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Abstract

This paper proposes learning disentangled but comple-

mentary face features with a minimal supervision by face

identification. Specifically, we construct an identity Dis-

tilling and Dispelling Autoencoder (D2AE) framework that

adversarially learns the identity-distilled features for iden-

tity verification and the identity-dispelled features to fool

the verification system. Thanks to the design of two-stream

cues, the learned disentangled features represent not only

the identity or attribute but the complete input image. Com-

prehensive evaluations further demonstrate that the pro-

posed features not only preserve state-of-the-art identity

verification performance on LFW, but also acquire compa-

rable discriminative power for face attribute recognition on

CelebA and LFWA. Moreover, the proposed system is ready

to semantically control the face generation/editing based on

various identities and attributes in an unsupervised manner.

1. Introduction

Learning distinctive yet universal feature representa-

tions has drawn long-lasting attention in the community of

face analysis due to its pivotal role in various face-related

problems such as face verification and attribute recogni-

tion [40, 37, 23, 5, 28, 25], as well as generative face mod-

eling and controllable editing [29, 47, 21, 13, 21, 18]. Most

contemporary methods learn the facial features specific to

predefined supervision (e.g. identities, attributes) [43, 38,

37, 41, 39, 17, 5, 28], and thus hamper these features to

be readily generalized to the feature space for a new task

without careful fine-tuning. For example, without explicit

supervision, the learned features are likely not to reflect the

connection between two attributes smile and mouth open,

nor to relate identity-relevant attributes like gender and race

closely to identity. Therefore, learning an almighty feature

representation generalizable to any face-related tasks is sig-

nificant in the field of face analysis and possibly transferable
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Figure 1. Representative face applications based on the learned

face feature representations. (a) Semantic face editing such as

identity-preserving attribute modification and identity transfer and

interpolation. (b) The learned face features are trivially separable

according to different attributes, visualized by Barnes-Hut t-SNE

[30]. (c) The ROC curve on LFW face verification benchmark.

The proposed face feature achieve the accuracy of 99.80% (single

model), which outperforms most state-of-the-art methods without

loss of ability in editing identity-related attributes.

to other fields such as pedestrian analysis.

Unlike prior arts that applied multi-task supervision [17]

to extract quasi-universal features that are jointly effective

across multiple predefined tasks, in this paper, we pro-

pose a novel feature learning framework with a minimal

supervision by face identities. The learned representation

not only produces identity-distilled features that discrim-

inatively focus on inter-personal differences with identity

supervision, but also effectively extracts the hidden identity-
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dispelled features to capture complementary knowledge in-

cluding intra-personal variances and even background clut-

ters. Analogous to the adversarial learning paradigm [8, 36,

7], the identity-dispelled features are fooled to make non-

informative judgment over the identities. We claim that the

learned face features own sufficient flexibility to improve

face identification and are extensible to model diverse pat-

terns like attributes for different tasks. Moreover, these fea-

tures also enable controllable face generation and editing

even without tedious training of the control units. Fig. 1 il-

lustrates the superiority of the proposed feature representa-

tion over the state of the arts in representative applications.

In this study, we wish to highlight three advantages of

this innovative feature learning framework:

(1) Adversarial Supervision – The identity-dispelled fea-

tures are intactly encoded with the novel adversarial super-

vision. Distinct from those supervised by additional hand-

crafted tasks, the proposed scheme is simple yet effectively

guarantees better generalization and completeness of the

representation with complementary features.

(2) Interpretability – Our learning scheme provides a com-

prehensive and decomposable interpretation of the knowl-

edge by adaptively assembling the identity-distilled and

identity-dispelled features. We also find the learned features

are compact and smoothly spread in a convex space. The

extracted face features enhence face identity verification

and are well prepared for various bypass tasks such as face

attribute recognition and semantic face generation/editing.

(3) Two-stream End-to-End Framework – The proposed

framework is end-to-end learned and solely supervised by

face identities, distinguished from the conventional meth-

ods equipped with alternate adversarial supervision. By

reusing the learned face features, other face-related tasks

can be readily plugged in without fine-tuning the network.

(4) Discriminative information preserving – To be a minor

contribution, the performance of face recognition gets im-

proved if the attribute bias against identities occurs in the

training set, which is often the case in small datasets.

