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Abstract

Semantic concept hierarchy is still under-explored for se-

mantic segmentation due to the inefficiency and complicated

optimization of incorporating structural inference into dense

prediction. This lack of modeling semantic correlations also

makes prior works must tune highly-specified models for

each task due to the label discrepancy across datasets. It

severely limits the generalization capability of segmentation

models for open set concept vocabulary and annotation uti-

lization. In this paper, we propose a Dynamic-Structured

Semantic Propagation Network (DSSPN) that builds a se-

mantic neuron graph by explicitly incorporating the semantic

concept hierarchy into network construction. Each neuron

represents the instantiated module for recognizing a specific

type of entity such as a super-class (e.g. food) or a specific

concept (e.g. pizza). During training, DSSPN performs the

dynamic-structured neuron computation graph by only acti-

vating a sub-graph of neurons for each image in a principled

way. A dense semantic-enhanced neural block is proposed

to propagate the learned knowledge of all ancestor neurons

into each fine-grained child neuron for feature evolving. An-

other merit of such semantic explainable structure is the

ability of learning a unified model concurrently on diverse

datasets by selectively activating different neuron sub-graphs

for each annotation at each step. Extensive experiments on

four public semantic segmentation datasets (i.e. ADE20K,

COCO-Stuff, Cityscape and Mapillary) demonstrate the su-

periority of our DSSPN over state-of-the-art segmentation

models. Moreoever, we demonstrate a universal segmenta-

tion model that is jointly trained on diverse datasets can

surpass the performance of the common fine-tuning scheme

for exploiting multiple domain knowledge.

1. Introduction

Recognizing and segmenting arbitrary objects, posed

as a primary research direction in computer vision, has

achieved great success driven by the advance of convolu-

tional neural networks (CNN). However, current segmen-

tation models using generic deeper and wider network lay-

ers [24, 5, 40, 37, 22] still show unsatisfactory results of

recognizing objects in a large concept vocabulary with lim-

ited segmentation annotations. The reason is that they ignore

the intrinsic taxonomy and semantic hierarchy of all con-

cepts. For example, giraffe, zebra and horse categories share

one super-class ungulate that depicts their common visual

characteristics, which makes them be easily distinguished

from cat/dog. In addition, due to diverse level of expertise

and application purposes, the target concept set of seman-

tic segmentation can be inherently open-ended and highly

structured for each specific task/dataset. However, some few

techniques also explored the semantic hierarchy for visual

recognition by resorting to complex graphical inference [7],

hierarchical loss [31] or word embedding priors [39] on final

prediction scores. Their loss constraints can only indirectly

guide visual features to be hierarchy-aware, which is hard to

be guaranteed and often leads to inferior results compared to

generic CNN models.

Furthermore, this lack of modeling semantic hierarchy

also prohibits the research towards a universal segmentation

model that can address the segmentation of all concepts at

once. Existing works [24, 5, 40, 37] often strive to train

a task-specific model due to the label discrepancy across

dataset with limited annotations. That way largely limits

the model generation capability and deviates from human

perception that can recognize and associate all concepts by

considering the concept hierarchy. If one wants to improve

one task by fully utilizing other annotations with different

label set, prior works must remove the classification layer

and only share intermediate representations. Our target of

learning a universal segmentation model also has some con-

nections to very recent researches in combining different

visual tasks [18, 36] or multi-modal tasks [17] in one model,

which often use several fixed network branches with special-

ized losses to integrate all tasks.

In this work, we aim at explicitly integrating a semantic

concept hierarchy into the dynamic network optimization,

called as Dynamic-Structured Semantic Propagation Net-

work (DSSPN). In the spirit of curriculum learning [2] that

gradually increases the target difficulty levels and exploits

previously learned knowledge for learning new fine-grained
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Figure 1. An overview of the proposed DSSPN that explicitly models dynamic network structures according to a semantic concept hierarchy.

The basic convolutional features are propagated into a dynamic-structured semantic neuron graph for hierarchical pixel-wise recognition.

