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Abstract

This paper presents a prior-less method for tracking

and clustering an unknown number of human faces and

maintaining their individual identities in unconstrained

videos. The key challenge is to accurately track faces

with partial occlusion and drastic appearance changes

in multiple shots resulting from significant variations of

makeup, facial expression, head pose and illumination.

To address this challenge, we propose a new multi-face

tracking and re-identification algorithm, which provides

high accuracy in face association in the entire video

with automatic cluster number generation, and is robust

to outliers. We develop a co-occurrence model of

multiple body parts to seamlessly create face tracklets,

and recursively link tracklets to construct a graph for

extracting clusters. A Gaussian Process model is introduced

to compensate the deep feature insufficiency, and is further

used to refine the linking results. The advantages of the

proposed algorithm are demonstrated using a variety of

challenging music videos and newly introduced body-worn

camera videos. The proposed method obtains significant

improvements over the state of the art [51], while relying

less on handling video-specific prior information to achieve

high performance.

1. Introduction

The task of Multiple Object Tracking (MOT) or Multiple

Target Tracking (MTT) is to recover the trajectories of a

varying number of individual targets while the status of

targets is estimated at different time steps. Multi-face

tracking is one of the important domains enabling high-

level video content analysis and understanding, e.g., crowd

analysis, semantic analysis, and event detection.

In this paper, our goal is to track an unknown number of

human faces and maintain their identities in unconstrained

videos (e.g., movies, TV series, music videos [51], body-

worn camera videos). Our method does not assume any

extra prior knowledge about the videos or require manual

efforts (e.g., input underlying number of clusters in videos).

Despite having different methods proposed to address this

Figure 1: An example of multi-face tracking in unconstrained

videos. The Bruno Mars music video shows the task is challenging

due to partial occlusion and significant variations of lighting

condition, camera angle, expression, and head pose across shots.

topic, this problem remains challenging due to the inherent

unconstrained settings in videos. The videos might contain

multiple shots captured by one or multiple moving cameras,

irregular camera motion and object movement, arbitrary

camera setting and object appearance, and people may

move in-and-out camera field of view multiple times. The

appearance of faces change drastically owing to significant

variations of lighting condition, camera angle, expression,

and head pose. Commonly, partial occlusions are caused by

accessories and other body parts, such as glasses and hair,

as well as hand gestures.

This is a difficult task and has a different focus from

tracking in constrained videos (e.g., surveillance videos

captured by steady or slowly-moving cameras), where the

main challenge is to deal with different viewpoints, lighting

conditions, and crowded pedestrian crossings. Many

methods have been proposed [1, 3, 30, 41, 47, 49, 54]. In

those papers, three popular datasets, MOT Challenge [29],

PETS [16] and KITTI [17], are usually used to evaluate the

performance of MOT methods. The videos, however, do

not include multiple shot changes and appearance changes.

These MOT methods attempt to solve different challenges

and cannot be easily applied to unconstrained videos with

large camera movement or multiple abrupt shot changes.

Due to the fast-growing popularity of unconstrained

videos, especially on the Web, solutions to this problem

are in high demand and have attracted great interest from

researchers. The recently proposed methods [22, 23] enable

users to track persons in unconstrained videos. These

methods focus on the tracking accuracy within each shot,
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but the scope does not include persons association across

shots: they assign a new ID when a person reappears in the

videos.

Figure 1 gives some sample frames from datasets used

in this paper. We test our algorithm on two distinct types of

challenging unconstrained video datasets. The first dataset,

provided by [51], contains eight edited music videos with

significant variation in expression, scale, pose, expression,

and illumination in multiple shots. The second dataset is

newly introduced in this paper. It includes four highly

challenging unedited videos captured by people using body-

worn cameras. The videos depict complex events but

have limited quality control, and therefore, include severe

illumination changes, camera motion, poor lighting, and

heavy occlusion. In both datasets, persons are in-and-out

of camera fields of view multiple times, and the proposed

method is designed to track the faces across shots while

maintaining the assigned identities, as shown in Figure 1.

Our framework incorporates three major components to

achieve high accuracy face tracking, and it is robust to

substantial face rotations, from frontal to profile. First, we

develop a co-occurrence model of multiple body parts to

create longer face tracklets. We then develop a recursive

algorithm to link tracklets with strong associations. Finally,

a Gaussian process model is designed to refine the

clustering results by detecting and reassigning outliers. The

main contributions can be summarized as follows:

1. We propose a prior-less framework that is capable

of tracking multiple faces with unified handling of

complex unconstrained videos.

