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Abstract

Ordinal regression is a supervised learning problem

aiming to classify instances into ordinal categories. It is

challenging to automatically extract high-level features for

representing intraclass information and interclass ordinal

relationship simultaneously. This paper proposes a con-

strained optimization formulation for the ordinal regres-

sion problem which minimizes the negative loglikelihood

for multiple categories constrained by the order relation-

ship between instances. Mathematically, it is equivalent to

an unconstrained formulation with a pairwise regularizer.

An implementation based on the CNN framework is pro-

posed to solve the problem such that high-level features can

be extracted automatically, and the optimal solution can be

learned through the traditional back-propagation method.

The proposed pairwise constraints make the algorithm work

even on small datasets, and a proposed efficient implemen-

tation make it be scalable for large datasets. Experimental

results on four real-world benchmarks demonstrate that the

proposed algorithm outperforms the traditional deep learn-

ing approaches and other state-of-the-art approaches based

on hand-crafted features.

1. Introduction

Ordinal regression, also named as ordinal classification,

lies between multi-class classification and metric regres-

sion. Its problem setting is exactly same as that of multi-

class classification, which is to predict the category label

for an input instance. However, the categories in the or-

dinal regression problem have ordinal relationship. Ordi-

nal regression also can be viewed as a discrete version of

metric regression, but the difference is that the number of

categories in ordinal regression is finite and the distances

between categories are undefined. An example of ordinal

regression is movie rating, which grades movies based on

an ordinal scale such as 1 star to 5 stars, and a movie with 4

stars has a better rating than those with 3 stars.

Recently, a number of machine learning approaches have

been proposed for ordinal regression. Most approaches re-

solve the ordinal regression problem either from regres-

sion prospective or from classification prospective. The ap-

proaches from regression prospective aim to learn a func-

tion mapping the instances to a real line and predict multi-

ple boundaries to discretize the mapped value. For exam-

ple, the max-margin based approaches [19][4] adapted the

support vector regression to predict contiguous boundaries

splitting the ordinal classes. The approaches from classifi-

cation prospective embed ordinal information between class

labels into the traditional classification methods. For exam-

ple, neural network based approaches [8][2] use different

coding schemes to encode the ordinal information of class

labels into the output vectors of the networks. However, few

of existing work combine classification and regression parts

in the optimization objective explicitly.

In literature, most of existing ordinal regression ap-

proaches are based on handcrafted features, which are

labor-intensive and highly rely on the prior knowledge. In

these several years, deep neural networks (DNNs) have at-

tracted great attention due to being able to automatically

extract high-level features from raw data and performing

very well on many classification tasks. However, very few

works use DNNs for ordinal regression problem. Niu et al.

(2016) [16] claimed that their method is the first work to

adapt DNNs for ordinal regression. Generally speaking, a

large training dataset is necessary to train a deep neural net-

work, but many real-world ordinal regression problems are

in fact small data problems. For example, for disease rating

in medical images, in many cases large training image sets

are not available because collecting such data is difficult,

expensive and invasive. Learning deep neural networks on

small datasets is challenging, and to design a method suit-

able for small datasets and also scalable for large datasets at

the same time is another challenging task.

In the traditional deep learning approaches, the learn-

ing objectives are formulated as unconstrained optimization

problems. Usually, the objective function is a loss designed

for the task. This paper first formulates the ordinal regres-

sion problem as a constrained optimization problem and an
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equivalent unconstrained formulation is derived. Based on

this formulation, CNN can be adapted to solve it. A CNN

can be viewed as a combination of multiple convolution

layers which map instances to a high dimensional feature

space and multiple fully-connected layers which perform as

a classifier. The proposed method aims to learn the mapping

function to maximize the probability of training instances

belong to their category under constraints that in the high

dimensional space, the instances from ordered ranks are

mapped to a real line in order. The proposed constrained

optimization problem can be converted to an unconstrained

problem with two terms in the objective function: one is a

logistic regression loss for classification and the other is a

pairwise hinge loss for regression. Therefore, the proposed

approach optimizes classification and regression objectives

simultaneously, which targets to the problem setting of or-

dinal regression more directly.

The contributions of this paper are summarized as fol-

lowing: 1) The proposed approach adapts DNNs to solve a

constrained optimization problem for ordinal regression. 2)

The proposed approach is an end-to-end approach without

any preprocessing such as feature extraction or any postpro-

cessing such as decoding for predictions. 3) The proposed

pairwise regularizer makes deep learning on small datasets

possible. 4) The proposed approach is suitable for small

datasets and scalable for large datasets.