During training, DSSPN only activates a sub-graph of semantic neurons that reach out the target labels for each image, leading to dynamic-

structured feed-forward propagation and back-propagation. It means DSSPN only needs to focus on hierarchically classifying confusing

concepts with the same parent during training. For clarity, we only show a portion of semantic neurons.

concepts, DSSPN first progressively builds a semantic neu-

ron graph following the semantic concept hierarchy in which

each neuron is responsible for segmenting out regions of

one concept in the word hierarchy. The learned features of

each neuron are further propagated into its child neurons for

evolving features in order to recognize more fine-grained

concepts. For each image or dataset, DSSPN performs the

dynamic-structured semantic propagation over an activated

semantic neuron sub-graph where only the present concepts

and their ancestors are selected. Benefiting from the merits

of semantically ordered network modules and the dynamic

optimization strategy, our DSSPN would enable the learned

visual representation to naturally embed rich semantic cor-

relations between diverse concepts. Such explicit neuron

definition mechanism makes the proposed DSSPN be a se-

mantically explainable dynamic network architecture with

good memory and computation efficiency.

Rather than only taking into account features of the parent

neuron for each neuron, we introduce a new dense semantic-

enhanced neural block which densely integrates the features

of all ancestor neurons to evolve feature representation of

each neuron, inspired by DenseNets [16]. By broadcasting

the learned knowledge of all ancestor neurons into each neu-

ron, our DSSPN can fully exploit the semantic correlation

and inheritance into the feature learning in a more efficient

way. As explained in very recent information bottleneck

theory [35], the deep networks often tend to squeeze the

information through a bottleneck and retain only the features

most relevant to targets. Such dense semantic connection

thus alleviates the information loss along deeper layers by ex-

plicitly enforcing ancestor neurons to preserve discriminate

features for recognizing more fine-grained concepts.

Note that our DSSPN activates dynamic computation

graphs for each sample during training. For scalability, a

dynamic batching optimization scheme is proposed to en-

able optimize multiple computation graphs within one batch

by configuring a dynamic number of samples for learning

distinct neural modules at each step. A memory efficient

implementation of our DSSPN is also described.

Extensive experiments on four popular semantic seg-

mentation datasets (i.e. Coco-Stuff [4], ADE20k [41],

Cityscape [6] and Mapillary [27]) demonstrate the effec-

tiveness of incorporating our DSSPN into the state-of-the-art

basic segmentation networks. We thus demonstrate that our

dynamic-structure propagation mechanism is an effective

way to implement a semantic explaining way that is needed

for segmenting massive intrinsically structured concepts.

Moreover, we show that learning a unified DSSPN model

over diverse models can also bring the performance over the

commonly used fine-tuned scheme for utilizing annotations

in multiple domains.

2. Related Work

Semantic segmentation. Semantic segmentation has

recently attracted a hug amount of interests and achieved

great progress with the advance of deep convolutional neural

networks. Most of prior works focus on developing new

structures and filter designs to improve general feature rep-

resentation, such as deconvolutional neural network [29],

encoder-decoder architecture [1], dilated convolution [5, 38],

pyramid filters [40] and wider nets [37]. Although these
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methods show promising results on datasets with a small

label set, e.g. 21 of PASCAL VOC [9], they obtain relatively

low performance on recently released benchmarks with large

concept vocabularies (e.g. 150 of ADE20k [41] and 182 of

COCO-stuff [4]). These models directly use one flat predic-

tion layer to classify all concepts and disregard their intrinsic

semantic hierarchy and correlations. Such prediction strat-

egy largely limited the model capability and also makes the

network parameters hardly adapt to other recognition tasks

or new objects. In this paper, our DSSPN builds the dynamic

network structure according the semantic concept hierarchy,

where each neural module takes care of recognizing one con-

cept in the taxonomy, and modules are connected following

the structure to enforce semantic feature propagation.

Dynamic and graph network structure. Exploring dy-

namic networks has recently received increasing attentions

due to their good model flexibility and huge model capacity.

Prior works proposed a family of graph-based CNNs [28],

RNNs [21] and reinforcement learning structures [19] to

accommodate networks into different graph-structured data,

such as superpixels, social networks and object relationships.

There exists some few works that investigated dynamic net-

works. For example, Liang et al. [20] evolved the network

structures by learning how to merge the graph nodes auto-

matically. Shi et al. [32] aims at learning the local correlation

structure for spatio-temporal data. Different from them, our

DSSPN introduces a general dynamic network for recog-

nizing and segmenting out objects in the large-scale and

highly-structured concept vocabulary. The neural modules

are dynamically activated following the present concept tree

for each image.

Hierarchical recognition. There is a line of researches

that exploit the structure of WordNet to achieve hierarchi-

cal recognization. For example, Deng et al. [8] used an

accuracy-specificity trade-off algorithm to explore the Word-

Net hierarchy while Ordonez et al. [30] learns the mapping

of common concepts to entry-level concepts. Deng et al. [7]

further employed a label relation graph to guide the neural

network learning. Most recently, Zhao et al. [39] addressed

the open-vocabulary scene parsing by constructing asymmet-

ric word-embedding space. Rather than implicitly enforcing

semantic relations into network representations as previous

works did, the proposed DSSPN explicitly constructs the

network modules guided by their semantic hierarchy. The

dynamic neural activation strategy makes the model scalable

and applicable for a universal segmentation model.