2. The proposed method provides a data-driven

estimation of the cluster number in an automatic

fashion. This is in contrast to existing works that

assume face tracklets are given or require manual

entry of the underlying cluster number in advance.

3. Our proposed co-occurrence model can continue

tracking multiple faces that are only partially visible.

Even with information loss, such as with head

turning, or when faces are occluded, the proposed

algorithm can determine with whose body the partial

observation should be matched and continue to track

faces throughout.

4. We introduce a new dataset of four highly challenging,

realistic, unedited, body-worn camera videos captured

by police officers in different incidents. The dataset

introduces new challenges to MOT in unconstrained

videos.

2. Related Work

Multiple person tracking. There has been extensive

research related to multiple person tracking. Many

efforts have explored this problem using data association

approaches [26, 50], such as Markov decision process

[47], event aggregation [20], greedy algorithm [38],

and attentional correlation filter [7]. However, these

works either explicitly or implicitly assume continuous

appearances, positions, and motions. They are thus

ineffective for solving shot change problems. Several

existing methods [3, 45, 28, 33] explore appearance features

to find tracklet associations, which can link tracklets across

shots. These methods employ discriminative appearance-

based affinity models to help associate persons in tracking

tracklets, but they are not directly applicable to videos with

significant variations in facial appearance.

CNN-based representation learning. Many areas

have gained performance improvement from advances

in deep learning. Several CNN-based models for face

recognition provide biometrics-solutions: VGG-Face [37],

DeepFace[42], and FaceNet[40]. The datasets that are

used to train these CNN models are generally chosen from

good conditions, e.g., high image resolution, frontal faces,

rectified faces, and full faces. However, in an unconstrained

video, a face could be profiled, occluded, cropped, or blurry.

In these cases, measuring the similarity with extracted deep

face features might yield inferior performance.

Person re-identification [18, 19, 52, 32, 31] also

gains performance boost using deep learning techniques.

Methods include dual mutual learning, deep transfer

learning, multi-loss classification, and triplet loss, etc.

These papers focus on searching different perspective

views of the same person. The subjects are required

to be in the same outfit. Our problem has a unique

characteristic that distinguishes it from re-identification

modeling. The videos used in our problem are more

unstructured because persons’ appearances and cameras’

movements are unconstrained. These changing parameters

along with different shot changes allow for more ambiguous

conditions.

Unconstrained face tracking. Tracking has been

extensively developed in scenarios with multiple faces [9,

10, 15, 36, 24]. Many multi-face tracking works exist for

constrained videos with limited camera motion, e.g., web-

cam, surveillance. Current studies focus on the analysis

of more unstructured, unconstrained videos. Among them,

there have been significant efforts at analyzing the fast-

growing popularity of internet videos.

Wu et al. [46] propose a multi-face tracking method to

handle clustering and tracklet linking simultaneously using

hidden Markov random field model in a TV series video

(Big Bang Theory, BBT). Their method uses appearance

affinity and HSV information to measure the similarity of

faces. As a result, the approach is constrained to good

quality of frontal faces. Another line of work [48, 53]

propose methods to learn the appearance representation to

cluster the faces tracklets on TV series and movie videos
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Figure 2: Illustration of three core algorithmic components of the proposed method. (Best viewed in color)

(Buffy, Notting-Hill, and Harry Potter). They assumes face

tracklets and the number of clusters are given. In studies

[8, 43, 46, 48], the tracklets of false positives are manually

removed. Different from face clustering studies starting

the problem from given face tracklets, multi-face tracking

problem take raw videos as input to perform detection,

generate tracklets and link tracklets.

State-of-the-art. Recently, Zhang et al. [51]

propose a CNN-based approach of learning video-specific

facial discriminative features for multi-face tracking and

demonstrate state-of-the-art performance. The main

limitation of this method is that it has difficulty in handling

videos where many shots contain only one single person. In

these cases, the method cannot generate sufficient negative

face pairs to train the network, thus different persons might

be incorrectly identified as the same person across shots.

Additionally, the method requires prior knowledge of the

videos to provide actual number of clusters in advance. In

reality, the correct and optimal choice of cluster numbers

is often ambiguous in application to some videos of minor

characters. If cluster numbers are ill-initialized, clustering

purity would degrade. Further, an essential prerequisite of

this method is to apply an effective shot change detection

technique to partition each input video into non-overlapping

shots.

In contrast, we propose an algorithm to analyze raw

video data and generate final tracking and clustering results

automatically in a data-driven fashion. The proposed

method seeks to eliminate the sensitivities of handling

video-specific prior information.