The aforementioned advantages of the Distilling and

Dispelling Autoencoder (D2AE) framework are examined

and analyzed through comprehensive ablation studies. The

proposed approach is compared both quantitatively and

qualitatively with state of the arts, achieving 1) accuracy

of 99.80% on face verification benchmark LFW[12], 2)

remarkable performance on attribute classification bench-

marks LFWA[26] & CelebA[26], and 3) superior capability

on various generative tasks such as semantic face editing.

2. Related Work

Learning Feature Representations. With the goal of dis-

entangling distinct but informative factors in the data, repre-

sentation learning has drawn much attention in the machine

learning community [2, 3]. It is typically categorized into

generative modeling and discriminative modeling. Given

observations, Discriminative Models directly model the

conditional probability distribution of the target variables

and have accompanied and greatly nourished the rapid

progress in classification and regression tasks, such as large-

scale facial identity classification [43, 40, 38, 37, 41, 32]

and attribute classification [28, 6]. Generative Models, as

opposed to discriminative models, learn feature representa-

tions by modeling how the data was generated based on the

joint distribution of the observed and target variables. For

example, the autoencoder (AE) framework [19, 4, 11, 10]

proposes that an encoder first extracts features from the

data, followed by a decoder that maps from feature space

back into input space. With the ability to automatically en-

code expressive information from the data space, various

AE models [46, 35, 16] have been developed.

Combining Discriminative and Generative Models.

While discriminative models generally perform better, they

inherently require supervision, being less flexible than gen-

erative models. The pioneering work of GAN [8] combines

them together, and a large body of literature has been built

upon it. Impressive progress has been made on a variety

of tasks, such as image translation [15], image editing [51],

image inpainting [33, 1], and texture synthesis [20, 22].

Disentangled Representation. Despite impressive previ-

ous progress on improving either visual quality or recogni-

tion accuracy, disentangling the feature representation space

is still under-explored. Some previous works tried to dis-

entangle the representations in tasks such as pose-invariant

recognition [45, 44] and identity-preserving image edit-

ing [13, 21, 18]. However, they usually require explicit at-

tribute supervision and encode each attribute as a separate

element in the feature vector. These methods are limited to

representing a fixed number of attributes and need retrain-

ing once a new attribute is added. Makhzani et al. [31] en-

code class information into a discrete one-hot vector, with

style information following a Gaussian distribution, but its

training is likely to be unstable.

Our proposed D2AE model overcomes these limitations.

With no attribute supervision, the identity-dispelled feature

encodes various attributes, to which the identity-distilled

feature is invariant. In contrast, [49] extracts features that

are only pose-invariant, which is a special case of our

model. [34] learns a representation that is only invariant

to pose and requires multi-source supervisions, while our

method learns a representation invariant to any non-ID at-

tributes and requires no supervision other than ID. More-

over, without popular regularization on distribution like

VAE [16], our learned hidden space is naturally compact

and smooth.
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Figure 2. The Distilling and Dispelling Autoencoder model.

3. Learning Disentangled Face Features
In this section, we introduce the identity Distilling and

Dispelling Autoencoder (D2AE) framework that end-to-end

learns disentangled face features with an external supervi-

sion signal from face identity.

Given an input face image x, the identity-distilled fea-

ture fT ∈ R
NT and identity-dispelled feature fP ∈ R

NP

jointly serve as a complete representation of the face, as il-

lustrated in Fig. 2. The encoding module is composed of a

stack of shared convolutional layers Eθenc
(x), followed by

the parallel identity distilling branch BθT
and identity dis-

pelling branch BθP
. Face identities supervise the training

for fT and also adversarially guide the learning for fP . Fi-

nally, a decoding module Dθdec
(·) reconstructs x̃ from the

fused semantic features, so as to encourage the learned face

features to encode a full representation of the input image.

3.1. Identity Distilling Branch

As visualized in Fig 3, the identity distilling branch

D2AE-T extracts fT by a convolutional subnet BθT
after

Eθenc
(x), written as fT = BθT

(Eθenc
(x)). Specifically, fT

is non-linearly mapped by softmax function to an NID-

dimentional identity prediction distribution, which corre-

sponds to the NID identities provided by the applied large-

scale training dataset for face identification [9, 26],

yT = softmax(WT fT + bT ). (1)

The predicted distribution yT is compared to the ground

truth one-hot face labels gI via the cross-entropy loss

LI =

NID
∑

j=1

−g
j
I
logyj

T
= − logyt

T , (2)

where t indicates the ground truth index. Please note that

the optimization over LI only updates the identity distilled

branch BθT
and the shared layers Eθenc

.