The rest of this paper is organized as follows. Section

2 reviews the literature of ordinal regression. Section 3 de-

scribes the proposed objective function and the CNN archi-

tecture adapted for solving the optimization problem. Sec-

tion 4 reports the experimental results. Section 5 gives con-

clusive remarks.

2. Related Work

As the problem setting of ordinal regression lies be-

tween multi-class classification and metric regression, the

approaches in the literature can be divided into two cate-

gories: approaches from regression prospective and from

classification prospective. In Gutierrez et al.’s survey [7],

the first category of approaches is named as threshold ap-

proaches. These approaches assume that there is a latent

function mapping the instances to a real line, and the ranks

of instances are intervals on the line. The target of the

threshold approaches is to learn the latent function and the

boundaries of the intervals. For example, SVOR [4], a SVM

based method, estimates the weight w for input vectors x

and boundaries b, and the decision criteria is that the rank

of x is k if and only if wTx ∈ [bk−1, bk], where bk is the

boundary separating rank k and rank k+1. Another method

GPOR [3] assumes that the latent function f(x) is a Gaus-

sian process. A likelihood function p(y|f(x)) is proposed

for ordinal regression and the hyperparameters including

the boundaries b are estimated by MAP or EP algorithms.

The threshold approaches are not able to predict the rank

labels directly from the learned latent function without the

boundaries b, but it is challenging to learn the boundaries

especially when the number of ranks is large.

The second category of the approaches transform the or-

dinal regression problem to classification problems. Frank

and Hall [6] propose to address the m-rank ordinal regres-

sion problem by usingm−1 standard binary classifiers, and

the k-th classifier is trained to predict the probability of the

rank yt > k for an instance xt. Then all the outputs from

m − 1 binary classifiers are combined to produce the deci-

sion of the rank of xt. Cardoso and Pinto da Costa [1] and Li

and Lin [12] propose two similar data replication methods

independently to convert the ordinal regression problem to

a binary classification problem. The RED-SVM approach

in [12] extends a labeled instance (x, y) to m − 1 binary

instances for a m-rank ordinal regression problem by trans-

formation: xk = (x; ek) ∈ Rd+m−1; yk = 1 − 2[y ≤ k],
where d is the dimension of x, ek ∈ Rm−1 is an indicator

vector for rank k, and [·] is the indication function. Based

on the new dataset, a single binary classifier f(xk) is trained

based on SVM to answer the question “Is the rank of an in-

stance greater than k?”. And the rank of xt is predicted as
m−1∑

k=1

[f(xkt ) = 1] + 1.

All the above methods rely on handcrafted features. In

recent years, deep learning has achieved great success on

classification problems, but there are very few works to ap-

ply DNNs on ordinal regression problems. Niu et al. [16]

have recently adopted CNN for age estimation. They trans-

form the m-rank ordinal regression problem to m − 1 bi-

nary classifiers and the k-th classifier answers the question

“Is the rank yt of an instance greater than k”? The idea is

very similar to RED-SVM, but they adapt a single CNN to

combine all classifiers and output the k − 1 predictions at

the same time. However, a post-processing step is required

to decode the final predicted rank for a testing instance xt
from possible contradictory outputs. For example, the out-

puts of the CNN predicts that yt is greater than k + 1 and

smaller than k − 1. In [16], Niu et al. follow the decoding

strategy of RED-SVM to assign yt =
m−1∑

k=1

[fk(xt) = 1]+1,

where fk(xt) is the k-th output of the CNN for xt.

In terms of ranking order, a related research topic is
learning to rank for information retrieval. Its target is to
learn the relevance between a document and a given query,
and to predict the relative order of the documents based on
the relevance. However, learning to rank is different from
ordinal regression because it is not able to predict the exact
ranks of documents. A comprehensive survey [13] summa-
rizes the approaches of learning to rank as pointwise, pair-
wise and listwise approaches. RankingSVM [9], an pair-
wise approach, introduced the ranking constraints into SVM
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as shown in Eq. 1:

min
w,ξ

1

2
‖ w ‖22 +C

∑

i,j

ξi,j

s.t. w · φ(q, di) ≥ w · φ(q, dj) + 1− ξi,j

ξi,j ≥ 0 (1)

where q is a query, di and dj are two documents, w is

the weight vector and φ(q, di) is a mapping function. This

paper adapts the pairwise constraints in Eq. 1 for ordinal re-

gression and solves the proposed optimization problem un-

der the deep learning framework.