3. Algorithm

To achieve better tracking results, longer tracklets of

each person are desired. The longer the tracklets are, the

greater the number of possible facial variations of each

person could be captured. However, longer tracklets usually

contain more noise, and thus might incur more tracklet

linking errors. Considering the pros and cons, we propose

a framework, as illustrated in Figure 2, that includes three

core algorithmic components: (1) Create tracklets. We

develop a co-occurrence model of multiple body parts to

create longer face tracklets. A face is temporarily missing

when a person turns his/her head, or the view of their face is

blocked by another object (e.g., hand, or others’ head). The

model is designed to prevent tracks from being terminated

when an image of a face temporarily disappears (Section

3.1). (2) Link tracklets. We recursively link tracklets

with strong associations. The recursively linked tracklets

construct a constrained graph for extracting clusters, and

generating initial clustering results (Section 3.2). (3)

Detect and reassign outlier tracklets. We design a

Gaussian Process model to capture the richness of data and

compensate the deep feature insufficiency. Our model will

detect and re-assign outlier tracklets (Section 3.3).

3.1. Tracking by Co­occurrence Model

Typically, the performance of detectors is greatly

affected by pose, occlusion, rotation, size and image

resolution. For example, when a person turns his/her head

away from the camera or the face is occluded, the face might

not be detected. However, the head belonging to that person

could be still detected and tracked. We build on an idea

that using multiple body parts simultaneously could create

longer tracklets. To this end, we developed a co-occurrence

model which obtains information of multiple body parts to

help continue the tracker during moments when faces are

not captured by the camera or not detected by the detector,

but the person remains in the video frames.

Our starting point is the multiple body parts detections

estimated by off-the-shelf body-part detector [5]. Note

that the detection method could be replaced by other

sophisticated body-part detectors [6, 39]. For each video

frame, we extract localization of face, head, torso, and

whole body. We denote {vtk,γ} a discrete set of outputs

of body-part detections in a frame t where vtk,γ =

[ctx,k, c
t
y,k, w

t
k, h

t
k], k is the index of the detection; c, w, h

are center, width and height of a bounding box; γ denotes

the type of body part, such as torso, γ ∈ Γ = {1, ..., N}.

For each body part detection, two thresholds are applied

[21]: (1) detection results filtered by a high threshold are
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used to create new tracklets; (2) detection results filtered by

a low threshold are used to track objects.

We formulate the multi-person tracking problem as a

graph structure G = (v, ǫ) with two types of edges, ǫs
and ǫt, as shown in Figure 2 (1a). Spatial edges ǫs
denote the connections of different body parts of a candidate

within a frame. The spatial edges ǫs are used to generate

hypothesized states of a candidate. Temporal edges ǫt
denote the connections of the same body parts over adjacent

frames. The state of each individual person in different

frames are estimated using temporal edges.

ǫs = {〈vtk,γ , v
t
k′,γ′〉 : γ 6= γ′}, ǫt = {〈vtk,γ , v

t−1

n,γ 〉}. (1)

The spatial edges ǫs are defined as:

〈vtk,γ , v
t
k′,γ′〉 = δ · φ(vtk,γ , v

t
k′,γ′), (2)

where φ(vtk,γ , v
t
k′,γ′) and δ are indicator functions.

φ(vtk,γ , v
t
k′,γ′) = 1 when the overlapping area is larger

than a threshold ζ. δ = 1 when there is an exclusive

connection between two types of body parts in one frame.

This constraint ensures that two body parts are associated to

the same person only if the connection is not considered as

ambiguous, such as two different face detections connected

to the same head.

After all the ǫs are built, the connected components are

used to generate Gt,i
p as a hypothesis of a person ξi at

frame t. Ideally, Gt,i
p consists of all detected body parts

that belong to the same person ξi.
Consider estimation of the current state of a person ξti

given the observations Zt from frame 0 to t. The problem

can be formulated as maximization of the likelihood

function given the previous state of the person ξt−1

i :

p(ξti |Z
t) = max

j
f(Gt,j

p |ξt−1

i ), (3)

The likelihood f(Gt,j
p |ξt−1

i ) can be viewed as a method

to evaluate how well a candidate hypothesis matches the

previous state. We define the likelihood f(Gt,j
p |ξt−1

i )

as the probability of a candidate hypothesis Gt,j
p given

the previous state ξt−1

i , where its value is given by the

maximum transition probability from one of the body parts

among Gt,j
p :

f(Gt,j
p |ξt−1

i ) = p(Gt,j
p |Gt−1,i

p )

= max{p(vt,jγ |vt−1,i
γ ), ∀γ ∈ Gt,j

p }. (4)

The body-part transition probability p(vt,jγ |vt−1,i
γ ) is

defined as: p(vt,jγ |vt−1,i
γ ) = η(vt,jγ , vt−1,i

γ ), where

the potential function η(vt,jγ , vt−1,i
γ ) is defined as the

overlapping ratio of the bounding boxes.