3.2. Identity Dispelling Branch

The identity dispelling branch D2AE-P suppresses the

identity information and tries to encode the complementary

facial information. Similar to the identity distilling branch

D2AE-T , it also consists of a subnet fP = BθP
(Eθenc

(x))
appended with a fully connected layer towards the identity

prediction distribution yP = softmax(WP fP + bP). To

backpropagation in branch T

backpropagation in branch P

backpropagation in branch P

Eθenc

LI

Ladv

I

LH

LH

Ladv

I

LI

BθP

Identity distilling branch

BθT

Identity dispelling branch

Figure 3. The encoding module for extracting disentangled face

features.

enable the complementary feature extraction, we propose

an adversarial supervision.

On one hand, we also need to train an identity classi-

fier based on the extracted features fP and supervised by

the cross entropy loss Ladv
I

= − logyt
P

. The difference

between the training of yP and yT is that the gradients of

Ladv
I

are only back-propagated to the classifier but do not

update the preceding layers in BθP
and Eθenc

, analogous to

the discriminator in GAN models [8].

On the other hand, we need to train the identity dispelling

branch to fool the identity classifier, where the so-called

“ground truth” identity distribution uI is required to be con-

stant over all identities and equal to 1

NID
. Therefore, it is

also equivalent to minimizing the negative entropy of the

predicted identity distribution

LH =

NID
∑

j=1

u
j
I
logyj

P
=

1

NID

NID
∑

j=1

logyj
P
, (3)

where the gradients for LH are back-propagated to BθP
and

Eθenc
with the identity classifier fixed.

It is worth mentioning that the proposed adversarial su-

pervision does not introduce degenerated solutions for fP
(e.g., non-informative patterns). However, if we remove the

identification loss Ladv
I

and allow the gradients in LH to up-

date the identity classifier, few efforts are needed for this

branch to deceive LH , e.g., by simply changing the identity

classifier to produce non-informative outputs. In this case,

there is certainly no guarantee that fP extracts the identity-

dispelled features.

The total loss for this branch is the summation of Ladv
I

and LH, and the two features can be learned simultane-

ously with the proposed feature-level adversarial training,

no longer in need of a fragile alternate training process as is

required in most GAN models [8].

3.3. Encoder­Decoder Architecture

While loss functions imposed on identity distilling and

dispelling branches encourage a split of the input image rep-

resention, there is no guarantee that the combination of fT
and fP form a complete encoding of the input image x. In

fact, we can only ensure that fT represents the identity while
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fP wipes off the identity, but whether the remaining infor-

mation has been encoded is not clear. An encoder-decoder

architecture is used to further enhance the learned feature

embedding by imposing a bijective mapping between an in-

put image and its semantic features. For simplicity, we ap-

ply the ℓ2 norm as the reconstruction loss

LX =
1

2
‖x−Dθdec

(fT , fP)‖
2

2. (4)

Since LI encourages fT to distill identity-aware features,

the reconstruction loss forces fP to encode all of the re-

maining identity-irrelevant information to recover the orig-

inal image.

3.4. Statistical Augmentation

To encourage the channel-wise feature distribution in fT
and fP to be sufficiently distinctive and concentrated, we

may augment the features with Gaussian noises as

f̃ iι = f iι + εσi
ι, ∀i ∈ {1, . . . , Nι} with ε ∼ N (0, 1), (5)

where ι ∈ {Tid,P} indicates the feature type. The scale is

the standard deviation of each element in fι, which can be

efficiently calculated via a strategy similar to batch normal-

ization [14]. When plugging the augmentation operations

right after fI and fP , the loss functions aforementioned can

be straightforwardly modified by the augmented features.

A slight perturbation on BθT
forces the ID-distilling

space to learn larger margins between identities. Further-

more, since the perturbation in each channel is independent,

it is useful for channel-decoupling, which is similar to the

mechanism of dropout. Therefore, the resultant features are

densely concentrated and nearly independent across chan-

nels. Moreover, it inherently condenses the semantic fea-

ture space expanded by fT and fP , increasing the network

interpretability for any face image.