3. The Proposed Algorithm

An ordinal regression problem with m ranks denoted by

Y = {1, 2, · · · ,m} is considered, where the natural order

of the numbers in Y indicates the order of the ranks. A train-

ing set with labeled instances T = {(xi, yi)|xi ∈ X, yi ∈
Y } is given, where X is the input space. The target is to

predict the rank yt ∈ Y of an input xt ∈ X . Let Xk ⊆ X

be the subset of training instances whose rank labels are k

and Ik = {i|xi ∈ Xk} be the index set of Xk. Denote

xki ∈ Xk as an input from rank k. In the rest of this section,

the outline of the proposed approach will be provided first,

and then the DNN architecture used to solve the optimiza-

tion problem will be presented.

3.1. The Proposed Optimization Formulation

The intuition of the proposed approach is to learn a
multi-class classifier by constraining the instances being
mapped to a real line in order. Eq. 2 shows the optimization
problem:

min
f,φ,w,ξ

−

m∑

k=1

∑

i∈Ik

log
efk◦φ(x

k
i )

m∑
r=1

efr◦φ(x
k
i
)

+ C

m−1∑

k=1

∑

i∈Ik
j∈Ik+1

ξ
k
i,j

s.t. w · φ(xk+1
j )− w · φ(xk

i ) ≥ 1− ξ
k
i,j ,

ξ
k
i,j ≥ 0, k = 1...m− 1, i ∈ Ik, j ∈ Ik+1 (2)

where m is the number of ranks, and Ik is the index set
of Xk. fk(·) and φ(·) are mapping functions, and ◦ is the
function composition operator. w is the weight vector map-
ping φ(x) to a real line. φ(·) can be considered as a feature
extractor and fk(·) is a classifier for label k. The first term
of the objective function in Eq. 2 is the composition of soft-
max function and multinomial logistic regression loss, and
the second term is the sum of slack variables ξki,j where C is
a hyperparameter. The constraints in Eq. 2 define the con-
dition that the mapped values of instances from rank k + 1
should be equal or larger than those of instances from rank
k with an margin of 1 and tolerance ξki,j . Once the opti-
mal solution of Eq. 2 is obtained, the rank label of a test
instance xt is predicted as the category with the maximum
likelihood. More precisely, Eq. 3 is the decision function:

ŷt = argmax
k

efk◦φ(xt)

∑m

j=1 e
fr◦φ(xt)

= argmax
k

fk ◦ φ(xt) (3)

The constraints in the proposed approach enforce that all

pairs of instances from adjacent ranks are mapped in or-

der with a tolerance, and they are similar to those in Rank-

ingSVM [9] as shown in Eq. 1. However, the proposed

optimization problem is different from RankingSVM in the

following four prospectives: 1) Given a query, the target of

RankingSVM is to predict the order of test instances based

on relevance. It is not able to predict the exact rank of a test

instance. 2) The objective of RankingSVM is to minimize

the margin (i.e, ‖ w ‖22) based on the large-margin theory

in support vector regression. However, the objective of the

proposed approach is to maximize the loglikelihood which

is always used for classification problems. 3) The con-

straints of RankingSVM are applied to all possible pairs for

a given query, but the proposed constraints applied to pairs

of instances from adjacent ranks. 4) The mapping function

φ(·) in RankingSVM is predefined by a kernel function, but

in the proposed approach φ(·) is learned automatically by a

deep neural network. In the proposed optimization problem,

the constraints only count on pairs of instances from adja-

cent ranks, but other pairs of instances, such as instances

from rank k and rank k + 2, are not considered explic-

itly. The reason is that if both (w · φ(xk1), w · φ(x
k+1

2 )) and

(w · φ(xk+1

2 ), w · φ(xk+2

3 )) are in order, it can be inferred

that (w · φ(xk1), w · φ(x
k+2

3 )) are also in order.
The slack variables in Eq. 2 and the slack variables in

SVM have the same meaning. They both are used as toler-

ances for non-separable instances. In Eq. 2, ifw ·φ(xk+1

j )−

w · φ(xki ) ≥ 1, the error ξki,j should be 0. Otherwise, the er-

ror ξki,j should be 1− (w ·φ(xk+1

j )−w ·φ(xki )). Therefore,
the proposed optimization problem can be rewritten as an
unconstrained optimization problem in Eq. 4.

min
f,φ,w

−

m∑

k=1

∑

i∈Ik

log
efk◦φ(x

k
i )

∑m

r=1 e
fr◦φ(x

k
i
)
+ C

m−1∑

k=1

∑

i∈Ik
j∈Ik+1

max(0,

1 + w · φ(xk
i )− w · φ(xk+1

j )) (4)

The first term in Eq. 4 is same as the the first term in

Eq. 2 and the second term can be viewed as a pairwise

hinge loss for regression. Therefore, the proposed approach

optimizes the weighted combination of classification loss

and regression loss explicitly, which directly represents the

definition of ordinal regression problem.