If a body part gives higher likelihood than the likelihood

of another body part, then it has better representation of

the candidate. Equations 3 and 4 ensure that if a face is

temporally missing, then the body part which collects the

most information of a candidate person is still used to track.

When no corresponding body parts coexist, we use KLT

[44] and the sum of absolute difference (SAD) to predict the

hypotheses of each body parts. After obtaining the current

state of a person, we build temporal edges ǫt by connecting

the same type of body part among Gt,i
p and Gt−1,i

p . Next,

we generate face tracklets using face bounding boxes from

each individual person’s tracklets and extract facial features

for clustering in the next session.

3.2. Recursive Constrained Tracklet Linking

After face tracklets are generated, each face tracklet

is taken as a node Ti, which includes various face poses

of a person with extracted feature {f i
k}

ni

k=1
and frame

indexes {tik}
ni

k=1
. We aim to infer the underlying pairwise

similarity between nodes to construct meaningful affinity

graphs for face clustering. Specifically, we use the VGG-

face descriptors [37] to extract features. In contrast to

[51], we do not fine-tune the feature extraction network

for any video as it brings high computational cost. We

design a unified and generalized linking framework based

on how the VGG-face network was trained to avoid less

informative features by measuring between-node proximity.

We further construct similarity graphs that better express the

underlying face features in clusters.

We first use face bounding boxes of every tracklet to

obtain face images and extract 4096-dimension VGG-face

features from the FC7 layer. The extracted deep facial

features are normalized for comparisons. Given that the

VGG-face network is trained with high-resolution images

by triplet loss objective function, our key idea is that

higher resolution images and relative distance between

nodes would provide more meaningful information in a

model exploiting extracted VGG-face features. We build

two types of links: {Ll} and {Lc}. {Ll} and {Lc} are built

by the properties of image resolution and relative distance

between tracklets respectively.

Figure 2(b) shows 2D tSNE [34] visualizations of

extracted VGG features on the T-ara video. It shows that,

compared to all features (b1), features of large images (b2)

are more discriminative. Thus, we start to build the linkages

{Ll} using tracklets with higher image resolutions as they

could construct strong associations.

We measure the pairwise similarity between two

tracklets to build linkings. Mll(Ti, Tj) is used to measure

the similarity between tracklets Ti and Tj , taking account

of appearance affinity and resolution constraint.

Mll(Ti, Tj) = Λa(Ti, Tj)Λ
s(Ti)Λ

s(Tj), (5)

where Λa(Ti, Tj) is to evaluate the appearance similarity

using the distance between tracklets D(Ti, Tj).
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Λa(Ti, Tj) =

{
1−D(Ti, Tj), if D(Ti, Tj) < ϕ
0, otherwise,

(6)

where D(Ti, Tj) is measured by the distance between

VGG-face features d(fk, fh). All linkages are built when

D(Ti, Tj) is smaller than a threshold ϕ.

D(Ti, Tj) = min
fk∈Ti,fh∈Tj

d(fk, fh), (7)

where d(fk, fh) is the Euclidean distance between fk and

fh.

Λs(Ti) enforces the resolution constraint and builds

linkages among tracklets that have larger image size. We

defined Λs(Ti) as:

Λs(Ti) =

{
1, if Ti ∈ ΨL

0, otherwise.
(8)

We apply k-means method to separate all tracklets based

on the average image size of each tracklet and obtain group

ΨL, which consists of tracklets with larger image size.

Another type of linkage {Lc}, is built by the relative

distances among coexisting tracklets. First, we search all

sets of coexisting tracklets that have overlapping frame

indexes. Given their existence in the overlapping frame

indexes, the tracklets should be mutually exclusive at any

given time. No person can have more than one existence.

Thus, the coexisting tracklets should not be linked. We

use relative distance properties to build constrained linkages

among all pairs of coexisting tracklets by the procedures

described in Algorithm 1 . For each tracklet in {TA
i },

we search the corresponding nearest neighbor tracklet in

{TB
j } and build a linkage between them using the similarity

measurement Mlc(T
A
i , TB

j ), which takes into account for

appearance affinity and relative distance constraints.