3. Dynamic Tree-Structured Propagation Net-

work

In order to fully exploit concept correlations for recog-

nizing and segmenting out a large-scale concept vocabulary,

we aim at explicitly incorporating the semantic concept hi-

erarchy into the dynamic network structure for semantic
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Figure 2. Dense semantic-enhanced block. For each activated se-

mantic neuron vi, it concatenates features evolved from the neurons

in the whole path (dashed orange arrows) to obtain enhanced repre-

sentation hi, which is further passed through dynamic pixel-wise

prediction Pi for distinguishing between its children nodes. The

output dimensions (e.g. 48 ) of each block and those (e.g. 27) of

pixel-wise prediction layer are shown in the parentheses.

segmentation. Figure 1 gives an overview of our proposed

DSSPN. After feeding the images into basic convolutional

networks for extracting intermediate features x, the DSSPN

is appended to perform dense pixel-wise recognition with a

dynamically induced neural propagation scheme. We first

build a large semantic neuron graph that each neuron cor-

responds to one parent concept in the semantic concept hi-

erarchy and aims at recognizing between its child concepts.

During training, given the concepts appeared in each im-

age, only a small neuron graph that would derive the target

concepts are activated, leading to the dynamic semantic prop-

agation graph for effective and efficient computation. A new

dense semantic-enhanced neural block is proposed to evolve

features for fine-grained concepts by incorporating features

of their ancestor concepts. We describe in more details in

the following sections.

3.1. Semantic Neuron Graph

We first denote the semantic concept graph as Gc =<

Cv, Ce >, where Cv consists of all concepts {Cv
i } in a pre-

defined knowledge graph (described in Section 4.5) and

Ce = (Ci, Cj) indicates Ci (e.g. chair) is the parent con-

cept of Cj (e.g. armchair). Our DSSPN thus is constructed

with the whole semantic neuron graph Gn =< N v,N e >

with M neurons in total. Each semantic neuron ni ∈ N v

corresponds to one parent concept (e.g chair) that has at

least two child concepts within Cv and N e corresponds to

Ce. As shown in Figure 2, each neuron ni first employs

one dense semantic-enhanced block to generate fine-grained

features hi using inherited features from its ancestors . The

prediction layer Li with 1 × 1 convolutional filters takes

hi as input and produces Ti prediction maps to distinguish

between its Ti child concepts {Cj}, < Cv
i , C

v
j >∈ Ce. Thus,

each neuron is only responsible for recognizing a small set

of confusing concepts by producting a distinct number of

pixel-wise predictions. This hierarchical semantic propaga-

tion scheme significantly improves the model capacity for
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Figure 3. DSSPN can learn a unified segmentation model for accommodating diverse annotation policies. For training with diverse

annotations with discrepant label granularity, DSSPN activates dynamic-structured semantic propagation graphs for each image. For

example, Ade20k only annotates a single “animal-thing" label for all animal categories while Cocostuff elaborately categories each

fine-grained concept, e.g. cat or elephant. The semantic neurons that correspond to target labels are deactivated (grey colored solid circles).

It thus fully exploits the shared concept patterns and concept relationship in a semantic hierarchy for a more general segmentation model.

For simplicity, only target labels and their ancestor concepts are shown.

a large-scale concept vocabulary in the spirit of curriculum

learning.

3.2. Dense Semantic­enhanced Block

Inspired from the successful practice of dense connectiv-

ity [16] for image classification, we design a tree-structured

dense semantic-enhanced block for improving information

flow from the highly abstracted concepts to fine-grained con-

cepts , following the inheritance path. Figure 2 illustrates

the scheme of dense semantic-enhanced block for the desk

concept with the inheritance path: entity-furniture-things-

table-desk. Let Ωi denote the ancestor indexes of the concept

Ci and x as the convolutional features x from basic Con-

vNet. Consequently, each semantic neuron ni receives the

feature maps {hk}k∈Ωi} of all inherited preceding neurons

{nk}k∈Ωi
starting from the root entity concept as input:

h0 = Q(x),

hi = Hi([{hk}k∈Ωi
])

(1)

where (Q)(·) indicates the transition layer from basic con-

volutional features x to features h0 of the root neuron.