3.2. The Proposed CNN based Optimization

Traditional feature based large-margin approaches often

employ a function ψ(xi) mapping the input feature vector

xi to a high dimensional space. And a predefined kernel is

used to represent the mapping function based on the kernel

trick. The form of the kernel function and its hyperparame-

ters affect the performance a lot. Deep neural networks are

able to learn the high level features and weights of classi-

fiers simultaneously. Therefore, a deep neural network is
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Figure 1: The architecture of CNNPOR for a 3-rank ordinal regression problem.

designed to learn the mapping function φ(·), the weight w

and fk(·) in the proposed optimization problem in Eq. 4.

Since convolutional neural networks are used in the cur-

rent implementation, the proposed method is named con-

volutional neural network with pairwise regularization for

ordinal regression (CNNPOR).
The new loss function defined in Eq. 4 is implemented

in CNNPOR, which is a weighted combination of a soft-
max logistic regression loss and a pairwise hinge loss. It
should be pointed out that the scales of the two losses are
not same. Therefore, a new training set is constructed by
pairing up the instances from adjacent ranks, i.e, X ′ =
{(xks , x

k+1
s )|xks ∈ Xk, x

k+1
s ∈ Xk+1, k = 1, ...,m − 1}.

Define Pk = {(xks , x
k+1
s )}, and I

p
k = {s|(xks , x

k+1
s ) ∈ Pk}

as the index set of Pk. All the elements xks and xk+1
s in

the pairs are used as input. Using this training set, the two
losses are scaled automatically i.e. Eq. 5.

min
f,φ,w

−

m−1∑

k=1

∑

s∈I
p

k

log
efk◦φ(x

k
s )

m∑
r=1

efr◦φ(x
k
s )

−
∑

s∈I
p
m−1

log
efm◦φ(xm

s )

m∑
r=1

efr◦φ(x
m
s )

+ C

m−1∑

k=1

∑

s∈I
p

k

max(0, 1 + w · φ(xk
s )− w · φ(xk+1

s )) (5)

Fig. 1 shows the architecture of CNNPOR for a 3-rank

ordinal regression problem. The input instances are orga-

nized in a list, as (x1i , x
2
i , x

3
i ) in the figure, where x1i , x

2
i , x

3
i

are from rank 1, 2 and 3, respectively. They are individ-

ually inputted to the convolution net Gh, which represents

the mapping function φ(·) in Eq. 5. The outputs of Gh

as the high dimensional features are passed to the fully-

connected layer Gc, which represents the mapping function

fk(·). There is a softmax logistic regression loss and the

number of output neurons equals to the number the ranks.

The combination of the convolution net Gh and the fully-

connected layerGc is a standard multi-class CNN. Then the

instances from adjacent ranks (i.e, x1i and x2i , x2i and x3i ) are

paired up and inputted into the convolution netsG11 toG22.

The outputs of all G11 to G22 are mapped into one dimen-

sional space by the mapping vector w, and then the pair-

wise hinge loss layer receives all the outputs to calculate

the last term in Eq. 5. The final loss layer sums up the two

losses at weights 1:C. All the convolution nets (Gh,G11-

G22) have the same architecture which consists of layers

before the last fully-connected layer in a standard CNN, and

they share the same weights. In the training phase, the stan-

dard backprobagation technique is used and the loss is back

propagated to all the convolution nets. In the testing phase,

a testing point xt is inputted into Gh and the output of the

Gc is the prediction. Therefore, CNNPOR is different from

other pairwise methods such as Niu et al.’s method [16],

RED-SVM [12] and Liu et al.’s method [14], because it is

an end-to-end approach for ordinal regression, which does

not require any postprocess step to achieve the predictions.

3.3. Scalability of the Proposed Algorithm

The proposed pairwise constraints as a regularizer make

learning CNNPOR on small datasets possible, while the

proposed architecture is also computationally feasible for

large datasets. It should be emphasized that, for a training

set with n images, the number of input images of CNNPOR

is n not n2. As shown in Fig. 1, all the convolution layers

Gh, G11, G12, G21 and G22 share weights, meaning that

there is only one unique standard CNN to be trained. The

pairwise constraints which require quadratic number of op-

erations are applied on the features inputted to the pairwise

loss layer, not on the raw input images.

Algorithm 1 describes the implementation of one train-

ing iteration in CNNPOR, which reorganizes the instances

as each batch having d images from each rank (i.e., set Dr

in Algorithm 1) and n images from all ranks randomly (i.e.,

set Dc). The training set is shuffled per epoch to make in-

stances in mini-batches random. Assume that a standard

CNN structure such as the VGG [20] or the LeNet [10] is

used. All layers before the last fully-connected layer are

named as Gh, which also represents for G11 to G22 in Fig.