Mlc(T
A
i , TB

j ) = Λa(TA
i , TB

j )Λr(TA
i )Λr(TB

j ), (9)

where Λa(TA
i , TB

j ) is the same as Equation 6. Λr(TA
i )

is used to impose relative distance constraints. Because

coexisting tracklets should be exclusive, the connection

between a tracklet in {TA
i } and a tracklet in {TB

j } should

be one or none. We use this property to prevent false

connections. When the relative distance between two

tracklets (TA
i , TA

j ) is smaller than ϑ or multiple tracklets in

one set are connected to the same tracklet in the other set,

the tracklets are very similar and hard to distinguish from

each other. In this case, the linkages are disconnected. We

define Λr(TA
i ) as:

Λr(TA
i )

{
1, otherwise

0, if D(TA
i , TA

j ) < ϑ, ∀TA
j 6= TA

i ∈ {TA
i }.

This process is performed recursively until all pairs of sets

of coexisting nodes have been evaluated.

After obtaining {Ll} and {Lc}, all the linkages form a

graph, GT . The connected components in GT are extracted

and used to generate initial clusters.

Algorithm 1 Linking Coexisting Tracklets

Find all sets of coexisting nodes

for Every pair of sets of coexisting nodes: {TA
i }, {TB

j } do

Find maximum Mlc(T
A
i , TB

j ) using Equation 9

Built linkages between the pair of tracklets if

maxMlc(T
A
i , TB

j ) > 0
end for

3.3. Refinement Based on Gaussian Process (GP)

Empirical studies [25, 14] show CNN-based models

are very sensitive to image blur and noise because the

networks are generally trained on high quality images.

Considering our recursive linking framework is initialized

from CNN-based features to obtain better representations

of the underlying face clusters, there would intrinsically

exist some tracklets incorrectly linked to other tracklets. In

order to find the incorrect association tracklets, we design a

Gaussian process model to compensate for the deep feature

limitations and to capture the richness of data. We apply the

GP model to detect outliers, disconnect the linkages among

outliers and other tracklets, and then reassign the outliers to

refined clusters formed after the outliers are disconnected,

thus yielding high-quality clusters.

3.3.1 Dimension Reduction Using GP

Gaussian process (GP) models, also known as kriging, are

commonly used in many applications including machine

learning and geostatistics [11]. Different from CNN-

based approaches, GP models provide a flexible parametric

approach to capture the nonlinearity and spatial-temporal

correlation of the underlying system. Therefore, it is

an attractive tool to be combined with the CNN-based

approach to further reduce the dimension without losing

complex, and important spatial-temporal information.

Here, we illustrate the idea of reducing the dimension by

fitting a GP model for each color channel with the spatial

information. Three GP models are constructed obtained and

the dimension is reduced to 18 parameters captured by the

GP models. Note, the reduced dimension is not restricted to

18 and may be flexibly determined by changing the number

of parameters in the GP models.

A Gaussian process model can be written as

y(x) = µ(x) + Z(x), (10)

where y ∈ R is the intensity of a color and x ∈ R
p is the

input. In this research, x represents the spatial information,

so p = 2. The mean function µ(x) is assumed to be a

function of x with unknown parameters β, say, µ(x) =
x⊤β = β0 +β1x1 +β2x2. In addition, Z(x) is a Gaussian

process with mean 0 and Cov(xi,xj) = σ2φ(xi,xj ;θ),
where φ(xi,xj ;θ) is the correlation function and θ is

a vector of unknown correlation parameters. There are
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various correlation functions discussed in the literature.

Here we focus on a commonly used product form of power

exponential functions:

φ(xi,xj ;θ) =

p∏

k=1

Rk(|xik − xjk|) (11)

=

p∏

k=1

exp(−θk|xik − xjk|
α), (12)

where 0 < α ≤ 2 is a tuning parameter and θ = (θ1, θ2)
with θk ≥ 0 for i = 1, 2. Because the correlation

parameters, θk’s, are not constrained to be equal, the model

can handle different signals in each input dimension which

makes Equation (11) particularly attractive to the analysis

of complex underlying system.