[{hk}k∈Ωi
] refers to the concatenation of the feature maps

produced in ancestral neurons {nk}k∈Ωi
. Hi indicates the

non-linear transformation function, composed of operations:

rectified linear units (ReLU) [12] and Convolution (Conv).

hi is the resulting m hidden feature maps of the neuron ni.

Each neuron ni thus has m0 +m× (d− 1) input feature

maps, where m0 = 256 is the channel number of hidden fea-

tures h0 of the root neuron after transitioning from x and di

is the depth of concept Ci in the semantic concept hierarchy.

m is set as 48 which is sufficient from our experiments in

Section 4.5. This information suppression with a relatively

small number of hidden features can be regarded as retaining

only details that are enough to distinguish between a small

set of child concepts.

Different from traditional semantic segmentation that

learns one final prediction layer with a large number of

feature maps to directly recognize all concepts, our DSSPN

decomposes the pixel-wise predictions into a set of easier

sub-tasks, which only needs a small feature map size for

each sub-task and also improves the feature discriminative

capability. An important difference between DSSPN and

DenseNet [16] is that DSSPN dynamically specifies differ-

ent feature concatenation routes and depths for each concept

following the concept knowledge graph.

We design Q as as a Atrous Spatial Pyramid Pooling

(ASSP) module [5] with three branches of 3 × 3 convolu-

tion layers and three rates as 6, 12, 18, respectively. The

output feature size of Q is 256. The input feature size for

Hi depends on the concept depth d, that is, the degree of

fine-grained specification. In our case, the maximal depth is

5, which effectively constrains the memory footprint growth.

To improve computation efficiency, Hi first employs a bottle-

neck layer with a 1× 1 convolution and a 3× 3 convolution

layer to reduce the number of input feature-maps, i.e., to

the ReLU-Conv(1× 1)-ReLU-Conv(3× 3). Each semantic

neuron and transition layer are followed by a ReLu function.

The output feature size of 1× 1 conv. layer is set as 4m.
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3.3. Dynamic­structured Semantic Propagation

During training, our DSSPN performs the dynamic-

structured semantic propagation, as illustrated in Figure 3.

Given a set of groundtruth concepts {C̄t} appearing in each

image I , the activated semantic neuron structure Ḡn =<

N̄ v, N̄ e > can be obtained by only awakening semantic

neurons N̄ v = {ni}, Ci ∈ β({C̄t}) and their edges that can

derive the target labels. β(·) indicates the ancestor set of

all groundtruth concepts. For example, for the second im-

age in Figure 3, only the neurons for the concepts entity,

structure-stuff, plant-stuff are activated in order to hierar-

chically segmenting out the targets tree, grass, plant-other,

fence and animal-things. Note that the neuron of animal-

things is deactivated since the image is only annotated with

a coarse animal class instead of more precise dog. Formally,

the dynamic-structured neural computation graph can be

constituted by recurrently propagating hidden features along

the activate structure as:

hi = Hi([x, {hk}k∈Ωi
]),

Pi = Li(hi),

hj = Hj([x, {hk}k∈Ωi
,hi]), (ni, nj) ∈ N̄ e,

(2)

where the output hidden features hi are only propagated to

the activated child neurons in N̄ v for each training image.

Starting from the root neuron, our DSSPN recurrently tra-

verses the whole activated semantic neuron sub-graph for hi-

erarchical pixel-wise prediction. It thus leads to the dynamic-

structured neural module back-propagation for each image.

For training each neuron, we use the pixel-wise binary

cross-entropy loss to supervise the dense prediction of each

child concept, which focuses more on recognizing each child

concept instead of learning any competition between them.

This good characteristic leads a better flexibility for adding

and pruning child concepts of each parent neuron, especially

for joint training multiple datasets and extending the seman-

tic concept hierarchy.

During testing phase, we use the hierarchical pixel-wise

prediction over the semantic neuron graph. Starting from the

root neuron, each neuron predicts the per-pixel predictions

for classifying its child neurons and then only activates child

ones with available predictions for further parsing regions.

3.4. Universal Semantic Segmentation

As shown in Figure 3, our DSSPN can be naturally used

to train a universal semantic segmentation for combining

diverse segmentation dataset. The distinct concept sets from

different dataset can be simply projected into a unified knowl-

edge graph, and each image is then trained using the same

strategy described in Section 3.3. However, different datasets

may be annotated with diverse granularities. For example,

the road region on Cityscape dataset is further annotated into

several fine-grained concepts on Mapillary dataset, e.g. curb,

crosswalk, curb cut and lane. In order to alleviate the label

discrepancy issues and stabilize the parameter optimization

during joint training, we propose a concept-masking scheme.