1, and the last fully-connected layer is named asGc. In CN-

NPOR, one more fully-connected layer Gr with one output

node is connected to Gh, and its weights are the w in Fig.

1. As shown in line 1-2 of Algorithm 1, all instances of D

are propagated to Gh. Then the instances of Dc are propa-

gated toGc to calculate the softmax loss l1 and the instances

of Dr are propagated to Gr to calculate the pairwise hinge
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Algorithm 1 Pseudo code of one training iteration in CN-

NPOR

Input: Training set D = Dc ∪Dr with n instances in Dc

and m× d instances in Dr, where Dr = D1 ∪D2 · · · ∪
Dm, Dk ⊆ Xk and the size of Dk is d.

Output: Update the network weights.

1: Initialize or update all weights in a CNN consisting of

convolution net Gh and two fully-connected layers Gc

and Gr both connected to Gh.

2: Forward propagate all instances of D into Gh.

3: Forward propagate instances of Dc into Gc.

4: Calculate the softmax loss l1 of Dc.

5: Forward propagate instances of Dr into Gr.

6: procedure PAIRWISEHINGELOSS

7: Initialize pairwise hinge loss l2 ← 0.

8: Ok ← the outputs of Gr for Dk.

9: for k = 1 to m− 1 do

10: l2 = l2 + SUM(MAX(0, 1 +Ok −Ok+1))
11: end for

12: end procedure

13: Backward propagate of l1 + C × l2.

loss l2 in line 6-12. Finally, the weighted loss l1 + C × l2
is back propagated to the whole network. Ok in line 8 is

a vector where each element is the one-dimensional out-

put of Gr for one instance of Dk, i.e., w · φ(xks) in Eq. 5.

The operations ‘−’, MAX and SUM in line 10 are elemen-

twise substraction, maximum and summation. Therefore,

comparing to a standard m-class CNN, for a mini-batch

with n+m× d instances, CNNPOR does not calculate the

softmax loss for m × d instances but calculates the hinge

loss for them by using m− 1 element-wise vector substrac-

tion, maximum and summation operations instead. Thus,

although CNNPOR introduces the pairwise regularizer, by

employing the proposed architecture and implementation, it

is scalable for large scale datasets.

4. Evaluation

The proposed CNNPOR approach is evaluated on four

benchmarks - a historical color image dataset [17], an im-

age retrieval dataset MSRA-MM1.0 [21], an image aes-

thetic dataset [18] and the Adience Face Dataset [11]. Ac-

curacy and mean absolute error are used as performance in-

dexes. Accuracy is defined by 1

|T |

∑

xt∈T

[ŷt = yt], where T

is a testing set and |T | is its size, [·] is the indicator func-

tion, yt is the ground truth of xt, and ŷt is its predicted label.

Mean absolute error (MAE) is defined by 1

|T |

∑

xt∈T

|ŷt − yt|.

Three baseline methods are employed for comparison: the

state-of-the-art handcarfted feature based ordinal regression

method - RED-SVM [12], the traditional CNN method for

multi-class classification - CNNm and the CNN based ordi-

nal regression method - Niu et al.’s method [16].

4.1. Results on the Historical Color Images Dataset

The historical color image dataset [17] is a benchmark

to evaluate algorithms predicting when a historical color

image was photographed in the decade scale. The dataset

stores images collected from five decades, 1930s to 1970s

corresponding to five ordinal categories, and each category

has 265 images. Fig. 2 shows samples in the dataset. The

evaluation protocol reported in [17] is taken in this study for

fair comparison. In each category, 215 images are employed

for training and the rest 50 images are for testing.

Table 1 lists the experimental results on the historical

color image dataset. Besides the results of the three baseline

methods, i.e, RED-SVM, CNNm and Niu et al.’s method,

the results from the previous methods on this dataset are

also reported. Palermo et al.’s method [17] and Martin

et al.’s method [15] are proposed for this particular task,

and Frank and Hall’s method [6] and Cardoso and Pinto

da Costa’s method [1] are for general ordinal regression

problems. Palermo et al. [17] designed 8168 features

for this task. In the experiments, all handcrafted feature

based methods listed in Table 1 use the same features for

fair comparison. RED-SVM [12] is a state-of-the-art hand-

crafted feature based method for general ordinal regres-

sion problems. To evaluate the performance of CNNPOR

achieved by the deep features and by the algorithm, CN-

NPOR is compared with RED-SVM with the inputs of the

8168 handcrafted features (RED-SVM@8168 in Table 1)

and the deep features extracted from the traditional CNN

which are the 512 dimensional output values before the first

fully-connected layer in the VGG architecture [20] (RED-

SVM@deep in Table 1).