3.5. Learning Algorithm

Learning the face features involves a single objective that

consists of the feature extraction losses LI , Ladv
I

and LH, as

well as the reconstructed loss LX . Moreover, when statis-

tically augmented by f̃T and f̃P , we also incorporate the

objective with the augmented reconstruction loss L̃X . The

final objective is a weighted combination:

L = λT LI + λP

(

Ladv
I + LH

)

+ λX

(

L̃X + LX

)

. (6)

We apply the stochastic gradient descent solver to min-

imize the above objective and update the network parame-

ters. As depicted in Fig. 3, the dotted blue line and the dot-

ted orange line present the back-propagation routines for LI

and LH, respectively, and the purple line demonstrates the

simultaneous back-propagation path for Ladv
I

. Similarly, the

gradient updates for the encoder-decoder network param-

eters are back-propagated through the whole autoencoder

except the identity classifiers for both branches.

4. Experimental Setting

4.1. Datasets and Preprocessing

Datasets. The proposed D2AE model is trained on the MS-

Celeb-1M dataset [9], which is currently the largest face

recognition dataset. For purpose of assessing its general-

ization ability, the trained model is evaluated on the LFW

dataset [26], and the overlapped images both in the MS-

Celeb-1M and LFW datasets are manually pruned from the

MS-Celeb-1M dataset. Therefore, 4M checked images with

80K identities in the MS-Celeb-1M dataset are used for

training and validation, with a split ratio of 9 : 1.

Preprocessing. Faces in the images are detected and

aligned by RSA [24]. Face patches are first cropped so

that the interpupillary distance is equal to 35% of the patch

width, and then they are resized to 235× 235.

4.2. Detailed Implementation

The proposed D2AE model consists of an encoding mod-

ule Eθenc
, two parallel subnets BθT

and BθP
to decompose

the face features, and a decoding module Dθdec
.

Encoding Module Eθenc
. We use Inception-ResNet[42] as

the backbone of Eθenc
. The input size is modified to 235 ×

235 and the final AvePool layer is replaced by BθT
/BθP

.

Subnets BθT
/BθP

. Each subnet has 3 conv layers, one

global AvePool and one FC layer. These branches extract

two 256 dimensional feature representations for fT and fP .

Decoding Module Dθdec
. Dθdec

decodes the concatenation

{fT , fP} into a face image with the same size as the input

image. The concatenated feature vectors are firstly passed

into an FC layer to increase the feature dimension and then

reshaped to squared feature maps, which are fed into 20
conv layers interlaced with 6 upsampling layers to ob-

tain the output image.

Model Training. The whole network is trained in an end-

to-end manner with all of the supervisory signals simulta-

neously added to the system. The batch size of the input

images is 192, distributed on 16 NVIDIA Titan X GPUs.

The base learning rate is set to 0.01 and is declined by 0.1
every 10 epochs. It takes around 31 epochs in total for the

training to converge. The weights in the training objective

is set as λT = 1 for LI , λP = 0.1 for Ladv
I

and LH, and

λX = 1.81 × 10−5 for the LX and L̃X in the encoder-

decoder architecture.

4.3. Model Evaluation

We select three representative face-related applications

to demonstrate the effectiveness of the proposed face fea-

tures. They share the same feature extraction pipeline that

concatenates the face features from the proposed identity

distilling and dispelling branches f⊤
C

= [f⊤
T
, f⊤

P
].

Face Identification. We select the LFW dataset as the

test bed for face identification, following the standard eval-

uation protocols with two popular metrics: accuracy and
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Branch
Identity Attribute

Acc TPR Acc #drop

D2AE-T 99.78 99.63 79.78 –

D2AE-P 64.13 5.3 81.99 –

D2AE-P w/o LH 71.2 8.67 80.47 36/40

D2AE-P w/o Ladv
I

67.13 5.63 78.32 36/40

D2AE 99.80 99.40 83.16 –

Table 1. Evaluation of the D2AE model on identity verification

and attribute recognition, comparing different combinations of

branches and losses. The last column shows the number of at-

tributes (out of the total number of 40) that suffer a performance

drop compared to D2AE-P with complete losses. Bold font marks

the best result in each column.

TPR@0.001FPR1. The identity similarity is calculated by

the cosine distance between two feature vectors.

Face Attribute Recognition. We further validate the dis-

criminative power of the proposed face features on face at-

tribute recognition over the CelebA [26] and LFWA [26]

datasets. Each image in these datasets is annotated with

Natt = 40 face attributes. The performance is evaluated by

the metric of accuracy, as suggested by Liu et al. [26]. Since

our model does not receive the attribute supervision, we ex-

tract the combined features fC and then train a linear SVM

supervised by the labeled attributes in these datasets.

