close to each other, and thus

produce wrong topology of extracted mesh. In contrast,

Ours-Curve can robustly yield the correct topology thanks

to more structured and even distribution of tetrahedra.

4.2. Qualitative evaluations on realworld dataset

Our method is also evaluated on three real-world dataset-

s, namely windmill, pylon2, bridge. Some qualitative results

are shown in Fig. 8. We first comment on two implicit sur-

face function methods: PMVS+Poisson generates incorrec-

t over-dilated surfaces, because the Poisson function [22]

incorrectly interpolates the surface geometry inferred from

noisy or incomplete dense points of thin structures. Like-

wise, MVE+FSSR also suffers from this problem, but it us-

es an extra clean-up step to remove the unreliable parts of

mesh. This however suffers from the sensitive clean-up pa-

rameter and would produce non-water-tight meshes. The

Delaunay methods generate more neat meshes, but Vu suf-

fers from incompleteness problem at thin objects. Overal-

l, our method significantly outperforms other methods and

successfully reconstructs the super thin structures such as

windmill blades, wires and cables of the bridge. The mesh-

es of them are all water-tight and manifold. For more re-

sults, please refer to supplementary materials.

5. Conclusion

We have proposed the manifold surface reconstruction

using spatial curves in this paper. The curves show strong

abilities to enforce thin structures in the scene, which is dif-

ficult to be reconstructed by traditional point-based meth-

ods. The Delaunay tetrahedra framework adaptively and

robustly fuses the point cloud with curves. Evaluations on

synthetic and real-world datasets have shown the introduced

curve can effectively improve the result both quantitatively

and qualitatively.

The examples of thin structures shown in the paper (e.g.,

pylon, wires) are used to be reconstructed by high-accuracy

laser scans. Our method shows the potential of photogram-

metry methods to evolve previous applications.
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