For training each image from the dataset Dt, we mask

out the undefined concepts that share the same parent with

defined concepts in Dt during training. As a toy example, to

train the third image in Figure 3, the way neuron only outputs

the pixel-wise predictions for road and sidewalk and ignores

the predictions for undefined concepts in Cityscape, e.g.

lane. That way would thus improve the labeling consistency

during joint training.

Another merit of our DSSPN is the ability of updating and

extending the model capacity in an online way. Benefiting

the usage of dynamic-structured propagation scheme and

joint training strategies, we can dynamically add and prune

semantic neurons and concept labels for different purposes

(e.g. adding more dataset) while keeping the previously

learned parameters.

3.5. Dynamic Batching Optimization

Instead of using single instance training in most of tree-

structured [34] and graph-structured [21, 19] networks, our

DSSPN uses dynamic graph batching strategy to make good

use of efficient data-parallel algorithms and hardware, in-

spired by very recent attempts [25, 3, 26]. We implement

our DSSPN on PyTorch, which is one of dynamic neural

network toolkit that offers more flexibility for coping with

data of varying structures, compared to those that operate on

statically declared computations (e.g., TensorFlow). Note

that the neurons for high-level concepts (e.g. animal-things)

are executed more often than those for fine-grained concepts

(e.g. dog). For each batch, our DSSPN automatically batches

those semantic neurons that are shared over all images for

parallelism and then forwards execution to rest few isolated

neurons following the activated neuron graph. DSSPN can

thus speedups dynamically declared computation graphs for

all images within one batch since most of shared semantic

neurons are in place in the first few depths.

3.6. Memory­Efficient Implementation

Despite of the large whole semantic neruon graph of

DSSN, it only activates a relative small computation graph

for each image during training, which effectively constraints

the memory and computation consumption. Although each

semantic neuron only produces m feature maps (where m

is small– set as 48), but uses all previous feature maps from

its ancestors as input. This would cause the number of

parameters to grow quadratically with semantic hierarchy

depth, which could be solved by a proper memory allocation

strategy. To further reduce the memory consumption, we

share memory allocations of neurons for parent concepts in

practice. It effectively reduces the memory cost for storing

feature maps from quadratic to linear.
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4. Experiments

We empirically demonstrate DSSPN’s effectiveness on

four benchmark semantic segmentation datasets and com-

pare with state-of-the-art architectures

4.1. Training Details

Network Training. We implement our DSSPN on Py-

torch, with 2 GTX TITAN X 12GB cards on a single server.

We use the Imagenet-pretrained ResNet-101 [14] networks

as our basic ConvNet following the procedure of [5] and

employ output stride = 8, and replace the 1000-way Ima-

genet classifier in the last layer with our DSSPN structure.

The network parameters in each neuron are presented in

Section 3, and the padding is set to keep the feature resolu-

tions in DSSPN. We fix the moving means and variations

in batch normalization layers of Resnet-101 during finetun-

ing. The sum of binary cross-entropy loss for each position

is employed on each semantic neuron to train hierarchical

dense prediction. The predictions are thus compared with

the ground truth labels (subsampled by 8), and the unlabeled

pixels are ignored. We optimize the objective function with

respect to the weights at all layers by the standard SGD

procedure.Inspired by [5], we use the “poly" learning rate

policy and set base learning rate to 0.003 for newly initialized

DSSPN parameters and power to 0.9. We set the learning

rate as 0.00003 for pretrained layers. For each dataset, we

train 90 epochs for the good convergence. Momentum and

weight decay are set to 0.9 and 0.0001 respectively. For data

augmentation, we adopt random flipping, random cropping

and random resize between 0.5 and 2 for all datasets. Due to

the GPU memory limitation, the batch size is 6 for Cityscape

and Mapillary dataset, and 4 for Cocostuff and ADE20k

dataset due to their larger label numbers (e.g. 182). The

input crop size is set as 513× 513 for all datasets.

We first evaluate the proposed DSSPN on four challeng-

ing datasets: Coco-Stuff [4], ADE20k [41], Cityscape [6]

and Mapillary dataset [27]. Note that we use the same

DSSPN structure for all dataset during training. During

testing, we only perform hierarhical pixe-wise prediction by

only selecting a semantic neuron sub-graph that can reach

out the defined concepts on each dataset. The mean IoU

metrics are used for all datasets. We then evaluate its ef-

fectiveness on the universal semantic segmentation task by

training a single model using all datasets.