Face Editing. We also show the superiority of the proposed

model in identity-preserving attribute editing and attribute-

preserving identity exchanging. 2 By editing the semantic

face features within the valid range of the feature space, we

can observe rich semantic variations in the decoded image.

(1) The identity-preserving attribute editing modifies fP by

adding an incremental vector along the max-margin direc-

tion wn of an attribute according to the trained linear SVM

classifier for face attribute recognition. Thus the modified

feature is f∗
P

= fP + αnwn, where αnwn ranges within

the confidence interval controlled by the learned standard

deviation depicted in Sec. 3.4 for a reasonable modification

of the input image. To support editing multiple attributes,

f∗
P

can be extended to f∗
P

= fP +
∑Natt

n=1
αnwn, where

α is constrained in a similar fashion. (2) The attribute-

preserving identity exchanging replaces fA
T

from the image

of one identity A with fB
T

from another identity B, while

keeping fA
P

unchanged. Or more generally, the identity

can be smoothly varied along the identity manifold, such

as f∗
T
= βfA

T
+ (1− β)fB

T
, ∀β ∈ [0, 1]. The generated face

image has the target identity with the rest semantic informa-

tion and background remaining the same.

5. Ablation Study
A unique advantage of the D2AE model is its capabil-

ity of learning complete and disentangled features from the

input image, i.e., the identity-distilled feature and identity-

1We take TPR for short in the following experiments.
2To prove the robustness and consistency of our model, identities of

visualized results are re-used for multiple times in the main paper.

(a) fT by D2AE-T (b) fP by D2AE-P

Figure 4. Barnes-Hut t-SNE [30] visualization of the features ex-

tracted by two branches (a) D2AE-T and (b) D2AE-P on LFW.

The colors indicate different identities. Best viewed in color.

dispelled feature. Successful extraction of the expected fea-

tures is guaranteed by several pivotal components, i.e., two

complementary branches for information selectivity, adver-

sarial supervision for identity dispelling and statistical aug-

mentation for a compact hidden space. In this section, we

will validate their effectiveness by ablation studies, where

the LFW(A) face dataset is employed for evaluation.

5.1. Branch Selectivity

We find that the identity distilling branch D2AE-T and

the identity dispelling branch D2AE-P indeed have distinc-

tive capacities in representing different features.

Identity-distilled Feature fT . Comparing TPR of identity

verification in Table 1, fT from D2AE-T is significantly su-

perior to fP from D2AE-P . The extremely low value in

TPR for D2AE-P indicates that this branch has expelled

most of the identity-related information from the input im-

age. To further demonstrate their discrepancy on discrimi-

native capability, we visualize the high-level features gener-

ated by these branches based on Barnes-Hut t-SNE [30]. As

shown in Fig. 4 (a), D2AE-T generates a set of densely clus-

tered features for each identity with distinct boundaries be-

tween features from different identities. Moreover, D2AE-

T has almost the same identity verification result as that of

the combined features (named as D2AE in Table 1) and even

outperforms the latter by the TPR metric. Not surprisingly,

it also proves that the features by D2AE-T have an extraor-

dinary ability to represent identity-aware information.

Identity-dispelled Feature fP . In contrast to its poor abil-

ity of extracting identity-aware features, D2AE-P presents

its superiority in face attribute recognition over D2AE-T ,

as shown in Table 1. Interestingly, the features learned by

D2AE-T also present certain discriminative ability to rec-

ognize some attributes. As shown in Fig. 5, the feature fP
outperforms fT on 27 attributes in total. For most common

attributes that are independent from identity such as pale

skin and smile, the identity-dispelled feature exhibits more

discriminative potential. However, other identity-aware at-

tributes including genders (e.g., male) and races (e.g., In-

dian and Asian) tend to be better recognized through the

2084



P
a

le
 s

k
in

R
o

sy
 c

h
e

e
k

s 

B
lu

rr
y

S
m

ili
n

g

B
a

g
s 

u
n

d
e

r 
e

y
e

s

M
o

u
th

 s
lig

h
tl

y
 o

p
e

n

M
a

le

B
lo

n
d

 h
a

ir

W
h

it
e

B
la

ck

A
si

a
n

In
d

ia
n

P>T

T>P

B
a

ld

Bags under 

eyes

Rosy 

cheeks

Pale 

skin

Male White Black

WhitePale skin Smiling

(a)

(b)

Figure 5. (a) Performance comparison on attribute recognition

with features extracted from either D2AE-T or D2AE-P . The

magnitude of each bin illustrates the difference between the recog-

nition accuracy of D2AE-T and that of D2AE-P . Blue bins indi-

cate attributes where features from D2AE-P excel, and red bins

show attributes where features from D2AE-T win. (b) The resid-

ual maps correspond to three representative attributes. Images on

the left of each pair are generated by D2AE-T and the right ones

are by D2AE-P .

identity-distilled feature. Besides, attributes on the border-

line (e.g., bald) with similar performance shared by fT and

fP , are mostly vaguely defined between identity-related and

identity-irrelevant attributes.