Given n realizations of a particular color channel y =
(y1, ..., yn)

⊤ and the corresponding spatial information

X = (x⊤
1 , ...,x

⊤
n )

⊤, the joint log-likelihood function for

(10) can be written as

l(β,θ, σ) =−
1

2σ2
(y −Xβ)⊤Σ−1(θ)(y −Xβ)

−
1

2
log |Σ(θ)| −

n

2
log(σ2),

where Σ(θ) is the n × n correlation matrix with the ijth

element equal to φ(xi,xj;θ). The maximum likelihood

estimates (MLEs) of β and σ can be obtained by

β̂ = (X⊤Σ−1(θ)X)−1X⊤Σ−1(θ)y, (13)

σ̂2 = (y −Xβ̂)⊤Σ−1(θ)(y −Xβ̂)/n. (14)

By maximizing the logarithm of the profile likelihood, the

MLE of θ can be obtained by

θ̂ = argmax
θ

{n log(σ̂2) + log |Σ−1(θ)|}. (15)

For the estimation of correlation parameters θ, there are

some likelihood-based alternatives. These alternatives

include the restricted maximum likelihood (REML) and

penalized likelihood approaches. In this paper, we focus on

the study of MLEs, but the results can be further extended

to the likelihood-based alternatives.

According to Equation (13, 14, 15), there are six

parameters (β̂, σ̂2, θ̂) obtained for each color channel,

therefore a total of 18 parameters are obtained to capture

the underlying information of a given face image.

3.3.2 Outlier Detection and Reassignment by GP

We introduce the outlier detection and reassignment scheme

in this section. Our idea is to measure how isolated

a tracklet is when compared to the spatial surrounding

neighborhood. More precisely, by comparing the local

density of a tracklet to the local densities of its neighbors,

we can identify tracklets that have a substantially lower

density than their neighbors, as shown in Figure 2 (c2).

These tracklets are considered outliers, and may belong

to other clusters. We detect these outlier tracklets and

reconnect them to one of the clusters by extracted GP

features r ∈ R18. For each cluster, we use a simple

unsupervised outlier detection method, Local Outlier

Factor (LOF) estimator [4], to compute the local density

deviation of a given tracklet with respect to its neighbors.

After detecting outliers, we refine the original clusters

by disconnecting the linkages among outliers and other

tracklets as there might be incorrect association among

those linkages.

We further use extracted GP features to link all isolated

tracklets to the refined clusters. We evaluate the appearance

similarity between an isolated tracklet and every refined

cluster. For any given isolated tracklet, we evaluate all

pairwise distances between the isolated tracklet and every

tracklet in one cluster and use the shortest distance as the

similarity measure between the isolated tracklet and the

cluster. We also enforce a temporal constraint to prevent

multiple tracklets with overlapping frame indexes in the

same cluster. Next, we determine the cluster that has the

shortest distance to the given isolated tracklet and assign

the tracklet into that cluster.

After all tracklets have been connected into one of the

clusters, we obtain final clusters. Finally, we assign a

specific identity to each cluster and generate final tracking.

4. Experiments

We empirically demonstrate the effectiveness of our

proposed method on two distinct types of challenging

unconstrained video datasets and compare with state-of-the-

art methods, especially with variants in [51].

4.1. Details

Dataset: Experiments are conducted on two datasets: (1)

Edited High-quality Music Video Dataset. The dataset

made available by [51] contains 8 edited music videos.

The videos contain dramatic facial appearance changes,

frequent camera view and shot changes, and rapid camera

motion. (2) Unedited Body-worn Camera Video Dataset.

We introduce a new highly-challenging dataset of 4 realistic

and unedited body-worn camera videos. All videos were

captured by police officers in different incidents, and thus

have limited quality control. The videos in this dataset have

very severe camera movement and heavy occlusion. There

is a large number of dark scenes and many tracks with non-

frontal faces.

Experiment settings: All parameters have the same

settings and remain unchanged for all videos: high

detection threshold for creating new track is 0.8, low

detection threshold for tracking is 0.1. ϕ is 0.5; ζ is 0.9;
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ϑ is 0.7; α is 2. Note that, in contrast to [51], our method

does not apply shot change detection and does not assume

that the total cluster number is known a priori.

Evaluation metrics: (1) Clustering. We use Weighted

Clustering Purity (WCP) [51] to evaluate the extent to

which faces can be clustered automatically according to

their identities. WCP is given as WCP = 1

N

∑
c∈C nc · pc

where N is the total number of faces in the video, nc is the

number of faces in the cluster c ∈ C, and its purity, pc,

is measured as the fraction of the largest number of faces

from the same person to nc, and C is the total number of

clusters. (2) Tracking. We report tracking results based on

the most widely accepted evaluation metrics, the CLEAR

MOT [35], including Recall, Precision, F1, FAF, MT, IDS,

Frag, MOTA, and MOTP.