Semantic Concept Hierarchy Construction. We build

the semantic concept hierarchy by combining labels from

all four popular dataset. Starting from the label hierarchical

tree of COCO-Stuff [4] that includes 182 concepts and 27

super-classes, we manually merge concepts from the rest

three dataset together by using WordTree. Note that we only

add minimal number of intermediate super-classes during

merging. It results in 359 concepts in the final concept

hierarchical tree, as included in the supplementary materials.

Table 1. Comparison with existing semantic segmentation models

(%) on the ADE20K val set [41]. PSPNet (101)+DA+AL [40] used

other data augmentation scheme and auxiliary loss. “Conditional

Softmax (VGG) [31]", “Word2Vec(VGG) [10]" and “Joint-Cosine

(VGG) [39]" indicate existing approaches that also attempted the

hierarchical classification, obtained from [39].

Method mean IoU pixel acc.

FCN [24] 29.39 71.32

SegNet [1] 21.64 71.00

DilatedNet [38] 32.31 73.55

CascadeNet [41] 34.90 74.52

ResNet-101, 2 conv [37] 39.40 79.07

PSPNet (ResNet-101)+DA+AL [40] 41.96 80.64

Conditional Softmax (VGG) [31] (Hierarchical) 31.27 72.23

Word2Vec(VGG) [10] (Hierarchical) 29.18 71.31

Joint-Cosine (VGG) [39](Hierarchical) 31.52 73.15

DSSPN (VGG)-Softmax 31.01 73.20

DSSPN (VGG) 34.56 76.04

DSSPN (ResNet-101)-Softmax 39.23 78.57

DSSPN (ResNet-101) 42.03 80.81

DSSPN (ResNet-101) finetune 42.17 80.23

DSSPN (ResNet-101) Universal 43.68 81.13

The maximal depth of resulting concept hierarchy is five.

On average, six semantic neurons of DSSPN within each

batch are activated for the images in COCO-Stuff, and 5 in

ADE20k, 10 in Cityscape and 8 in Mapillary during training.

4.2. Comparison with state­of­the­arts

We directly apply the same hyper-parameters described

in Section 4.1 for clearly demonstrating the effectiveness of

our dynamic-structure propagation network in general cases.

Due to space limitation, we refer the readers to their dataset

papers [41, 4, 6, 27] for different evaluation metrics.

ADE20k dataset [41] consists of 20,210 images for train-

ing and 2,000 for validation. Images from both indoor and

outdoor are annotated with 150 semantic concepts, including

painting, lamp, sky, land, etc. We first compare DSSPN

with state-of-the-art methods that also use Resnet-101 as

basic network in Table 1. Our DSSPN performs better than

the previous methods based on ResNet-101. Our DSSPN

obtains 2.63% higher mean IoU than the baseline model

“ResNet-101, 2 conv [37]" that does multi-class recognition.

We cannot fairly compare the state-of-the-arts [37, 40] since

they used wider or deeper Imagenet pretrained networks.

This clearly shows that incorporating dynamic-structured

neurons can improve the model capacity for recognizing

over a large concept vocabulary.

We further compare our DSSPN with prior works that

also tried the hierarchical classification [31, 10, 39] based

on pretrained VGG net, as reported in [39]. Benefiting from

learning distinct features for differentiating the child con-

cepts of each super-class, “DSSPN (VGG)-Softmax" that

also uses Softmax loss on each semantic neuron significantly

outperforms [31, 10, 39] that simply utilized identical fea-

tures for super-class categorizations at different levels.

757



Table 2. Comparison on Coco-Stuff testing set (%). All previous

results are collected from [4]

Method Class-average acc. acc. mean IoU

FCN [24] 38.5 60.4 27.2

DeepLabv2 (ResNet-101) [5] 45.5 65.1 34.4

DAG-RNN + CRF [33] 42.8 63.0 31.2

OHE + DC + FCN [15] 45.8 66.6 34.3

DSSPN (ResNet-101) 47.0 68.5 36.2

DSSPN (ResNet-101) finetune 48.1 69.4 37.3

DSSPN (ResNet-101) Universal 50.3 70.7 38.9

Table 3. Comparison on Cityscapes testing set.

Method IoU cla. iIoU cla. IoU cat. iIoU cat.