To visualize the discriminative response of attribute onto

the image space, we synthesize a set of residual images re-

sponsive to each attribute against the mean image from the

LFW dataset. We synthesize the attribute-augmented face

image by first adding a unit vector wn, n ∈ {1, . . . , Natt} to

the mean feature f̄T (or f̄P ) and then decoding the combined

feature to a face image. The residual images are attribute-

augmented face images subtracted by the mean image. Ac-

cording to the results shown in Fig. 5 (a), residual maps with

respect to D2AE-P for identity-irrelevant attributes usually

display high responses at local semantic regions, such as

the facial skins for pale skin and cheeks for rosy cheeks.

In contrast, the residual maps with respect to D2AE-T for

identity-related attributes usually have holistic responses,

which are distributed throughout the whole image, e.g., the

maps for gender and race. Comparing the residual maps

with respect to each branch, fT tends to be more respon-

sive to identity-aware attributes while fP displays stronger

responses to identity-irrelevant attributes, as presented in

Fig. 5 (b).

In addition to quantitative comparison, in Fig. 6 we also

provide qualitative results of face attribute editing by modi-

fying features extracted from D2AE-T and D2AE-P . Modi-

R
a
ce

S
m
ili
n
g

D2AE-T D2AE-P

Figure 6. Modifying features extracted from two branches for face

attribute editing. ID-related and ID-irrelevant attributes are ex-

tracted through D2AE-T and D2AE-P , respectively.

fying fT has minimal influence on face variation when edit-

ing identity-irrelevant attributes like smiling, but it effec-

tively controls the face warping to a different race. Con-

versely, modification on fP can hardly change the race of

a face, but it continuously transforms a face from a neutral

expression to smiling.

5.2. Loss Functionality

The adversarial training in the identity dispelling branch

is a distinctive feature of the D2AE network. We examine

the loss terms in D2AE-P to demonstrate their necessities

for the effective training of identity-dispelled features.

Identity Confusion Loss LH. Removing the adversarial

loss LH in D2AE-P causes a failure of fP to completely

dispel identity-related attributes. As a consequence, it per-

forms better on identity verification than the model with

combined losses, but its performance on attribute recogni-

tion is slightly degraded, as presented in Table 1. 36 out

of 40 attributes experience drop of recognition accuracy. In

contrast, both accuracy and TPR metrics for identity veri-

fication obtain remarkable gains. In fact, the identity clas-

sification loss cannot effectively constrain fP as it only has

an impact on the identity classifier during gradient update,

thus there is no guarantee that the resultant fP is indepen-

dent from the identity as expected.

Identity Classification Loss Ladv
I

. Removing the identity

classification loss Ladv
I

, we only regularize fP to fool the

identity verification system based on LH which updates

its identity classifier. Thus its identity dispelling ability,

i.e., the ability of pruning identity information from fP , is

weaker than the combined losses for lack of explicit identity

supervision on the identity classifier. According to Table 1,

without Ladv
I

, the performance of fP on identity verifica-

tion is slightly improved, but its performance on attribute

recognition is degraded with drops happening in 36 over 40
attributes. As LH explicitly confuses fP about the identity,

it renders poorer identity verification than that trained by

Ladv
I

. Moreover, with a weaker ability to extract the infor-

mation complementary to identity, LH also produces infe-
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#1~36 in D2AE-P #1~36 in D2AE-P

Figure 7. The distributions of the first 36 channels in features gen-

erated by D2AE-T (left) and D2AE-P (right). All the variables

follow the Gaussian distribution.

D2AE-PD2AE-T

Figure 8. adj − R2 scores of the channel-wise statistics of the

features generated by D2AE-T (left) and D2AE-P (right).

rior attribute recognition results than that by Ladv
I

.