The deep multi-class classification method (CNNm in

Table 1) and the deep ordinal regression method (Niu et

al.’s method in Table 1) are implemented for comparison.

For the historical image dataset, the VGG architecture [20]

is employed for CNNm, Niu et al.’s method and CNNPOR.

For CNNPOR, as shown in Fig. 1, Gh and Gc are linked

together and implemented through the VGG architecture,

i.e., Gh consists of the thirteen convolution layers and the

ReLU and pooling layers in between, and Gc includes the

three fully-connected layers and the layers in between. The

implementation ofG11−G22 is same asGh. The images in

the historical image dataset are resized to 256× 256 pixels.

For all the three deep learning methods, the image size of

the input layer is set to 224× 224 3-channel pixels, and the

input images are cropped further at random positions during

the training phases for data augmentation. For each train-

ing/testing image partition, the last 5 images in the training

set are used as the validation images, i.e., 210, 5 and 50

images respectively for training, validation and testing in
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Figure 2: Historical color image dating dataset. (a)1930s,

(b)1940s, (c)1950s, (d)1960s, (e)1970s.

Table 1: Results on the historical image benchmark.

Methods Accuracy(%) MAE

Palermo et al.’s method [17] 44.92±3.69 0.93±0.08

Martin et al.’s method [15] 42.76±1.33 0.87±0.05

Frank and Hall [6] 41.36±1.89 0.99±0.05

Cardoso and Pinto da Costa [1] 41.32±2.76 0.95±0.04

RED-SVM@8168 [12] 35.92±4.69 0.96±0.06

RED-SVM@deep [12] 25.38±2.34 1.08±0.05

CNNm 48.94±2.54 0.89±0.06

Niu et al.’s method [16] 44.67±4.24 0.81±0.06

CNNPOR 50.12±2.65 0.82±0.05

(a) Very relevant (b) Relevant (c) Irrelevant

Figure 3: MSRA-MM1.0 dataset: cat subset.

Table 2: Class distributions on MSRA-

MM1.0 dataset.

Rank 1 Rank 2 Rank 3 Total

Baby 379 295 277 951

Beach 336 398 213 947

Cat 243 344 378 965

Rose 222 418 329 969

Tiger 277 408 335 1020

Fish 130 669 165 964

Golf 777 97 79 953

each rank. In total, the sizes of training, validation and test-

ing sets for CNNm and Niu et al.’s method are 1050, 25

and 250 images, respectively. For CNNPOR, all the pos-

sible permutations of the images in the five ranks produce

4 ∗ 2102 training pairs (i.e., the pair (xki , x
k+1

j ) in Eq. 5)

and 4 ∗ 52 validation pairs. All three deep methods are fine-

tuned from the pretrained ImageNet model [20]. The C in

Eq. 5 is set to 1 in the experiments. The learning rate of

all layers, except for the last fully-connected layer, is set to

0.0001. Because the number of output nodes for the histor-

ical image dataset is different from that for the ImageNet,

the learning rate of the last fully-connected layer is set as

10 times of the learning rate of other layers, i.e., 0.001.

Table 1 summarizes the results and the number after± is

the standard deviation values. CNNPOR outperforms RED-

SVM on handcrafted features and deep features, CNNm,

and Niu et al.’s method by 14.2%, 24.74%, 1.18%, and

5.45%, respectively in terms of accuracy. The mean MAE

result of CNNPOR is 0.01 higher than that of Niu et al.’s

method, which outperforms all other methods, but it is

within two standard deviations of Niu et al.’s method. Over-

all, CNNPOR achieves the best results on the historical

color image dataset. As shown in Table 1, CNNm per-

forms much better than RED-SVM on deep features (RED-

SVM@deep). The deep features for training RED-SVM are

extracted from the well-trained CNNm. The results show

RED-SVM cannot fully utilize the deep network, because

during the training phase of RED-SVM, it cannot adjust the

mapping from the raw images to deep features. As shown in

Table 1, Niu et al.’s method achieves better performance for

MAE than for accuracy. It is originally proposed for age es-

timation problem, which has larger number of ranks and is

more similar to regression. Thus, it focuses on minimizing

the absolute error, instead of zero one error.

4.2. Results on the Image Retrieval Dataset

Microsoft Research Asia Multimedia 1.0 (MSRA-MM

1.0) dataset [21] is a small scale benchmark which is con-

structed to evaluate multimedia information retrieval algo-

rithms originally. MSRA-MM 1.0 has two parts, an image

benchmark and a video benchmark. The image benchmark

consists of 68 subsets. Each subset stores about 1000 im-

ages for one representative query from the image search en-

gine of Microsoft Live Search. The images are thumbnails,

i.e., the small images displayed on Microsoft Live Search.