4.2. Experiments on Edited High­quality Music
Video Dataset

Clustering. We report the clustering accuracy of our

method and other competitors, HOG[12], AlexNet[27],

VGG-face[37], and variants in [51] in Table 1. Table 1

shows that our method achieves substantial improvement

compared to the best competitor (e.g., from 0.56 to 0.86

in Westlife), demonstrating the superiority of our method.

Furthermore, we analyze the effectiveness of our outlier

reassignment scheme. The third to last row reports the

performance of our method without outlier reassignment,

which achieves performance comparable to the state-of-the-

art methods. But, as showed in the second to last row,

our integrated framework can compensate the deep feature

insufficiency and bring the full potential of the proposed

method. The last row presents the number of clusters

estimated automatically by our method versus the ground-

truth number of clusters. It shows that our method does

not suffer from the basis ambiguity difficulty, but is able to

generate number of clusters automatically and reliably.

Face Tracking. We report the face tracking results

in Table 2. Our method is compared with ADMM[2],

IHTLS[13] and variants in [51]. Table 2 shows the proposed

method improves tracking performance against the existing

methods for most metrics. Overall, we achieve better

performance in terms of Recall, Precision, F1, MOTA

and MOTP. Specifically, our method noticeably increases

most tracked (MT), and reduces the number of identity

switching (IDS) and track fragments (Frag). This implies

our co-occurrence tracker can robustly construct longer

trajectories, and face IDs are correctly maintained by our

recursive linking framework.

Qualitative Results. Figure 3 shows sample tracking

results of our algorithm. In some frames, we can see

that different persons have very similar face appearance,

multiple main singers appear in a cluttered background

filled with audiences, or some faces have heavy occlusions

Table 1: Clustering purity comparisons with the state-of-the-art

methods on 8 music videos. The best results are highlighted with

the bold.
MUSIC VIDEO DATASET

Method T-ara
Dolls

Pussycat

Mars

Bruno

Bubble

Hello
Darling Apink Westlife

Aloud

Girls

HOG[12] 0.22 0.28 0.36 0.35 0.19 0.20 0.27 0.29

AlexNet[27] 0.25 0.31 0.36 0.31 0.18 0.22 0.37 0.30

VGG-face[37] 0.23 0.46 0.44 0.29 0.20 0.24 0.27 0.29

Pre-trained[51] 0.31 0.31 0.50 0.34 0.24 0.29 0.37 0.33

Siamese[51] 0.69 0.77 0.88 0.54 0.46 0.48 0.54 0.67

Triplet[51] 0.68 0.77 0.83 0.60 0.49 0.60 0.52 0.67

SymTriplet[51] 0.69 0.78 0.90 0.64 0.70 0.72 0.56 0.69

W/o GP outlier reassign. 0.87 0.77 0.78 0.63 0.68 0.64 0.70 0.61

The proposed framework 0.89 0.79 0.85 0.70 0.73 0.92 0.86 0.92

Estimated / GT cluster no. 6/6 6/6 11/11 4/4 7/8 6/6 4/4 5/5

Table 2: Quantitative comparisons with the state-of-the-art

tracking methods on music video dataset.
MUSIC VIDEO DATASET

Method Recall↑Precision↑F1↑ FAF↓ MT↑ IDS↓ Frag↓MOTA↑MOTP↑

ADMM[2] 75.5 61.8 68.0 0.50 23 2382 2959 51.7 63.7

IHTLS[13] 75.5 68.0 71.6 0.41 23 2013 2880 56.2 63.7

Pre-Trained[51] 60.1 88.8 71.7 0.17 5 931 2140 51.5 79.5

mTLD[51] 69.1 88.1 77.4 0.21 14 1914 2786 57.7 80.1

Siamese[51] 71.5 89.4 79.5 0.19 18 986 2512 62.3 64.0

Triplet[51] 71.8 88.8 79.4 0.20 19 902 2546 61.8 64.2

SymTriplet[51] 71.8 89.7 79.8 0.19 19 699 2563 62.8 64.3

Ours 81.7 90.2 85.3 0.27 32 624 1645 69.2 86.0

by other cast members. As shown, the proposed algorithm

is capable of generating invariant face identities and

tracking them reliably across different shots in the entire

unconstrained video.

Speed. We have measured execution speed of the proposed

method on music videos that typically have several faces

to be tracked in each frame. In one 5-minutes music

video, there are 21,747 face observations over a sequence of

5,000 frames, our implementation takes about 25 minutes

after feeding the detection results. The running time

is implemented with unoptimized C++ and Matlab code,

single thread execution on a Mac with Intel 2.5 GHz i7 CPU

and 16 GB memory.