5.3. Augmentation Necessity for Convex Space

The proposed statistical augmentation encourages the

learned face features to be distinctive and densely Gaussian

clustered in each channel as in Fig. 7. For quantitative eval-

uation, in Fig. 8, we plot two histograms to verify the re-

quired statistical property of fT and fP on the LFW dataset.

These histograms are used to mimic the adjusted R-square

(adj −R2) score distribution for the channel-wise statistics

of the features, where adj−R2 is to measure how much the

statistics look like a Gaussian distribution (a higher score is

more alike). Obviously, both features are nearly Gaussian

and almost all the channels have adj − R2 scores higher

than 0.99. They prove that the learned feature spaces for fT
and fP are Gaussian and convex, whilst the features in these

spaces are densely spread.

We also find that the learned feature space is compact

and convex by densely interpolating two identities with dif-

ferent attributes. In Fig. 9, the interpolated face images

change smoothly along the identity and attribute axes.

6. Performance Comparison

We also quantitatively and qualitatively compare the pro-

posed D2AE model with state-of-the-art approaches on the

face-related tasks as mentioned above.

6.1. Face Identification

Comparison of results between the D2AE model and the

prior arts is plotted in Fig. 1 (c). According to the ROC
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Figure 9. Images generated by dense interpolation on space ex-

panded by D2AE-T and D2AE-P . D2AE learns a convex hyper

space. D2AE-T controls identity and all identity-related attributes,

such as gender and race. D2AE-P controls all the other attributes

like smile and frontal. Best viewed in color and zoomed in.

Method
MS-Celeb-1M WebFace

Acc TPR Acc TPR

Baseline 99.816 99.73 98.93 94.87

D2AE 99.80 99.40 99.25 96.80

Table 2. Comparison of results on face identity verification.

curve and accuracy results listed in the legend, the D2AE

model achieves the best prformance.

In addition to the MS-Celeb-1M dataset, we also com-

pare their face verification results on a smaller CASIA-

WebFace dataset [48]. It only contains 0.49M images

with around 10K identities, approximately one-tenth of the

scale of the MS-Celeb-1M dataset. To further manifest the

significance of the encoder-decoder structure compared to

the encoder-only feature extraction scheme, we construct a

baseline with the same encoder structure as included in the

D2AE architecture, denoted as the Baseline model.

As shown in Table 2, D2AE achieves comparable perfor-

mance with the Baseline model when trained on the MS-

Celeb-1M dataset. Furthermore, if trained on the WebFace

dataset, it even outperforms the Baseline model. This phe-

nomenon occurs because the identity space may be biased

towards some attributes due to the limited scale of the Web-

Face dataset. For example, it is possible that the face im-

ages of a certain identity in the dataset always appear in

the same pose or expression. In this case, such particular

pose or expression is likely to be used to define this iden-

tity, and hence it will be falsely encoded in the identity-

related feature. Because the D2AE model disentangles a

face representation into an identity-distilled feature and a

complementary identity-dispelled feature, it owns a superi-

ority over the baseline model in the task of identity verifica-

tion. In contrast, when trained on the MS-Celeb-1M dataset

which has a sufficiently large scale, the baseline model is

able to correctly extract identity-related information.

6.2. Face Attribute Recognition

We compare the proposed framework and two meth-

ods [27, 50] with supervision on face attribute. Perfor-
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Figure 10. Results of (a) identity-aware attribute transfer and (b) identity-aware attribute interpolation. Zoom in for details.

Dataset [27] [50] D2AE

LFWA 83.85 81.03 83.16

CelebA 87.30 85.43 87.82

Table 3. Comparison of results on face attribute recognition.

mance is evaluated on two commonly employed datasets,

i.e. LFWA [26] and CelebA [26]. As shown in Table 3,

although the proposed method is entirely unsupervised in

terms of face attribute, it achieves comparable results with

the supervised methods.

In Fig. 1 (b) , we visualize the 2D embedding of all

faces with attributes in LFWA dataset, based on the Barnes-

Hut t-SNE method [30]. We can observe that with fea-

tures extracted from D2AE, the 2D embedding space can be

automatically partitioned by either attributes or identities.

Note that the attributes do not follow category boundaries.

There are overlapping classification boundaries for differ-

ent identity-aware attributes such as sex and race, while the

face images for one identity are densely clustered.

6.3. Face Editing

We show that the proposed method presents superior per-

formances on semantic face editing. We take several face

images from the LFW dataset and reconstruct them with

modification on different attributes as well as identities.