Fig. 3 shows a subset representing the query “cat”. The

relevance of the images to the corresponding query is clas-

sified into three levels: very relevant, relevant and irrele-

vant. Fig. 3 lists serval exemplar images labeled as “very

relevant”,“relevant” and “irrelevant” to “cat”. In the exper-

iments, these three relevance levels are indicated by rank 1,

2 and 3. Given a testing image in a query set, we are tar-

geting to predict which rank it belongs to. Seven subsets -

“cat”, “baby”, “beach”, “rose”, “tiger”, “fish” and “golf” in

MSRA-MM 1.0 image benchmark are used to evaluate the

performance CNNPOR. Table 2 summarizes the size of the
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Table 3: Results on MSRA-MM1.0 dataset.

Accuracy (%) MAE

RED-SVM RED-SVM CNNm Niu CNN- RED-SVM RED-SVM CNNm Niu CNN-

@8168 @deep et al. POR @8168 @deep et al. POR

Baby 36.99 32.66 48.00 47.33 50.00 0.630 0.699 0.667 0.647 0.636

Beach 35.64 34.00 50.67 51.11 51.11 0.648 0.673 0.598 0.576 0.596

Cat 40.22 34.89 47.56 48.44 52.89 0.633 0.662 0.676 0.620 0.598

Rose 42.05 34.22 55.11 55.78 56.67 0.582 0.664 0.522 0.500 0.500

Tiger 35.57 33.56 53.33 51.78 52.89 0.644 0.673 0.571 0.562 0.578

Fish 68.66 68.89 63.95 66.16 66.33 0.313 0.311 0.378 0.357 0.355

Golf 80.45 80.17 83.08 83.93 84.96 0.283 0.289 0.229 0.219 0.197

Overall 48.51 45.48 57.39 57.79 59.26 0.533 0.567 0.520 0.497 0.494

(a) Unacceptable (b) Flawed (c) Ordinary (d) Professional (e) Exceptional

Figure 4: Image Aesthetics Dataset

seven subsets and the number of images in each rank. These

datasets are small with less than 1100 images. To evalu-

ate the algorithms on imbalanced datasets, “fish” and “golf”

subsets are tested, respectively, 69.4% and 81.5% images in

one rank. Besides images content and task differences, the

images in MSRA-MM 1.0 are different from the historical

images in three properties: different number of ranks, non-

equal number of images in each rank or very imbalanced,

and smaller image size.

Because the size of MSRA-MM 1.0 images is quite

small, the LeNet architecture [10] is employed in all deep

learning methods: CNNm, Niu et al.’s method and CN-

NPOR. The images are cropped to 60 × 60 pixels in the

experiments. For each rank of the first five datasets in Table

2, the images are randomly split to 10 images for validation,

50 images for testing and the rest for training. For the two

imbalanced datasets “fish” and “golf”, 75%, 5% and 20%

images in each rank are randomly selected for training, val-

idation and testing, respectively. In each training set, 40960

pairs of instances from adjacent ranks are constructed as

training instances for CNNPOR. Mini-batch size is set to

64 and the learning rate is set to 0.01. To evaluate RED-

SVM method on handcrafted features, the same 8168 fea-

tures as used for the historical image dataset are employed.

RED-SVM is also tested on the features extracted before the

first fully-connected layer of the LeNet architecture, which

is 50 dimensional features. All methods are examined on

three random training/testing partitions for all datasets and

the mean results are summarized in Tables 3. CNNPOR

performs better than all the baseline methods on five sub-

sets in terms of accuracy, and on three subsets in terms of

MAE. The results on MSRA-MM 1.0 dataset indicate that

CNNPOR performs averagely better than the baseline meth-

ods.

4.3. Results on the Image Aesthetics Dataset

The image aesthetic benchmark [18] consists of 10800

Flickr photos of four categories, i.e., “animals”, “urban”,

“people” and “nature”, and is constructed originally to re-

trieve beautiful yet unpopular images in social networks.

The ground truths of the photos in the benchmark are five

aesthetic grades: “Unacceptable” - images with extremely

low quality, out of focus or underexposed, “Flawed” - im-

ages with some technical flaws and without any artistic

value, “Ordinary” - standard quality images without tech-

nical flaws, “Professional” - professional-quality images

with some artistic value, and “Exceptional” - very appeal-

ing images showing both outstanding professional quality

and high artistic value. Fig. 4 shows an example from the

“urban” category with one photo from each atheistic level.