4.3. Experiments on Unedited Realistic Body­worn
Camera Dataset

To further test the capability of our method, we conduct

experiments on unedited realistic body-worn camera dataset

and compare the results with variants in [51].

Clustering. We compare the clustering results with

HOG[12], AlexNet[27], VGG-face[37], pre-trained,

Siamese and SymTriplet in [51]. Table 3 shows our

method outperforms other methods with noticeable margin

on all videos in the body-worn camera dataset. This

problem is particularly challenging. For example, in

Foot Chase video, our method achieves weighted purity

of 0.73. But even for the best-performing feature in

[51], SymTriplet, it only achieves purity of 0.45. HOG,

AlexNet, VGG-face also perform poorly. The possible

reason is that 3 body-worn camera videos (Foot Chase,

TS1 and TS3) only have 640x480 resolution, and these

544



Figure 3: Sample tracking results of the proposed algorithm. The first two rows are Westlife and Hello Bubble from music video dataset.

The bottom row is Foot Chase from body-worn camera dataset. The ID number and color of face bounding box for each person are kept.

(Refer to the supplementary material for more results.)

Table 3: Clustering purity comparisons on 4 body-worn camera

videos.
BODY-WORN CAMERA DATASET

Method
Chase

Foot
TS1 TS3 DVHD2

HOG[12] 0.40 0.52 0.58 0.50

AlexNet[27] 0.40 0.54 0.58 0.59

VGG-face[37] 0.43 0.46 0.72 0.72

Pre-trained[51] 0.42 0.54 0.61 0.74

Siamese[51] 0.41 0.54 0.68 0.56

SymTriplet[51] 0.45 0.55 0.69 0.77

W/o GP outlier reassign. 0.64 0.74 0.77 0.75

The proposed framework 0.73 0.80 0.80 0.81

Estimated / GT cluster no. 4/5 3/3 2/2 3/3

Table 4: Quantitative comparisons with the state-of-the-art

tracking method [51] on body-worn camera dataset.
BODY-WORN CAMERA DATASET

Method Recall↑Precision↑F1↑ FAF↓ MT↑IDS↓Frag↓MOTA↑MOTP↑

mTLD[51] 75.1 79.2 75.8 0.14 7 70 400 52.7 93.5

Pre-Trained[51] 75.1 79.2 75.8 0.14 7 61 404 52.9 93.5

Siamese[51] 75.1 79.2 75.9 0.14 7 55 404 52.8 93.5

SymTriplet[51] 75.1 79.8 75.9 0.13 7 52 390 53.9 93.5

Ours 78.6 93.8 85.4 0.07 11 39 188 69.8 93.6

methods cannot cope with such low resolution. In addition,

SymTriplet [51] requires sufficient negative pairs generated

from tracklets that co-occur in the same shot. But in

body-worn camera videos, many shots contain only a

single person. Consequently, they are unable to train

their network and fine-tune features well. However, these

problems are addressed by our proposed method. We

believe the significant performance difference lies in our

GP model is designed to compensate the insufficiency of

the CNN-based initialized linking framework and capture

the false positive tracklet associations. Again, the last row

shows the proposed method is able to generate the number

of clusters automatically and reliably.

Face Tracking. We report the face tracking results on

body-worn camera videos in Table 4. Our method is

compared with 4 variants in [51]. The body-worn camera

videos are captured with limited quality control; thus, they

usually contain undesirable motion blur caused by camera

shake. Video quality degradation yields more false positive

detections, which increases the tracking difficulty. Table

4 shows the proposed method produces overall superior

performance for all metrics. This implies the proposed

method can overcome the difficulty and handle lower

quality videos better.

Qualitative Results. Figure 3 shows that the proposed

algorithm is able to robustly track multiple faces with

their correct identities in the shaking and low resolution

unconstrained videos. More qualitative results are available

in the supplementary material.

5. Conclusions

We have introduced a prior-less algorithm for reliably

tracking multiple faces in unconstrained videos, where

extensive motion and variations exist and affect the way

by which many heretofore existing methods perform.

Experiments on two distinct video datasets demonstrated

the superiority of the proposed method when compared to

the state-of-the-art methods that require intensive training

to fine-tune the networks or manual video analysis to obtain

the number of clusters. In the future, we intend to explore

modeling the similarity of other body parts to extend our

framework’s capability.
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