FCN [24] 65.3 41.7 85.7 70.1

LRR [11] 69.7 48.0 88.2 74.7

DeepLabv2 (ResNet-101) [5] 70.4 42.6 86.4 67.7

Piecewise [23] 71.6 51.7 87.3 74.1

DSSPN (ResNet-101) 74.0 53.5 88.5 76.1

DSSPN (ResNet-101) finetune 74.6 53.9 89.1 77.0

DSSPN (ResNet-101) Universal 76.6 56.2 89.6 77.8

Table 4. Comparison on Mapillary validation set (%). The results

of [37, 40] are reported in [27].

Method mean IoU

Wider Network [37] 41.12

PSPNet [40] 49.76

Baseline ResNet-101 37.58

DSSPN (ResNet-101) 42.39

DSSPN (ResNet-101) finetune 42.57

DSSPN (ResNet-101) Universal 45.01

Coco-Stuff dataset [4] contains 10,000 complex images

from COCO with dense annotations of 91 thing and 91 stuff

classes, including 9,000 for training and 1,000 for testing.

We compare DSSPN with the state-of-the-art methods in

Table 2. We can observer DSSPN significantly outperforms

existing methods. It further demonstrates that modeling se-

mantic label hierarchy into network feature learning benefits

for recognizing over a large vocabulary (e.g. 182) that can

be hierarchically grouped into diverse super-classes .

Cityscape dataset [6] contains 5,000 urban scene images

collected from 50 cities, which are splited into 2,975, 500,

and 1,525 for training, validation and testing. The pixel-wise

annotations of 19 concepts (e.g. road, fence) are provided.

We reports results on Cityscape test set in Table 3. Our

DSSPN is also based on ResNet101 using single scale inputs

for testing and does not employ post-processing like CRF as

in our fair baseline “DeepLabv2 (ResNet-101) [5]". Com-

pared to our fair baseline, “DSSPN (ResNet-101)" brings

significant improvement, i.e. 3.6% in IoU class. Note that we

cannot fairly compare with recent best performances [40, 37]

on Cityscape benchmark since they often combined results

from several scaled inputs or used different base models.

Mapillary dataset [27] includes 20,000 street-level im-

ages annotated into 66 object categories (e.g. rider, street-

light, traffic sign back), in which 18,000 are used for training

Figure 4. Visual comparison on Coco-Stuff. For each image, we

sequentially show its groudtruth labeling, prediction of “DSSPN

(ResNet-101)", prediction of “DSSPN (ResNet-101) Universal".

and 2,000 for validation. We report the result comparisons in

Table 4. We mainly compare our DSSPN with the baseline

“ResNet-101" instead of previous methods [37, 40] since they

used different basic networks. The large improvement by

our DSSPN can be again observed, i.e. 4.81% on mean IoU.

4.3. Universal Semantic Segmentation Model

Another interesting advantage of our DSSPN is its ability

of training all dataset annotations within a unified segmenta-

tion model as “DSSPN (ResNet-101) Universal". To train

a unified model, we combine all training samples from four

datasets and select images from the same dataset to construct

one batch at each step. Since images on each dataset are

collected from different scenarios and domains, we first train

a unified model using all images for 60 epoch, and then

decrease the learning rate by 1/10 to further finetune models

for 20 epochs on each dataset. We reports results on each

dataset in Table 1, 2, 3, 4, respectively.

The commonly used strategy for utilizing other dataset

annotations [5, 40] is to remove the final classification layer

and retrain the newly initialized layers for new label sets due

to the label discrepancy. Following such strategy, we also

report the results of “DSSPN (ResNet-101) finetune" that

first train models on one dataset, and then finetune on the

new dataset by retaining only network parameters of basic

ConvNet. Since such strategy cannot support training on

more than one dataset at once, we thus use the COCO-Stuff

and ADE20k pair due to their similar image resources, and

Cityscape and Mapillary training pair.

By comparing results of our “DSSPN (ResNet-101) Uni-

versal" with “DSSPN (ResNet-101) finetune" in all Tables,

it can be demonstrated that jointly training all semantic neu-
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Table 5. Ablation studies on the ADE20K val set [41].

Method mean IoU pixel acc.

DSSPN fixed 42.15 81.02

DSSPN w/o dense block 38.41 76.59

DSSPN w/ dense block, summation 41.74 80.27

DSSPN dense block (32) 41.12 79.85

DSSPN dense block (64) 42.02 80.76

DSSPN (synset in [41]) 41.96 81.21

DSSPN 42.03 80.81

rons with diverse image annotations and resources can sig-

nificantly improve the model generalization capability and

thus leads to superior performance on each dataset. Fig-

ure 2 shows their quantitative comparisons on Coco-Stuff

dataset. “DSSPN (ResNet-101) Universal" yields more ac-

curate concept recognition, especifically for some rare labels

(e.g. baseball glove, broccoli).