Identity-aware Attribute Editing. Fig. 10 (a) shows sev-

eral portraits with one attribute changed at a time. Our

model alters the attributes with well-preserved naturalness

and identity. For either local (e.g., smiling, narrow eyes, and

bangs) or global attributes (e.g., Asian and age), the model

has successfully disentangled identity-distilled and identity-

dispelled features. For example, even if the transformation

of race certainly disturbs identity, almost all the identity-

irrelevant attributes such as hair style, facial expression, and

background color are well preserved. In the last column,

the proposed model even synthesizes the unseen teeth and

tongues when editing a portrait to smile and generates wrin-

kles when altering a person’s age towards older.

Identity-aware Attribute Interpolation. Interpolation is

(a)
Male Female Smile Frown

Reconstruction

Sampling Sampling

Reconstruction

(b)

D2AE
+GAN

D2AE

Figure 11. Identity-aware attribute transfer using the proposed

model and its extension based on the GAN model.

performed by changing the weight of an attribute, which

renders face images with different magnitudes of that at-

tribute as shown in Fig. 10 (b). Our model enables smooth

and natural change of either a female face from smiling to

frowning or eyes of a male from being open to being closed.

Identity Transfer. To further illustrate the compactness of

the convex feature space, a face image is gradually changed

from one identity to another in the last row of Fig. 1 (a).

It shows a smooth transition from a smiling female to a

frowning male with the hair style gradually changed as well.

More results are shown in Fig. 9.

Extension toward GANs. We find that the proposed model

can be safely incorporated with the generative adversarial

networks (GANs) [8], by switching the reconstruction loss

LX to the adversarial loss from an additional discriminator.

The reconstructed face images contain more realistic details

and noises as shown in Fig. 11.

7. Conclusion

The proposed D2AE disentangles the face representation

into two orthogonal streams with novel adversarial super-

vision. Features in the two streams completely represent

the information in the whole face, which are highly dis-

tinctive and densely distributed in a convex latent space.

The learned features are ready for various applications such

as face verification, attribute prediction and face editing,

where the model all achieves state-of-the-art performances.
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[33] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting.

In 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,

2016, pages 2536–2544, 2016. 2

[34] X. Peng, X. Yu, K. Sohn, D. N. Metaxas, and M. Chan-

draker. Reconstruction-based disentanglement for pose-

invariant face recognition. In ICCV, 2017. 2

[35] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio.

Contractive auto-encoders: Explicit invariance during fea-

ture extraction. In ICML, 2011. 2

[36] J. Schmidhuber. Learning factorial codes by predictability

minimization. Neural Computation, 4(6):863–879, 1992. 2

[37] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A

unified embedding for face recognition and clustering. In

Proc. CVPR, 2015. 1, 2

2088



[38] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face

representation by joint identification-verification. In Proc.

NIPS, 2014. 1, 2

[39] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3:

Face recognition with very deep neural networks. CoRR,

abs/1502.00873, 2015. 1

[40] Y. Sun, X. Wang, and X. Tang. Deep learning face represen-

tation from predicting 10,000 classes. In Proc. CVPR, 2014.

1, 2

[41] Y. Sun, X. Wang, and X. Tang. Deeply learned face repre-

sentations are sparse, selective, and robust. In Proc. CVPR,

2015. 1, 2

[42] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. 2017. 4

[43] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace:

Closing the gap to human-level performance in face verifica-

tion. In Proc. CVPR, 2014. 1, 2

[44] L. Tran, X. Yin, and X. Liu. Disentangled representation

learning gan for pose-invariant face recognition, 07 2017. 2

[45] L. Tran, X. Yin, and X. Liu. Representation learning by ro-

tating your faces. CoRR, abs/1705.11136, 2017. 2

[46] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.

Extracting and composing robust features with denoising au-

toencoders. In ICML, 2008. 2

[47] X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2image:

Conditional image generation from visual attributes. In Com-

puter Vision - ECCV 2016 - 14th European Conference, Am-

sterdam, The Netherlands, October 11-14, 2016, Proceed-

ings, Part IV, pages 776–791, 2016. 1

[48] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face represen-

tation from scratch. arXiv preprint arXiv:1411.7923, 2014.

7

[49] X. Yin, X. Yu, K. Sohn, X. Liu, and M. K. Chandraker.

Towards large-pose face frontalization in the wild. CoRR,

abs/1704.06244, 2017. 2

[50] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev.

Panda: Pose aligned networks for deep attribute modeling. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1637–1644, 2014. 7, 8
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