Each photo in the dataset is labeled by five graders of an

online crowdsourcing platform to one of the five aesthetics

levels. If the level of agreement is low, two more graders

are recruited to perform the evaluation. In the experiments,

these five aesthetic levels are indicated by rank 1 to 5, and

the median rank of each image given by the graders is used

as the ground truth. In each rank 75%, 5% and 20% im-

ages are randomly selected for training, validation and test-

ing, respectively. All comparison methods are tested on five

random training/testing partitions.
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Table 4: Results on the image aesthetics dataset.

Accuracy (%) MAE

RED-SVM RED-SVM CNNm Niu CNN- RED-SVM RED-SVM CNNm Niu CNN-

@8168 @deep et al. POR @8168 @deep et al. POR

Nature 69.73 70.72 70.97 69.81 71.86 0.319 0.309 0.305 0.313 0.294

Animal 61.14 61.05 68.02 69.10 69.32 0.407 0.410 0.342 0.331 0.322

Urban 63.88 65.44 68.19 66.49 69.09 0.391 0.374 0.356 0.349 0.325

People 60.06 61.16 71.63 70.44 69.94 0.421 0.412 0.315 0.312 0.321

Overall 63.70 64.59 69.45 68.96 70.05 0.385 0.376 0.330 0.326 0.316

Figure 5: Training curves on the Adience face dataset.

Table 5: Results on the Adience face dataset.

Methods Accuracy(%) MAE

Feature-based

[5] 45.1 ± 2.6 -

Lean DNN [11] 50.7 ± 5.1 -

CNNm 54.0 ± 6.3 0.61 ± 0.08

Niu et al. 56.7 ± 6.0 0.54 ± 0.08

CNNPOR 57.4 ± 5.8 0.55 ± 0.08

In the experiments, all the deep learning methods, in-

cluding CNNm, Niu et al.’s method and CNNPOR, employ

the VGG architecture and are fine-tuned from the ImageNet

model. The images are resized to 256× 256 pixels and are

randomly cropped to 224 × 224 pixels further during the

learning. The learning rate is set to 0.001 for the last fully-

connect layer and 0.0001 for all other layers. RED-SVM

is tested on the same 8168 features listed in Section 4.1

and the deep features extracted right before the first fully-

connected layer. Table 4 summarizes the results in terms

of accuracy and MAE. For both performance indexes, CN-

NPOR outperforms all the baseline methods on three cate-

gories. CNNm achieves the best performance for one cate-

gory in terms of accuracy and Niu et al.’s method achieves

the best performance for one category in terms of MAE.

4.4. Results on the Adience Face Dataset

To evaluate the scalability of CNNPOR, the Adience

face dataset [11] is employed, which consists of 26580

Flickr photos of 2284 subjects and the ordinal ranks are

eight age groups. In the experiments, the images alignment

and five-fold partition follow [11]. Because the VGG net for

multi-class classification has been verified scalable for large

datasets, the training phase of CNNPOR is compared with

CNNm and both methods are fine-tuned from the VGG Im-

ageNet pretrained model. Same mini-batch size 96 is used

for both CNNm and CNNPOR (i.e., n = 32,m = 8, d = 8
in Algorithm 1). Same learning rate 0.001 is applied for

the last fully-connected layer of CNNm and Gc, Gr of CN-

NPOR, and 0.0001 for the rest layers. The C in Eq.5 is set

to 1. Caffe package on Tesla M40 GPU is run for the ex-

periments, and the average training time for one iteration of

CNNm and CNNPOR is 3.3 and 3.6 seconds respectively.

Fig. 5 shows the training curves on one fold, which indi-

cate the converge speed of CNNm and CNNPOR are sim-

ilar, and in the experiments, both methods are trained for

the same number of iterations 2000. Therefore, by employ-

ing the proposed efficient implementation, the scalability of

CNNPOR is similar as CNNm. As shown in Fig. 5 and Ta-

ble 5, the training error of CNNPOR is higher than CNNm,

but CNNPOR achieves better performance on the testing

set, which indicates the proposed method avoids overfit-

ting effectively. RED-SVM is not scalable for this dataset,

and the accuracy of state-of-the-art handcrafted feature-

based method for this dataset is cited from [5] for compar-

ison in Table 5. G. Levi and T. Hassner proposed a lean

DNN [11] particularly for this dataset. They did not report

MAE results in their papers. It is observed that CNNPOR

achieves overall best performance consistently for all the

benchmarks.

5. Conclusions

This paper proposes a new constrained optimization for-

mulation for ordinal regression problems, and transforms

it to an unconstrained optimization formulation with an ef-

fective deep learning implementation. The experimental re-

sults show that CNNPOR achieves overall the best results

on all the four benchmarks, demonstrating the generality

and scalability of the proposed method.
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