4.4. Discussion

Table 5 shows the ablation studies of our DSSPN to vali-

date the effectiveness of its main components.

Dynamic-structure propagation. The semantic propa-

gation network can also be trained using a fixed structure

where images must be passed through all semantic neurons

needed for each dataset during training. No noticeable im-

provement can be seen by comparing “DSSPN fixed" with

our dynamic version while “DSSPN fixed" needs more com-

putation and memory cost. Since we use the hierarchical

prediction scheme during testing, our DSSPN can be effi-

ciently learned by only focusing on differentiating confusing

concepts at each level of semantic neuron graph.

Dense semantic-enhanced block. An alternative basic

block for each semantic neuron can be the directly fea-

ture propagation without dense connection, as “DSSPN w/o

dense block". Our experiment shows that it would sacrifice

the performance but reduce the parameter numbers. We

further demonstrate the feature concatenation used in dense

block outperforms the feature summation version by com-

paring “DSSPN w/ dense block, summation" with ours. For

the hyper-parameter m of hidden feature map size, we also

evaluate the results of setting m as 32 and 64. It can be seen

that using moderately small feature map size (m = 48) is

sufficient for capturing key feature characteristics, which are

used in all experiments on different datasets.

Binary cross-entropy vs Softmax. In Table 1, we also

show that using per-pixel sigmoid with binary cross-entropy

loss (our model) significantly outperforms the Softmax loss

that is common practice in other hierarchical classification

model [31]. The similar conclusion has been shown in Mask

R-CNN [13] for instance-level segmentation that predicts

a binary mask for each class independently, without com-

petition among classes. The class competition by Softmax

loss also hinders the model’s capability of learning a uni-

fied model using diverse label annotations, where only some

Table 6. We show number of model parameters, average testing

speed (img/sec) on the full image resolution, and mean IOU (%)

on Cityscape validation set. All results are evaluated using Pytorch

under the same setting.

Model Params Test-speed mean IoU

Deeplabv2 (ResNet-101) [5] 176.6M 1.78 71.0

DSSPN (ResNet-50) 141.0M 2.26 73.2

DSSPN (ResNet-101) 217.3M 1.45 75.5

parts of concepts belonging to one super-class are visible.

The affect of different concept hierarchies. Another

interesting point that may be raised is how different con-

cept graphs influence the final performance. We thus try the

synset provided in original ADE20k dataset [41] as the whole

concept hierarchy and the results are reported as “(synset

in [41])". We can observe that there is only slight perfor-

mance changes by using the original synset tree in [41] that

includes more hypernyms for grouping the object affordance.

Model and computation complexity.

In Table 6, we report experiments with the baseline

model “Deeplabv2 (ResNet-101)" and our DSSPN variants

on Cityscape validatation set for comparing their model sizes

and time efficiency. Both our DSSPN variants using ResNet-

50 and ResNet-101 yield much better performance than the

baseline model. Moreover, “DSSPN (Resnet-50)" reduces

both computation consumption and model size compared to

the baseline model. It should be noted that although DSSPN

has more parameters by taking into account all semantic

neurons within the graph, it only activates a small sub-set

of neurons for each image during training and testing, ben-

efiting from the dynamic-structured semantic propagation

scheme.

4.5. Conclusion and Future work

In this paper, we proposed a novel dynamic-structured

semantic propagation network for the general semantic seg-

mentation tasks. Our DSSPN explicitly constructs a semantic

neuron graph network by incorporating the semantic concept

hierarchy. A dynamic-structured network optimization is per-

formed to dynamically activate semantic neuron sub-graphs

for each image during training. Extensive experiments on

four public benchmarks demonstrate the superiority of our

DSSPN. We further show our DSSPN can be naturally used

to train a unified segmentation model over all available seg-

mentation annotations, leading to its better generalization

capability. In future, we plan to generalize DSSPN to other

vision tasks and investigate how to embed more complex se-

mantic relationships naturally into the network design. The

proposed DSSPN is general enough to handle more com-

plex semantic concept graphs that contain categories with

multiple ancestors in the hierarchy. In that case, each se-

mantic neuron can simply combine features passed from

multiple ancestor neurons via summation, and then performs

the dynamic pixel-wise prediction.
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